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AGENDA

• Architecture Refresher

• Software Ecosystem

• TensorFlow2/Keras

• PyTorch

• Poplar
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ARCHITECTURE REFRESHER



IPU – ARCHITECTURED FOR AI
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Massive parallelism with ultrafast memory access



PROVEN IPU ADVANTAGE 
SELECT CASE STUDIES ACROSS MANY INDUSTRIES & FIELDS

HEALTHCARE

CASE STUDY : NLP

FINANCE – OPTION PRICING

CASE STUDY : SIM

SMART CITY

CASE STUDY : CV

AI SaaS – TEXT ANALYTICS

CASE STUDY : NLP CASE STUDY : GNN

COMPUTATIONAL CHEMISTRY

CASE STUDY

RESEARCH / BIG LABS

CASE STUDY : SIM

WEATHER FORECASTING

CASE STUDY : GNN

DYNAMIC GRAPHSFINANCE - INSURANCE

CASE STUDY : CV CASE STUDY

HIGH ENERGY PHYSICS
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BOW IPU



SYNC

SYNC

EXECUTION MODEL

COMPUTE

COMPUTE

BSP SCHEDULE

EXCHANGE

EXCHANGE

EXCHANGE

COMPUTATIONAL GRAPH OPTIMIZED IPU EXECUTION

OUTPUT FROM POPVISION GRAPH ANALYSER

BSP EXECUTION TRACE - IPU TILES 0 - 1215



BOW-2000 IPU MACHINE

BOW IPU-2000

IPU-Links

IPU-GW Links

IPU Gateway100GbE 
for host 
connectivity
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Bow 
IPUs

1U blade form factor delivering 1.4 PetaFLOPS AI Compute 



BOW-2000 TOPOLIGY
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IPU

IPU

GC200

GC200

Gateway

NIC/SmartNIC

DRAM DRAM

Bow IPU

IPU-GW

Bow W IPUBow IPU

COMPUTE

4x Bow IPUs
• 1.4 PFLOP16 compute
• 5,888 processor cores
• > 35,000 independent parallel threads

DATA

Exchange Memory

• 3.6GB In-Processor-Memory @ 260 TB/s

• 128GB Streaming Memory DRAM (up to 256GB)

COMMUNICATIONS

IPU-Fabric managed by IPU-GW

• Host-Link – 100GE to Poplar Server for standard 
data center networking

• IPU-Link – 2D Torus for intra-POD64 
communication

• GW-Link - 2x 100Gbps Gateway-Links for rack-to-
rack – flexible topology

Bow IPU

x16 IPU-Link [64GB/s]

IPU-GW Link [100Gbps]

Host-Link Network I/F [100Gbps]

x8 PCIe G4 [32GB/s]
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BOW-POD64 TOPOLOGY

x16 IPU-Link 64GB/s

100Gbps IPU-GW Link
100Gbps  Host-Link Network I/F

x8 PCIe G4 32GB/s

Bow Pod64

Servers Host-Links: 
100Gbps connectivity for each Bow-2000 to host server

Enabling disaggregation of host server, with optimal server/Bow-2000 ratio.

GW-Links (part of IPU-Fabric): 
2x 100Gbps Gateway-Links for rack-to-rack communication

Redundant rack-to-rack communication for large scaleout beyond Pod64

IPU-Links (part of IPU-Fabric): 
2D Torus for IPU communication

Providing high bandwith connectivity across IPUs up to Pod64 

IPU
61

IPU
62

IPU
63

IPU
1

IPU
2

IPU
3

IPU
4

IPU
5

IPU
6

IPU
7

IPU
8

IPU
64

IPU
61

IPU
62

IPU
63

GW

GW

GW



IPU DEVELOPER ECOSYSTEM
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GRAPHCORE SOFTWARE ECOSYSTEM
WORLD CLASS DEVELOPER RESOURCES FOR IPU USERS

WWW.GRAPHCORE.AI/DEVELOPER
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• As part of our ethos to put power in 
the hands of AI developers, 
Graphcore open sourced in 2020

• PopLibs™, PopART, PyTorch & 
TensorFlow for IPU fully open 
source and available on GitHub

• Our code is public and open for 
code contributions from the wider 
ML developer community

github.com/graphcore

OPEN SOURCE

http://github.com/graphcore
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VIDEO + GITHUB TUTORIALS

