
I/O and Data Management
Shane Snyder
Argonne National Laboratory

ALCF Hands-on HPC Workshop, Day 2
October 30, 2024

Argonne Leadership Computing Facility2

Managing scientific data

HPC applications spanning various scientific disciplines
have a range of diverse data management needs.
○ An explosion of scientific data (both in terms of volume

and in diversity of access patterns) is compounding the
I/O bottleneck, a longstanding performance impediment
on HPC systems.

Meanwhile, hardware trends have enabled novel,
high-performance storage system designs that promise
increased productivity to HPC apps.

ALCF and other HPC facilities deploy vast amounts of
storage resources to help meet the I/O needs of HPC
applications.
○ Today, we’ll introduce the basics of the HPC data

management stack at ALCF and try to establish some
best practices for using it effectively.

Visualization of entropy in Terascale
Supernova Initiative application.

Image from Kwan-Liu Ma’s
visualization team at UC Davis.

HPE/Cray Aurora system at the ALCF

Argonne Leadership Computing Facility3

Parallel file systems (PFSes) have been the traditional
tool for storing users’ data at HPC facilities for
decades now.
○ Users store data in a familiar file/directory hierarchy, but

with much more aggregate capacity and performance
relative to a local FS.

PFSes offer a number of attractive characteristics that
have led to their widespread usage in HPC:
○ High performance - parallel I/O paths enabling

aggregate performance of many storage resources
using high speed interconnects

○ Scalability - storage resources scaled to meet
demands of current and future applications

○ Reliability - failover mechanisms to ensure availability
of data in face of failures

Popular PFSes available on modern HPC systems
include:
○ Lustre
○ GPFS (a.k.a Spectrum Scale)
○ BeeGFS

open()
write()
close()

Scientific application processes

Persistent
data sets

Parallel file systems

Argonne Leadership Computing Facility4

Parallel file systems: Lustre
Lustre is currently the preferred scratch file system in production at the ALCF (as well as at
many other HPC facilities).

Lustre’s design is centered around an object storage service and a metadata storage service.
○ Metadata servers (MDSes) manage sets of metadata targets (MDTs).

– Maintain filesystem namespace and key file metadata
○ Object storage servers (OSSes) manage sets of object storage targets (OSTs).

– Provide bulk storage for file contents

Lustre clients coordinate with metadata servers
to set/query file layout, but then interact strictly
with storage servers for reading/writing data.

Lustre files are broken into stripes, with file
stripes round-robin distributed over 1 or more
OSTs.

OSS 1 OSS 2

OST 1 OST 2 OST 3 OST 4

1 2 3 4 5 6 7 8 9

1
2 3 4

5
6 7 8

9

Example file:

Argonne Leadership Computing Facility5

ALCF Polaris file systems
Users have a few different storage options on Polaris:
○ Eagle/Grand (Lustre)

– Temporary storage of I/O intensive data
– Mounted at /eagle and /grand, subdirs for each project
– Community sharing with Globus
– 100 PB aggregate capacity, 650 GB/sec transfer rate
– 160 OSTs, 40 MDTs

○ Home (Lustre)
– General-purpose storage of data that is not I/O-intensive

(e.g., binaries, source code, etc.)
– Mounted at /home, subdirs for each user
– Regular backups to tape
– Default quota of 50 GB

○ Node local storage (XFS)
– Temporary, compute node-local storage for jobs
– Mounted at /local/scratch on each compute node
– 2 SSDs with total capacity of 3.2 TB, ~6 GB/sec rate
– Users must copy data somewhere persistent at job end

Argonne Leadership Computing Facility6

ALCF Polaris file systems

Users should always carefully
consider whether their usage of
production storage resources
matches their intended use.

