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Sustained Scaling of the 3.5B Model
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Leonardo sustained performance

* Linear scaling in throughput across
all systems
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Sustained performance is for the entire training iterations, including the various communication
intensive phases aswell as |/0.

Performance measured with an augmented DeepSpeed profiler to correctly account for model
parameters



Megatron-DeepSpeed

 Megatron-DeepSpeed is one of the most performant
frameworks for training language models at trillion

parameter scale

e Combines the 3D parallelism and fused CUDA kernels
from NVIDIA’s Megatron-LM with the ZeRO offloading of

DeepSpeed

* Kernels ported to XPUs to run on Aurora

* FlashAttention-2 was enabled to provide improved

throughput

* We employed one rank per GPU-tile and tune the micro
batch size (MBS) for performance at scale

* We used sequence lengths of 512 and 1024 as the
target protein families are well captured within this

range

* ALCF fork of Megatron-DeepSpeed at:
https://github.com/argonne-lcf/Megatron-DeepSpeed
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https://github.com/argonne-lcf/Megatron-DeepSpeed

Performance details

Most of the compute in lower precisions:

* FP16/BF16 depending on the system

* Gradientaccumulation and syncin FP32 for numerical stability

Aurora GPUs contain two compute tiles each

*  We used “tile as adevice” configuration, recommended on Aurora for
Deep Learning applications

* 6 GPU cards per Node, 2 tiles per card -> 12 ranks per node

* Achieved 107 TFLOPS per tile, 1280 TFLOPS per node

*  We did not use model-parallelism for the final results but multiple
features are tested to work.

OneCCL communication library used for optimized collectives for Al
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workloads on Intel GPUs, similar to NCCL for Nvidia

TABLE I: The five GPU supercompuating systems on which we evaluated the MProt-DPO application.
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Other options for LLM training, finetuning, and inference on Aurora:

This work used a fork of Megatron-
DeepSpeed for best performance.
Original Microsoft repository can also be
used on Aurora.

PyTorch FSDP-based solutions also
tested to work on Aurora, recommended
for small to medium scale training and
finetuning

Multiple other finetuning and inference
libraries tested and workis ongoing to
support more

Detailed instructions for Al workloads at
ALCF docs:

https://docs.alcf.anl.gov/aurora/data-

science/frameworks/pytorch/
https://docs.alcf.anl.gov/aurora/data-

science/frameworks/megatron-
deepspeed/
https://docs.alcf.anl.gov/aurora/data-
science/inference/libtorch/
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Loading Python environments at scale

Package managementtools such as conda can have tens

of thousands of small files and Python imports can iterate

over many of them.

* Over 30000 files opened on 38400 ranks -> node 3 - read /example_file.txt

* >900 million metadata operations can cause Filesystem A\ cheok Local Cache
stalls for all users RPC Parent

] Data Cache

D Metadata Cache

Tree Cache

Read Lustre

Many custom changes required an editable installation:
* As a quicksolution we packaged the environmentand
broadcasted it with mpidpy

Should not be an issue for normal usage: Copper can be used at scale to reduce Lustre load
* Frameworks module default environment is in the node

image, does not need to load from the Lustre filesystem
« Copper (co-operative caching layer for scalable parallel

data movementin Exascale Supercomputers)

recommended for speeding up loading Python

environments


https://docs.alcf.anl.gov/aurora/data-management/copper/copper/
https://docs.alcf.anl.gov/aurora/data-management/copper/copper/

Initializing PyTorch at scale

* PyTorch will start a TCP socket-based server on the
first process that will communicate information
about collectives and distributed setup

* Software image was based on PyTorch 2.1
* We made some hacks to be able to initialize the
distributed environment for the scale runs

* Certain settings need to be tuned to allow
thousands of socket connections
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Need to configure:
* Number of return sockets
* ulimit -n <somethingbig>
* Number of outstanding requests in the socket
queue
* Value set in /proc/sys/net/core/somaxconn
We are investigating changing this globally
on Aurora. Workarounds exist for now



Collective operations at scale

Allreduce of 30k+ ranks with large buffers is nontrivial

* Ringallreduce is able to utilize the bandwidth well
until a certain point, but does not scale infinitely due
to the latency component

* We utilized Rabenseifner’s algorithm to get better
performance at large scale

Performance improvements since:
* Multiple environment variables for OneCCL and
Libfabric to tune the low-level communication stack
 Documented in ALCF docs
* Improvements in the network stack:
» Tested up to 8192 nodes * 12 ranks. Now able
to complete an allreduce with good bandwidth
utilization
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Fig. 1. Recursive Halving and Doubling. The figure shows the intermediate results
after each buffer exchange (followed by a reduction operation in the 1% part). The
dotted frames show the overhead caused by a non-power-of-two number of processes.

Optimization of Collective Reduction Operations, Rolf Rabenseifner



https://fs.hlrs.de/projects/rabenseifner/publ/myreduce_iccs2004_2.pdf
https://docs.alcf.anl.gov/aurora/data-science/frameworks/oneCCL/
https://fs.hlrs.de/projects/rabenseifner/publ/myreduce_iccs2004_2.pdf

Summary

e Weachieve 4.11 EF on Aurora sustained performance
* Linear scaling in throughput across all systems

Performance lessons in:

* Handling Python environments
* Do not store conda environments on Lustre when launching at scale
* [|nitializing PyTorch distributed setup
* PyTorch 2.5 brings significant improvements

* Socket limits need to be configured

* Large scale collectives
* Algorithms matter

* Workis ongoing for defining optimal environmental variables in the
modules we provide

Table 3: Peak and sustained performance of the best performing model on each system.

Machine | Nodes | # GPUs | Sustained EFLOPS | Peak EFLOPS | Sustained/Peak Ratio | % MFU (Sustained)
Aurora 3200 19200 411 5.57 0.73 445

Alps 2060 8240 2.92 3.16 0.92 41.7
Frontier 2048 8192 1.06 1.18 0.89 33.8

PDX 400 3200 1.29 1.39 0.93 48.4
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