Getting started with PyTorch for the IPU Evaluating Batch Sizes on IPUs

Bulk Synchronous Parallel Execution Running PyTorch on the IPU: NLP

Getting started with PopVision Fundamental of Poplar

Getting started with PopART Running TensorFlow on the IPU

A comprehensive set of online developer training materials and educational content
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RESOURCES CENTRE

• Central source of research 
papers, white papers, videos, 
on-demand webinars and 
documentation

• Product resources for ML 
Engineers & IT / Infrastructure 
Managers now available

graphcore.ai/resources

https://graphcore.ai/resources
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GRAPHCORE DEVELOPER ECOSYSTEM



STANDARD ML FRAMEWORK SUPPORT
Develop models using standard high-level frameworks or port existing models

IPU-
Processor
Platforms

POPLAR®

Easy port of 
high-level 
framework 

models

Existing models on 
alternative platforms
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POPLAR® SDK

POPVISION TOOLS

DEVELOPER ECOSYSTEM  

TUTORIALS

CODE EXAMPLES

VIDEOS

NATIVE IPU CODERS PROGRAM

GRAPH ENGINE

GC DEVICE ACCESS LAYER

PCIe DRIVERIPUOF DRIVER

GRAPH COMPILER

POPLIBS GCL POPLAR

POPLAR®

DRIVERS

FW BACKENDS

FRAMEWORKS

GRAPH ANALYZER

SYSTEM ANALYZER

PARTITIONER POPIR POPIT

INFERENCE DEPLOYMENT 
TOOLKIT

FRONTENDS

DEBUGGER

DEVELOPMENT ENVIRONMENT

APPS PORTFOLIO

DOCUMENTATION

ML APPLICATIONS

IMAGE CLASSIFICATION/CNNS

OBJECT DETECTION

LARGE MODELS

MLPERF

CONDITIONAL SPARSITY

GNNS

NLP/TRANSFORMERS

JUPYTER NOTEBOOKS

SYSTEM SOFTWARE

POPLAR

V-IPU

SYSTEM MONITORING

JOB DEPLOYMENT

K8S SLURM

PROMETHEUS
GRAFANA

XLA POPART+ POPDIST

GRAPHCORE SOFTWARE

HALOONNX



ENHANCED MODEL GARDEN

PUBLIC ACCESS TO WIDE VARIETY OF 
MODELS, READY TO RUN ON IPU

NEW FILTER/SEARCH CAPABILITY

DIRECT ACCESS TO GITHUB

https://www.graphcore.ai/resources/model-garden



COMPUTER VISION

IMAGE 
CLASSIFICATION

OBJECT
DETECTION

NLP
SPEECH

STT (ASR) TTS

OTHER

BERT

Dolly

Group | Packing

ViT

EfficientNet-B0

EfficientNet-B4

ResNet50 v1.5

ResNeXt-101

YOLO v4

YOLO v3

DIN
DIEN

DeepVoice3

Sales Forecast

RNN-T

Faster RCNN

OBJECT 
SEGMENTATION

Unet (Industrial)

Unet (Medical)

FastSpeech2Conformer

TGN

MPNN-GIN

MobileNet v2

MobileNet v3

GPT-J

REINFORCEMENT

RL
Reinforcement Learning

RECOMMENDER

Autoencoder

PROBABILISTIC

MCMC

DINO

FastPitch

EfficientDet

Cluster-GCN

Neural Image Fields

GPT-2

SWIN

RoBERTa
Deberta

BART
T5

Hubert

LXMERT

GNN

AI FOR SIMULATION

DeepMD
DeepDriveMD

CosmoFlow
ABC Covid-19

ET0

CLIP

VAE

MULTIMODAL

SchNet

Mini DALL-E
Frozen In Time

MAE

Stable Diffusion

GPS++

Distr. KGE

DistilBERT

NBFNet
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Wav2Vec2
Whisper

MODEL GARDEN COVERAGE



POPVISION®
INDUSTRY LEADING AI APPLICATION PERFORMANCE ANALYSIS TOOLS

GRAPHCORE CONFIDENTIAL
21

Introduced in Q2 2020 our PopVision analysis tools 

provide detailed observability of IPU applications

• Poplar Graph Analyser allows visual inspection of IPU 

execution down to the individual tile level

• Poplar System Analyser gives users the ability to view 

host side application and IPU interaction

• Both tools extend debug information back up into 

Tensorflow and Pytorch for developers

SUPPORTED PLATFORMS
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POPVISION TOOLS