➢ Maximize app performance
➢ Maximize system efficiency
➢ Ensure data integrity

Users have a few different storage options on Polaris:
○ Eagle/Grand (Lustre)

– Temporary storage of I/O intensive data
– Mounted at /eagle and /grand, subdirs for each project
– Community sharing with Globus
– 100 PB aggregate capacity, 650 GB/sec transfer rate
– 160 OSTs, 40 MDTs

○ Home (Lustre)
– General-purpose storage of data that is not I/O-intensive

(e.g., binaries, source code, etc.)
– Mounted at /home, subdirs for each user
– Regular backups to tape
– Default quota of 50 GB

○ Node local storage (XFS)
– Temporary, compute node-local storage for jobs
– Mounted at /local/scratch on each compute node
– 2 SSDs with total capacity of 3.2 TB, ~6 GB/sec rate
– Users must copy data somewhere persistent at job end

Argonne Leadership Computing Facility7

Using Lustre file systems
Achieving the best performance with Lustre often requires thoughtful file striping settings.

Default Lustre stripe settings may not be optimal! On ALCF systems, files
default to a stripe width of 1, meaning they are stored on a single OST.

The onus is on users to ensure stripe settings are set appropriately.

Stripe settings can be modified using the lfs tool:

lfs setstripe –S <size> -c <count> <file/dir name>

Argonne Leadership Computing Facility8

Using Lustre file systems
Achieving the best performance with Lustre often requires thoughtful file striping settings.

By default (on this file system), new
files/directories are set to use a stripe count of 1.

NOTE: Stripe settings applied to a directory are
inherited by all files within it.

Argonne Leadership Computing Facility9

Using Lustre file systems
Achieving the best performance with Lustre often requires thoughtful file striping settings.

Using the setstripe command we can override the
default striping and request more storage resources.

Argonne Leadership Computing Facility10

Using Lustre file systems
Achieving the best performance with Lustre often requires thoughtful file striping settings.

For a demo on how to set file stripe settings and the
impact on performance, see the ‘lustre-striping’ example

in the ‘file-systems’ directory in the hands-on repo.

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility11

Using Lustre file systems
Achieving the best performance with Lustre often requires thoughtful file striping settings.

ALCF suggestions on Lustre file striping settings
for achieving optimal I/O performance.

Argonne Leadership Computing Facility12

Using Lustre file systems
Achieving the best performance with Lustre often requires thoughtful file striping settings.

ALCF suggestions on Lustre file striping settings
for achieving optimal I/O performance.

File per process and small file
workloads benefit most from the
default settings of striping to a

single storage server.

Argonne Leadership Computing Facility13

Using Lustre file systems
Achieving the best performance with Lustre often requires thoughtful file striping settings.

ALCF suggestions on Lustre file striping settings
for achieving optimal I/O performance.

Large shared file workloads
benefit most from striping across
many storage servers and using

larger stripe sizes, e.g.:

$ lfs setstripe -c 48 -S 16M \
 data.txt

Argonne Leadership Computing Facility14

Using Lustre file systems
Achieving the best performance with Lustre often requires thoughtful file striping settings.

write
read

128-node run of the IOR benchmark
using a single shared file and varying

the Lustre stripe size on Polaris.

More storage servers drastically
improves I/O performance, to a point…

Argonne Leadership Computing Facility15

Using Lustre file systems
Recent Lustre versions have introduced a new feature called progressive file layouts (PFL) that
enables a more flexible file striping strategy.
○ Utilizes a dynamic striping approach that increases the stripe size as the file offset increases
○ Small files stored on a single OST, large files grow to stripe across many OSTs

$ lfs setstripe -E 2M -c 1 -S 1M \
 -E 256M -c 4 -S 1M \
 -E -1 -c 16 -S 4M \
 data.txt

https://wiki.lustre.org/images/5/5a/LUG2022-Advanced_File_Layouts_Tutorial-Mohr.pdf

Argonne Leadership Computing Facility16

Using Lustre file systems

PFL not enabled by default on ALCF Lustre volumes yet, but something
to keep in mind.

