MProt-DPO: Breaking the ExaFLOP Barrier for Multimodal Protein
Desigh Workflows with Direct Preference Optimization

Gautham Dharuman'?, Kyle Hippe'-2, Alexander Brace'-2t, Sam Foreman't, Vaino Hatanpaa?, Varuni K. Sastry?, Huihuo Zheng?,
Logan Ward', Servesh Muralidharan’, Archit Vasan', Bharat Kale', Carla M. Mann'-2, Heng Ma', Yun-Hsuan Cheng3, Yuliana
Zamora?®, Shengchao Liu®, Chaowei Xiao®, Murali Emani', Tom Gibbs®, Mahidhar Tatineni’, Deepak Canchi®, Jerome Mitchell®,
Koichi Yamada®, Maria Garzaran®, Michael E. Papka'-°, lan Foster'-2, Rick Stevens'2, Anima Anandkumar'%, Venkatram
Vishwanath':°*, Arvind Ramanathan’:2*

TArgonne National Laboratory, “University of Chicago, *NVIDIA Inc., #Swiss National Supercomputing Center, *University of California, Berkeley,
SUniversity of Wisconsin-Madison, Madison, “San Diego Supercomputing Center, éIntel Corporation, *University of Illinois Chicago, '°California
Institute of Technology

tJoint first authors, *Contact authors: venkat@anl.gov, anima@caltech.edu, ramanathana@anl.gov

Atla ntc

Scaling on Aurora

Ok wbd=

Performance results

Software frameworks

LLM training, finetuning, and inference on Aurora
Handling Python packages at scale

Initializing PyTorch at scale

Collective communication at scale

Sustained Scaling of the 3.5B Model

ExaFLOPS

4.0 -

=
=
il

0.1-

3.5B Model

s PDX
m Alps .
e Aurora * We achieve 4.11 EF on Aurora

Leonardo sustained performance

* Linear scaling in throughput across
all systems
100 256 1024 2048 3200
Mades

Sustained performance is for the entire training iterations, including the various communication
intensive phases aswell as |/0.

Performance measured with an augmented DeepSpeed profiler to correctly account for model
parameters

Megatron-DeepSpeed

 Megatron-DeepSpeed is one of the most performant
frameworks for training language models at trillion

parameter scale

e Combines the 3D parallelism and fused CUDA kernels
from NVIDIA’s Megatron-LM with the ZeRO offloading of

DeepSpeed

* Kernels ported to XPUs to run on Aurora

* FlashAttention-2 was enabled to provide improved

throughput

* We employed one rank per GPU-tile and tune the micro
batch size (MBS) for performance at scale

* We used sequence lengths of 512 and 1024 as the
target protein families are well captured within this

range

* ALCF fork of Megatron-DeepSpeed at:
https://github.com/argonne-lcf/Megatron-DeepSpeed

Baseline

p

os

P

05+g

os+g+p

ZeRo optimizer

Memory Consumption Comm

gpu, gpu; gpUy.1 Formulation Specific E(xarepie

Volume

K=12 ¥=7.58 N,=64

R+2+K)+¥

120GB 1x

31.4GB

(R+2+K)*»W¥
Ny

Parameters Gradients Optimizer States

Tensor Parallelism

I @ I*’ d’l l
| 1
|
3 |
= ‘
: ; 1
\
!
|

Sequence Parallel Tensor Parallel Sequence Parallel

! J
uuoNJaAe*| uJ.IONJaAE'|

NVIDIA/Megatron- <
LM NVIDIA

Ongoing research training transformer models at
scale

1x

16.6GB

1.9GB 1.5%

https://github.com/argonne-lcf/Megatron-DeepSpeed

Performance details

Most of the compute in lower precisions:

* FP16/BF16 depending on the system

* Gradientaccumulation and syncin FP32 for numerical stability

Aurora GPUs contain two compute tiles each

* We used “tile as adevice” configuration, recommended on Aurora for
Deep Learning applications

* 6 GPU cards per Node, 2 tiles per card -> 12 ranks per node

* Achieved 107 TFLOPS per tile, 1280 TFLOPS per node

* We did not use model-parallelism for the final results but multiple
features are tested to work.