GRAPHCORE CONFIDENTIAL



POPVISION PERFORMANCE ANALYSER

Utilization/memory map of every tile/every IPU

GRAPHCORE CONFIDENTIAL



LSTM Encoder Decoder

24

TF2/KERAS ON IPU



LSTM Encoder Decoder
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KERAS ON IPU

• IPU optimized Keras Model and Sequential 
are available for the IPU. These have the 
following features:

 * On-device training loop for reduction of 
communication overhead.

 * Gradient accumulation for simulating 
larger batch sizes.

 * Automatic data-parallelisation of the 
model when placed on a multi-IPU device.



GPU IPUKeras
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github.com/graphcore/examples/tree/master/tutorials/tutorials/tensorflow2 

TF2/KERAS TUTORIALS

https://github.com/graphcore/examples/tree/master/tutorials/tutorials/tensorflow2


INTRO TO POPTORCH



WHAT IS POPTORCH?
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PopART
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Poplar
compute 

graph

PopTorch

main.py



GPU IPUPyTorch
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github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch

POPTORCH TUTORIALS

https://github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch
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UNDER THE HOOD: BSP



host I/O

host I/O
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compute phase

exchange phase

BULK SYNCHRONOUS 
PARALLEL (BSP)

BSP software bridging model – massively parallel 
computing with no concurrency hazards

3 phases:  compute, sync, exchange

Easy to program – no live-locks or dead-locks

Widely-used in parallel computing – Google, FB, …

First use of BSP inside a parallel processor

IPU
2

IPU
1

sync
|

inter-chip
sync

|

sync
(1 tile abstains)

|
host I/O

|
sync

|
sync

|
sync

host I/O
|

syncinter-
chip
sync

time
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COMPUTATIONAL GRAPH

COMPUTE

COMPUTE

COMMUNICATION

COMMUNICATION

COMMUNICATION

GRAPH EXECUTION MODEL

T
IM

E

SYNC

SYNC
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POPLAR FRAMEWORK
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WHAT IS POPLAR?

• Parallel programming framework that targets the IPU

• Simple but powerful programming model

• Close to the metal

• General purpose, extensible
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POPLAR FRAMEWORK

1. Graphs, Variables & Vertices
2. Compute Sets & Execution
3. Host IPU Execution Model
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THE POPLAR GRAPH

0.3 3.1344.53.22 6.49

24.3 0.230.019.2 93.1

0.22 5.673.213.2 55.3

5.6 8.667.2299.8 22.1

0.3 44.53.22

24.3 0.019.2

0.3 3.1344.53.22 6.49

0.3 3.1344.53.22

24.3 0.230.019.2

0.22 5.673.213.2

The graph is made up of:
• Data (variables in the graph)
• Compute tasks (vertices)
• Edges that connect them 
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0.3 3.1344.53.22 6.49

24.3 0.230.019.2 953.1

0.22 5.673.2123.2 55.3

5.6 8.667.2299.8 22.1

0.3 3.1344.53.22 6.49

24.3 0.230.019.2 953.1

0.22 5.673.2123.2 55.3

5.6 8.667.2299.8 22.1

0.3 3.1344.53.22 6.49

24.3 0.230.019.2 953.1

0.22 5.673.2123.2 55.3

5.6 8.667.2299.8 22.1

3-d tensor (3 x 4 x 5)

0.3 3.1344.53.22 6.49

1-d tensor (5)

0.3 3.22

24.3 9.2

2-d tensor (2 x 2)

Data is stored in the graph in fixed size multi-dimensional tensors. 

VARIABLES
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0.3
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0.3 3.1344.53.22 6.49

24.3 0.230.019.2 93.1

0.22 5.673.213.2 55.3

5.6 8.667.2299.8 22.1

VARIABLES

Variables can be 
distributed over 

multiple tiles
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0.3 3.1344.53.22 6.49

24.3 0.230.019.2 93.1

0.22 5.673.213.2 55.3

5.6 8.667.2299.8 22.1

A vertex is a specific piece of work to 
be carried out.