PFL can provide default stripe settings that achieve reasonable
performance for a variety of I/O workloads, but knowledgeable users

can still achieve the best performance by thoughtful tuning of striping.

Recent Lustre versions have introduced a new feature called progressive file layouts (PFL) that
enables a more flexible file striping strategy.
○ Utilizes a dynamic striping approach that increases the stripe size as the file offset increases
○ Small files stored on a single OST, large files grow to stripe across many OSTs

Argonne Leadership Computing Facility17

Using Lustre file systems
ALCF’s Lustre file systems impose disk quotas that may be inspected with the myquota tool.

/home quota is tied to individual users, while project directory
quotas (e.g., on /eagle) encompass all project users.

Argonne Leadership Computing Facility18

Using the node-local SSDs
For some workloads, I/O efficiency can be improved using local SSDs on Polaris as a cache.
○ Much lower latency relative to Lustre, but also much less aggregate bandwidth and capacity

Two important things to keep in mind:

1. Data is only visible to processes running on the same node!
⏤ For MPI jobs spanning multiple nodes, this has obvious data visibility implications.

2. Data staging must be explicitly managed by the user (e.g., in the job script).

Argonne Leadership Computing Facility19

Using the node-local SSDs

one process on each node copies the input file
from the Eagle file system
mpiexec -n $NNODES --ppn 1 cp \
 /eagle/my_project/input.dat /local/scratch/

run application using local input file
mpiexec -n $NPROCS --ppn $NPROCS_PER_NODE \
 my_data_reader --input /local/scratch/input.dat

For some workloads, I/O efficiency can be improved using local SSDs on Polaris as a cache.
○ Much lower latency relative to Lustre, but also much less aggregate bandwidth and capacity

Two important things to keep in mind:

1. Data is only visible to processes running on the same node!
⏤ For MPI jobs spanning multiple nodes, this has obvious data visibility implications.

2. Data staging must be explicitly managed by the user (e.g., in the job script).

SSD stage-in for job read data.

Argonne Leadership Computing Facility20

Using the node-local SSDs
For some workloads, I/O efficiency can be improved using local SSDs on Polaris as a cache.
○ Much lower latency relative to Lustre, but also much less aggregate bandwidth and capacity

Two important things to keep in mind:

1. Data is only visible to processes running on the same node!
⏤ For MPI jobs spanning multiple nodes, this has obvious data visibility implications.

2. Data staging must be explicitly managed by the user (e.g., in the job script).

run application writing a local file per process
mpiexec -n $NPROCS --ppn $NPROCS_PER_NODE \
 my_data_writer --output-dir /local/scratch/

one process on each node (recursively) copies the
output directory contents to the Eagle file system
mpiexec -n $NNODES --ppn 1 cp -R \
 /local/scratch/ /lus/my_project/job_output/

SSD stage-out for persisting job write data.

Argonne Leadership Computing Facility21

Using the node-local SSDs
For some workloads, I/O efficiency can be improved using local SSDs on Polaris as a cache.
○ Much lower latency relative to Lustre, but also much less aggregate bandwidth and capacity

Two important things to keep in mind:

1. Data is only visible to processes running on the same node!
⏤ For MPI jobs spanning multiple nodes, this has obvious data visibility implications.

2. Data staging must be explicitly managed by the user (e.g., in the job script).

For a demo on how to stage data to and from the node-local SSDs
on Polaris, see the ‘ssd-stage-out’ and ‘ssd-stage-in’ examples in

the ‘file-systems’ directory in the hands-on repo.

https://github.com/argonne-lcf/ALCF_Hands_on_HPC_Workshop

Argonne Leadership Computing Facility22

I/O libraries: interacting with file systems
HPC apps, of course, need an interface to interact with file systems and manage their data.
○ Most file systems (including PFSes) expose a POSIX-like interface that should be familiar to many

programmers.