OneCCL communication library used for optimized collectives for Al

109 0

b sign
5b exponent
10b significand

IEEE FP16
half-precision

b sign
8b exponent
7b significand

BF16
bfloat16

3130 2322 18115 0

b sign
8b exponent
23b significand

IEEE FP32
single-precision

workloads on Intel GPUs, similar to NCCL for Nvidia

TABLE I: The five GPU supercompuating systems on which we evaluated the MProt-DPO application.

Alps Aurera Froalier Leonards FOX
Juamez- 300N Tiogp S0 iH 2 I T -
GFL MNYVIDLA GH-200 Iniel Max 1550 AR 250N MW HLELA 5 LD HVLIEA HID
Mumber of GPLUs per mode 4 12k 2L | 2 B
GPL Memaory (GE) My 124 124 | [Bl
OFL Memory Technology HBM? HEM2e HBMIe HEM2e HEM3
Imercannect HFE Slingshoil55)-11 5E-11 5511 Infinihasd (LB HOHR B NS
MIs per node 1 K 4 2]
Metwork B'W per derection {(GHE&S) 10K fad | 113 50 AHI
Caollective Communication Library MOCL OnelCL ROCL MOCL ML
Mumber of nodes 0GP s-tlesp scaled B0 (B2 KB (384N J0EE [16EEp | SHD {60000 (Ml ¢ 320k

Other options for LLM training, finetuning, and inference on Aurora:

This work used a fork of Megatron-
DeepSpeed for best performance.
Original Microsoft repository can also be
used on Aurora.

PyTorch FSDP-based solutions also
tested to work on Aurora, recommended
for small to medium scale training and
finetuning

Multiple other finetuning and inference
libraries tested and workis ongoing to
support more

Detailed instructions for Al workloads at
ALCF docs:

https://docs.alcf.anl.gov/aurora/data-

science/frameworks/pytorch/
https://docs.alcf.anl.gov/aurora/data-

science/frameworks/megatron-
deepspeed/
https://docs.alcf.anl.gov/aurora/data-
science/inference/libtorch/

https://docs.alcf.anl.gov/aurora/data-science/frameworks/pytorch/
https://docs.alcf.anl.gov/aurora/data-science/frameworks/pytorch/
https://docs.alcf.anl.gov/aurora/data-science/frameworks/megatron-deepspeed/
https://docs.alcf.anl.gov/aurora/data-science/frameworks/megatron-deepspeed/
https://docs.alcf.anl.gov/aurora/data-science/frameworks/megatron-deepspeed/
https://docs.alcf.anl.gov/aurora/data-science/inference/libtorch/
https://docs.alcf.anl.gov/aurora/data-science/inference/libtorch/

Loading Python environments at scale

Package managementtools such as conda can have tens

of thousands of small files and Python imports can iterate

over many of them.

* Over 30000 files opened on 38400 ranks -> node 3 - read /example_file.txt

* >900 million metadata operations can cause Filesystem A\ cheok Local Cache
stalls for all users RPC Parent

] Data Cache

D Metadata Cache

Tree Cache

Read Lustre

Many custom changes required an editable installation:
* As a quicksolution we packaged the environmentand
broadcasted it with mpidpy

Should not be an issue for normal usage: Copper can be used at scale to reduce Lustre load
* Frameworks module default environment is in the node

image, does not need to load from the Lustre filesystem
« Copper (co-operative caching layer for scalable parallel

data movementin Exascale Supercomputers)

recommended for speeding up loading Python

environments

https://docs.alcf.anl.gov/aurora/data-management/copper/copper/
https://docs.alcf.anl.gov/aurora/data-management/copper/copper/

Initializing PyTorch at scale

* PyTorch will start a TCP socket-based server on the
first process that will communicate information
about collectives and distributed setup

* Software image was based on PyTorch 2.1
* We made some hacks to be able to initialize the
distributed environment for the scale runs

* Certain settings need to be tuned to allow
thousands of socket connections

Init time
100

80

60

Seconds

40

20

1536 3072 6144 12288 24576 49152 98304
Ranks

PyTorch 2.3 PyTorch 2.5

Need to configure:
* Number of return sockets
* ulimit -n <somethingbig>
* Number of outstanding requests in the socket
queue
* Value set in /proc/sys/net/core/somaxconn
We are investigating changing this globally
on Aurora. Workarounds exist for now