The edges determine which variable 
elements are processed by the vertex.
A vertex can connect to a single 
element or a range of elements.

VERTICES

0.3 3.1344.53.22

24.3 0.230.019.2

Input
edges

Output
edges
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0.3 3.1344.53.22 6.49

24.3 0.230.019.2 93.1

0.22 5.673.213.2 55.3

5.6 8.667.2299.8 22.1

Input<float> x; 
Input<Vector<float>> y;
Output<float> z;

*z = x + sum(y); 

Each vertex is associated with a 
codelet. 

VERTICES

0.3 3.1344.53.22

24.3 0.230.019.2

Codelet AA
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A vertex runs on a 
single tile

VERTICES
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Many vertices are 
needed to fully 

utilize the device

VERTICES
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POPLAR FRAMEWORK

1. Graphs, Variables & Vertices
2. Compute Sets & Execution
3. Host IPU Execution Model
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COMPUTE SETS

0.3 3.1344.53.22 6.49

24.3 0.230.019.2 93.1

0.22 5.673.213.2 55.3

5.6 8.667.2299.8 22.1

0.3 44.53.22

24.3 0.019.2

0.3 3.1344.53.22 6.49

0.3 3.1344.53.22

24.3 0.230.019.2

0.22 5.673.213.2

Compute sets specify 
sets of vertices to 
execute in parallel

Poplar verifies the 
compute set is free of 
data races

Compute Set A

Compute Set B

Compute Set C
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Compute

Exchange 
inputs

Sync

Sync

Exchange 
outputs

A compute sets 
execute in 3 steps:

1. Exchange
Transfer inputs

2. Compute
Run vertices in 
parallel

3. Exchange
Transfer outputs

TIM
E

Exchange code is generated by 
Poplar

COMPUTE SET EXECUTION



Exchange is required when a 
vertex in a compute set needs 
to read or write data which is 
stored on another tile's memory.

COMPUTE SET EXECUTION
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For each compute set, 
each tile will have a 
number of vertices to 
execute.

Tile 0 Tile 1 Tile 2

Tile 3 Tile 4 Tile 5

COMPUTE SET EXECUTION



Tile 0 Tile 1 Tile 2

Tile 3 Tile 4 Tile 5
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All tiles start by syncing.

SSS

S S S

COMPUTE SET EXECUTION



Tile 0 Tile 1 Tile 2

Tile 3 Tile 4 Tile 5

52

The tiles then move to 
exchange: Required vertex 
input data is copied between 
memory.

EEE

E E E

BB

COMPUTE SET EXECUTION



Tile 0 Tile 1 Tile 2

Tile 3 Tile 4 Tile 5

53

CCC

C C C

B

A B

Tiles will move to compute 
when they have finished 
exchange.

During compute vertices will 
read from and write to local 
tile memory.

C

COMPUTE SET EXECUTION



Tile 0 Tile 1 Tile 2

Tile 3 Tile 4 Tile 5

54

CCC

C C C Each tile processor has 
several independent 
hardware threads (workers) to 
execute code.

Once exchange is complete, 
a hardware scheduler 
(supervisor) dispatches 
vertices onto the workers to 
run.

The tiles will run all vertices 
and then sync.

Workers Workers Workers

Workers Workers Workers

SSS

S S S

COMPUTE SET EXECUTION
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SUMMARY

A graph is made up of:
• Data (variables in the graph)
• Compute tasks (vertices)
• Edges that connect them 

Vertices:
• Are associated to a codelet (code)
• Run on a single tile

Compute sets:
• Specify sets of vertices to execute in parallel
• Are executed in 3 steps: Exchange inputs, Compute, Exchange outputs

Control program:
• Specifies the order of operations

The program resides on the chip:
• The host takes care of compilation and of the data stream preparation



#include <poplar/Engine.hpp>

 using namespace poplar;
 using namespace poplar::program;

 …

 Graph graph(target);
 graph.addCodelets(“my-codelets.cpp”);

 Program prog1, prog2;

 constructMyGraph(graph, &prog1, &prog2);

 Engine eng(device, graph, {prog1, prog2});
 …

 eng.run(0);

THE HOST PROGRAM

64

Host programs use 
the poplar library.