POSIX (Portable Operating System Interface)
○ Standard interfaces for portably interacting with file systems, e.g.:

– open(), read(), lseek(), close() operations
○ Semantics guaranteed by each operation, e.g.:

– successful writes to a file must be immediately visible to subsequent reads

Argonne Leadership Computing Facility23

I/O libraries: interacting with file systems
HPC apps, of course, need an interface to interact with file systems and manage their data.
○ Most file systems (including PFSes) expose a POSIX-like interface that should be familiar to many

programmers.

POSIX (Portable Operating System Interface)
○ Standard interfaces for portably interacting with file systems, e.g.:

– open(), read(), lseek(), close() operations
○ Semantics guaranteed by each operation, e.g.:

– successful writes to a file must be immediately visible to subsequent reads

This semantic is tricky to enforce for
PFSes where potentially hundred of

thousands of clients collectively access
and cache file contents.

Argonne Leadership Computing Facility24

I/O libraries: interacting with file systems
HPC apps, of course, need an interface to interact with file systems and manage their data.
○ Most file systems (including PFSes) expose a POSIX-like interface that should be familiar to many

programmers.

POSIX (Portable Operating System Interface)
○ Standard interfaces for portably interacting with file systems, e.g.:

– open(), read(), lseek(), close() operations
○ Semantics guaranteed by each operation, e.g.:

– successful writes to a file must be immediately visible to subsequent reads

POSIX was never designed or necessarily intended for the large-scale parallel file access.
○ Inflexible, strong consistency requirements often lead PFSes to implement elaborate locking

protocols or to eschew strong consistency entirely.

Argonne Leadership Computing Facility25

I/O libraries: interacting with file systems
HPC apps, of course, need an interface to interact with file systems and manage their data.
○ Most file systems (including PFSes) expose a POSIX-like interface that should be familiar to many

programmers.

POSIX (Portable Operating System Interface)
○ Standard interfaces for portably interacting with file systems, e.g.:

– open(), read(), lseek(), close() operations
○ Semantics guaranteed by each operation, e.g.:

– successful writes to a file must be immediately visible to subsequent reads

POSIX was never designed or necessarily intended for the large-scale parallel file access.
○ Inflexible, strong consistency requirements often lead PFSes to implement elaborate locking

protocols or to eschew strong consistency entirely.

To avoid performance or consistency issues, best practice in the HPC community
typically involves avoiding concurrent access of overlapping regions of a file.

However, “false sharing” can still lead to performance inefficiencies.

Argonne Leadership Computing Facility26

I/O libraries: parallel I/O capabilities
The MPI-IO interface was designed to address needs for parallel I/O support by HPC apps.
○ Allow MPI programs to read/write data using various parallel I/O strategies (e.g., single shared file)

MPI is actually an attractive environment for providing parallel I/O support:
○ Collective operations enabling all processes to participate in some task (e.g., reading/writing)
○ MPI datatypes support for describing layout of data in both memory and file

MPI-IO offers numerous I/O capabilities, allowing flexible and performant I/O strategies:
○ Independent operations
○ Collective operations
○ Non-blocking operations
○ Optimizations

– General and system-specific

Argonne Leadership Computing Facility27

The MPI-IO interface was designed to address needs for parallel I/O support by HPC apps.
○ Allow MPI programs to read/write data using various parallel I/O strategies (e.g., single shared file)

MPI is actually an attractive environment for providing parallel I/O support:
○ Collective operations enabling all processes to participate in some task (e.g., reading/writing)
○ MPI datatypes support for describing layout of data in both memory and file

MPI-IO offers numerous I/O capabilities, allowing flexible and performant I/O strategies:
○ Independent operations
○ Collective operations
○ Non-blocking operations
○ Optimizations

– General and system-specific

I/O libraries: parallel I/O capabilities

Argonne Leadership Computing Facility28

The MPI-IO interface was designed to address needs for parallel I/O support by HPC apps.
○ Allow MPI programs to read/write data using various parallel I/O strategies (e.g., single shared file)