Collective operations at scale

Allreduce of 30k+ ranks with large buffers is nontrivial

* Ringallreduce is able to utilize the bandwidth well
until a certain point, but does not scale infinitely due
to the latency component

* We utilized Rabenseifner’s algorithm to get better
performance at large scale

Performance improvements since:
* Multiple environment variables for OneCCL and
Libfabric to tune the low-level communication stack
 Documented in ALCF docs
* Improvements in the network stack:
» Tested up to 8192 nodes * 12 ranks. Now able
to complete an allreduce with good bandwidth
utilization

_rank newrank s

0 A-Hg i ADgq A-Hoq (0) N, A-Dos A-Bgq Aoz AB W A-D % AHI
1AH, ! DE H,Hﬁ: N,

2AHy ™ A-DysgAHpy (1) E-Hgs E-Fy Eg.12 E-F E-H < AH! ;
3A—H3:)E Hzﬁ N

4 4 A-H, = AD A-Has (2) = A-Dy. C-Dy. Cy. c-D A-D AH! !
2= 41 4- 4.5 4.7 b7 0-12] :
with 5 A-Hs, :) E- H4:ﬁ: EXA—H !
r=p-2" 6 A-Hg: DA—D,, TﬁA Hgr (3) E-Hy; G-Hypz Gpaz G-H E-H A-H :\\ :
and ?AHT EHs-,: xchanging total data in both dir. AH
ne<p || 8AHi) A-Dgag A-Hae (4) A—Da 10 A-Bg.12 Bp.12 A-B A-D % A-H 5\ ;
—— L 9 AH,y: i _E__I_'I_s_g___ nding to lal(!l e directio LA
10 A-Hyg L:changlng half of data in ¢ E ~Hg.10 E-Fa12 Fo2 E-F E-H A-H sanding total
11 A=Hy4 both directions followed by {6) :) A=Dyq42 C-Dg.qz2 Doz c-D A-D A-H data inone
12 A-Hyg e reductioncperation 7y & E_Hy40<" G-Hgqp®" Hoag G-H E-H 4 AH drestion
| 14 part: Reduce_scatter | | 2 part: Aligather |

Fig. 1. Recursive Halving and Doubling. The figure shows the intermediate results
after each buffer exchange (followed by a reduction operation in the 1% part). The
dotted frames show the overhead caused by a non-power-of-two number of processes.

Optimization of Collective Reduction Operations, Rolf Rabenseifner

https://fs.hlrs.de/projects/rabenseifner/publ/myreduce_iccs2004_2.pdf
https://docs.alcf.anl.gov/aurora/data-science/frameworks/oneCCL/
https://fs.hlrs.de/projects/rabenseifner/publ/myreduce_iccs2004_2.pdf

Summary

e Weachieve 4.11 EF on Aurora sustained performance
* Linear scaling in throughput across all systems

Performance lessons in:

* Handling Python environments
* Do not store conda environments on Lustre when launching at scale
* [|nitializing PyTorch distributed setup
* PyTorch 2.5 brings significant improvements

* Socket limits need to be configured

* Large scale collectives
* Algorithms matter

* Workis ongoing for defining optimal environmental variables in the
modules we provide

Table 3: Peak and sustained performance of the best performing model on each system.

Machine | Nodes | # GPUs | Sustained EFLOPS | Peak EFLOPS | Sustained/Peak Ratio | % MFU (Sustained)
Aurora 3200 19200 411 5.57 0.73 445

Alps 2060 8240 2.92 3.16 0.92 41.7
Frontier 2048 8192 1.06 1.18 0.89 33.8

PDX 400 3200 1.29 1.39 0.93 48.4

	Slide 1: MProt-DPO: Breaking the ExaFLOP Barrier for Multimodal Protein Design Workflows with Direct Preference Optimization
	Slide 2: Scaling on Aurora
	Slide 3: Sustained Scaling of the 3.5B Model
	Slide 4: Megatron-DeepSpeed
	Slide 5: Performance details
	Slide 6: Other options for LLM training, finetuning, and inference on Aurora:
	Slide 7: Loading Python environments at scale
	Slide 8: Initializing PyTorch at scale
	Slide 9: Collective operations at scale
	Slide 10: Summary