Codelets are 
loaded into 
the graph.

Control 
programs are 
built up out of 
instances of 
the Program 
class.

The Engine class 
represents a fully 
compiled program 
ready to run on 
hardware.

The Graph class is 
used to build up 
the computation 
graph.



CODELET DEFINITIONS
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class AdderVertex : public Vertex {
public:
 Input<float> x;
 Input<float> y;
 Output<float> z;
 float bias;

 bool compute() {
   *z = x + y + bias;
   return true;
 }
}

Each codelet is 
defined as a C++ class 
that inherits from the 
Vertex class.

The fields of the 
vertex specify its 
inputs, outputs and 
internal data.

The compute method 
specifies the vertex 
execution behaviour.



BUILDING THE COMPUTE GRAPH

0.3 3.1344.53.22 6.49

24.3 0.230.019.2 953.1

0.22 5.673.2123.2 55.3

5.6 8.667.2299.8 22.1

9.3 0.001103.22.95

g

t1

t2

Graph g(device);
g.addCodelets("codelets.cpp");

Tensor t1 = g.addVariable(FLOAT, {4, 5});
Tensor t2 = g.addVariable(FLOAT, {4});
ComputeSet cs = g.addComputeSet(“myComputeSet”)

VertexRef v1 = g.addVertex(cs, “AdderVertex”);
VertexRef v2 = g.addVertex(cs, “AdderVertex”);
g.connect(t1[1][1], v1["x"]);
g.connect(t1.slice({3, 1}, {4, 3}), v1["y"]);

g.connect(t2[0], v1["z"]);

cs

v1 v2g.connect(t1[0][3], v2["x"]);
g.connect(t1.slice({2, 2}, {3, 4}), v2["y"]);
g.connect(t2[3], v2["z"]);

g.setTileMapping(t1.slice({0, 0}, {4, 2}), 0);
g.setTileMapping(t1.slice({0, 2}, {4, 5}), 1);
g.setTileMapping(t2, 2);

g.setTileMapping(v1, 0);
g.setTileMapping(v2, 1);



CREATING CONTROL PROGRAMS

Graph g(device);
g.addCodelets("codelets.cpp");

…
auto prog = Sequence();
prog.add(Execute(cs1));
prog.add(Execute(cs2));

0.3 3.1344.53.22 6.49

24.3 0.230.019.2 953.1

0.22 5.673.2123.2 55.3

5.6 8.667.2299.8 22.1

9.3 0.001103.22.95

t1

t2

cs1 9.3 0.001103.22.95 t3

cs2

Execute(cs1);
Execute(cs2);

prog



CREATING THE ENGINE

Graph g(device);
g.addCodelets("codelets.cpp");

…
auto prog = Sequence();
prog.add(Execute(cs1));
prog.add(Execute(cs2));

Engine eng(device, graph, {prog});

0.3 3.1344.53.22 6.49

24.3 0.230.019.2 953.1

0.22 5.673.2123.2 55.3

5.6 8.667.2299.8 22.1

9.3 0.001103.22.95

t1

t2

cs1 9.3 0.001103.22.95 t3

cs2

Execute(cs1);
Execute(cs2);

eng

prog
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SUMMARY

• Poplar lets you define your own 
operations by writing codelets

• Poplar generates “glue code” required 
to synchronize / exchange data

• Frees you to concentrate on parallel 
algorithm design



Matrix multiply
 

 

CalcPartialDotProducts

CalcFinalOutputsLibrary
call

LIBRARIES = MODULAR GRAPH BUILDING
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POPLIBSTM

popops

Pointwise and 
reduction operators

poplin

Matrix multiply and 
convolution functions

poprandom

Random number 
generation

popnn

Neural network 
functions (activation 
fns, pooling, loss)

poputil

Utility functions for 
building graphs

C / C++ and Python language bindings

POPLAR®

github.com/graphcore/poplibs
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APPLY AND JOIN TODAY

Apply at alcf.anl.gov/science/directors-
discretionary-allocation-program

Join at graphcore.ai/join-community

https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.graphcore.ai/join-community




THANK YOU

CONFIDENTIAL

Alexander Tsyplikhin
alext@graphcore.ai
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