MPI is actually an attractive environment for providing parallel I/O support:
○ Collective operations enabling all processes to participate in some task (e.g., reading/writing)
○ MPI datatypes support for describing layout of data in both memory and file

MPI-IO offers numerous I/O capabilities, allowing flexible and performant I/O strategies:
○ Independent operations
○ Collective operations
○ Non-blocking operations
○ Optimizations

– General and system-specific

I/O libraries: parallel I/O capabilities

Argonne Leadership Computing Facility29

I/O libraries: parallel I/O capabilities
The MPI-IO interface was designed to address needs for parallel I/O support by HPC apps.
○ Allow MPI programs to read/write data using various parallel I/O strategies (e.g., single shared file)

MPI is actually an attractive environment for providing parallel I/O support:
○ Collective operations enabling all processes to participate in some task (e.g., reading/writing)
○ MPI datatypes support for describing layout of data in both memory and file

MPI-IO offers numerous I/O capabilities, allowing flexible and performant I/O strategies:
○ Independent operations
○ Collective operations
○ Non-blocking operations
○ Optimizations

– General and system-specific
Initial state Phase 1: I/O Phase 2: Redistribution

Two-phase collective I/O algorithm

Argonne Leadership Computing Facility30

The MPI-IO interface was designed to address needs for parallel I/O support by HPC apps.
○ Allow MPI programs to read/write data using various parallel I/O strategies (e.g., single shared file)

MPI is actually an attractive environment for providing parallel I/O support:
○ Collective operations enabling all processes to participate in some task (e.g., reading/writing)
○ MPI datatypes support for describing layout of data in both memory and file

MPI-IO offers numerous I/O capabilities, allowing flexible and performant I/O strategies:
○ Independent operations
○ Collective operations
○ Non-blocking operations
○ Optimizations

– General and system-specific

I/O libraries: parallel I/O capabilities

More on MPI-IO in tomorrow’s
session (Rob Latham, ANL)

Argonne Leadership Computing Facility31

I/O libraries: scientific data management abstractions
MPI-IO is a step in the right direction, but application
scientists often prefer richer data management
abstractions than simple files.
○ Storing independent data products in unique files or

manually serializing collections of data products into a
single file is often untenable.

HDF5 is a popular data management library and file
format that specializes in storing large amounts of
scientific data.
○ Enables storage of multi-dimensional datasets, attributes,

etc. in an HDF5 file (more like a “container”)
○ Interfaces allow for access of individual dataset elements,

subarrays, or entire datasets
○ Support for collective I/O (using MPI-IO) or independent

I/O (using MPI-IO or POSIX)
○ VOL layer allows abstract implementation of storage for

HDF5 objects
– e.g., using async operations, using log-structured storage,

using an object store rather than file system

HDF5 file: chkpt001.h5

Dataset: pressure
datatype = H5T_NATIVE_DOUBLE
dataspace = (10, 30)

Attributes: …

10

30

Dataset: temperature
datatype = H5T_NATIVE_DOUBLE
dataspace = (20, 60)

Attributes: …
60

20

Argonne Leadership Computing Facility32

I/O libraries: scientific data management abstractions
MPI-IO is a step in the right direction, but application
scientists often prefer richer data management
abstractions than simple files.
○ Storing independent data products in unique files or

manually serializing collections of data products into a
single file is often untenable.

HDF5 is a popular data management library and file
format that specializes in storing large amounts of
scientific data.
○ Enables storage of multi-dimensional datasets, attributes,

etc. in an HDF5 file (more like a “container”)
○ Interfaces allow for access of individual dataset elements,

subarrays, or entire datasets
○ Support for collective I/O (using MPI-IO) or independent

I/O (using MPI-IO or POSIX)
○ VOL layer allows abstract implementation of storage for

HDF5 objects
– e.g., using async operations, using log-structured storage,

using an object store rather than file system

More on HDF5 in tomorrow’s
session (Rob Latham, ANL)

Argonne Leadership Computing Facility33

Putting it all together: the HPC I/O stack

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

Parallel file system maintains
logical file model and provides
efficient access to data using a

POSIX-like interface.

Lustre, GPFS

Argonne Leadership Computing Facility34

Putting it all together: the HPC I/O stack

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations
I/O Middleware organizes and
transforms accesses from many
processes, especially those using
collective I/O.

MPI-IO Parallel file system maintains
logical file model and provides
efficient access to data using a

POSIX-like interface.

Lustre, GPFS

Argonne Leadership Computing Facility35

Putting it all together: the HPC I/O stack

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

Data Model Libraries map
application abstractions onto

storage abstractions and
provide data portability.

HDF5, Parallel netCDF,
ADIOS I/O Middleware organizes and

transforms accesses from many
processes, especially those using
collective I/O.

MPI-IO Parallel file system maintains
logical file model and provides
efficient access to data using a

POSIX-like interface.

Lustre, GPFS

Argonne Leadership Computing Facility36

ACDC enables data-driven research by providing a platform for data access and sharing, and
services for data discovery and analysis.
○ Share data with collaborators on Eagle directly without the need for creating new ALCF accounts
○ Project-specific data portals that enable search and discovery of data hosted on Eagle
○ Based on the Django Globus Portal Framework

More info here: https://acdc.alcf.anl.gov/

ALCF Community Data Co-Op (ACDC)

https://acdc.alcf.anl.gov/

Argonne Leadership Computing Facility37

ACDC enables data-driven research by providing a platform for data access and sharing, and
services for data discovery and analysis.
○ Share data with collaborators on Eagle directly without the need for creating new ALCF accounts
○ Project-specific data portals that enable search and discovery of data hosted on Eagle
○ Based on the Django Globus Portal Framework

More info here: https://acdc.alcf.anl.gov/

ALCF Community Data Co-Op (ACDC)

More on Globus in the next
session (Greg Nawrocki, Globus)

https://acdc.alcf.anl.gov/

Argonne Leadership Computing Facility38

Tools: analyzing application I/O behavior
Application-level analysis tools are critical to
better understanding I/O behavior and
informing potential tuning decisions.

Darshan is a lightweight I/O characterization
tool commonly deployed at HPC facilities,
including ALCF systems.
○ Transparent, low-overhead instrumentation of

multiple layers of the HPC I/O stack
○ Detailed counters/timers/statistics for each file

accessed by the app stored in a condensed log
○ Analysis tools for inspecting and presenting key

information about I/O behavior (e.g., the
Darshan job summary tool, right)

https://www.mcs.anl.gov/research/projects/darshan/

https://github.com/darshan-hpc/darshan

https://www.mcs.anl.gov/research/projects/darshan/
https://github.com/darshan-hpc/darshan

Argonne Leadership Computing Facility39

Tools: Darshan job summary

The Darshan job summary tool can be a
useful starting point for application I/O

performance analysis.

It generates an HTML report providing key
details on I/O performance and access

characteristics that can be used to better
understand the application’s I/O behavior.

Argonne Leadership Computing Facility40

Tools: Darshan job summary

Detailed job
metadata

Heatmaps of
I/O activity

Comprehensive
I/O statistics for
multiple layers
of the I/O stack

Argonne Leadership Computing Facility41

A recap
Today we have covered various software technologies that comprise the HPC I/O stack, which
is used to manage large-scale scientific datasets.
○ Parallel file systems offer high-performance, scalable file storage.
○ I/O libraries provide interfaces for managing data at different abstraction layers.
⏤ POSIX provides a portable, performant low-level file system interface
⏤ MPI-IO introduces capabilities for parallel access of files
⏤ HDF5 provides a data management interface more closely aligned with app data abstractions

○ Tools like Darshan are available for better understanding and, ideally, improving I/O performance.

Always consider facility documentation and other resources to help understand general best
practice and reach out on support channels for help if needed!

Argonne Leadership Computing Facility

Thank you!

