
CONFIDENTAL - ONLY SHARED UNDER NDACONFIDENTAL - ONLY SHARED UNDER NDA

1

SOFTWARE
STACK:
TENSORFLOW
PYTORCH
POPLAR

June 11, 2024
Alexander Tsyplikhin

GRAPHCORE

2

AGENDA

• Architecture Refresher

• Software Ecosystem

• TensorFlow2/Keras

• PyTorch

• Poplar

3

ARCHITECTURE REFRESHER

IPU – ARCHITECTURED FOR AI

4

Massive parallelism with ultrafast memory access

PROVEN IPU ADVANTAGE
SELECT CASE STUDIES ACROSS MANY INDUSTRIES & FIELDS

HEALTHCARE

CASE STUDY : NLP

FINANCE – OPTION PRICING

CASE STUDY : SIM

SMART CITY

CASE STUDY : CV

AI SaaS – TEXT ANALYTICS

CASE STUDY : NLP CASE STUDY : GNN

COMPUTATIONAL CHEMISTRY

CASE STUDY

RESEARCH / BIG LABS

CASE STUDY : SIM

WEATHER FORECASTING

CASE STUDY : GNN

DYNAMIC GRAPHSFINANCE - INSURANCE

CASE STUDY : CV CASE STUDY

HIGH ENERGY PHYSICS

GRAPHCORE CONFIDENTIAL 6GRAPHCORE CONFIDENTIAL 66

BOW IPU

SYNC

SYNC

EXECUTION MODEL

COMPUTE

COMPUTE

BSP SCHEDULE

EXCHANGE

EXCHANGE

EXCHANGE

COMPUTATIONAL GRAPH OPTIMIZED IPU EXECUTION

OUTPUT FROM POPVISION GRAPH ANALYSER

BSP EXECUTION TRACE - IPU TILES 0 - 1215

BOW-2000 IPU MACHINE

BOW IPU-2000

IPU-Links

IPU-GW Links

IPU Gateway100GbE
for host
connectivity

8

Bow
IPUs

1U blade form factor delivering 1.4 PetaFLOPS AI Compute

BOW-2000 TOPOLIGY

9

IPU

IPU

GC200

GC200

Gateway

NIC/SmartNIC

DRAM DRAM

Bow IPU

IPU-GW

Bow W IPUBow IPU

COMPUTE

4x Bow IPUs
• 1.4 PFLOP16 compute
• 5,888 processor cores
• > 35,000 independent parallel threads

DATA

Exchange Memory

• 3.6GB In-Processor-Memory @ 260 TB/s

• 128GB Streaming Memory DRAM (up to 256GB)

COMMUNICATIONS

IPU-Fabric managed by IPU-GW

• Host-Link – 100GE to Poplar Server for standard
data center networking

• IPU-Link – 2D Torus for intra-POD64
communication

• GW-Link - 2x 100Gbps Gateway-Links for rack-to-
rack – flexible topology

Bow IPU

x16 IPU-Link [64GB/s]

IPU-GW Link [100Gbps]

Host-Link Network I/F [100Gbps]

x8 PCIe G4 [32GB/s]

10

BOW-POD64 TOPOLOGY

x16 IPU-Link 64GB/s

100Gbps IPU-GW Link
100Gbps Host-Link Network I/F

x8 PCIe G4 32GB/s

Bow Pod64

Servers Host-Links:
100Gbps connectivity for each Bow-2000 to host server

Enabling disaggregation of host server, with optimal server/Bow-2000 ratio.

GW-Links (part of IPU-Fabric):
2x 100Gbps Gateway-Links for rack-to-rack communication

Redundant rack-to-rack communication for large scaleout beyond Pod64

IPU-Links (part of IPU-Fabric):
2D Torus for IPU communication

Providing high bandwith connectivity across IPUs up to Pod64

IPU
61

IPU
62

IPU
63

IPU
1

IPU
2

IPU
3

IPU
4

IPU
5

IPU
6

IPU
7

IPU
8

IPU
64

IPU
61

IPU
62

IPU
63

GW

GW

GW

IPU DEVELOPER ECOSYSTEM

12

GRAPHCORE SOFTWARE ECOSYSTEM
WORLD CLASS DEVELOPER RESOURCES FOR IPU USERS

WWW.GRAPHCORE.AI/DEVELOPER

13

• As part of our ethos to put power in
the hands of AI developers,
Graphcore open sourced in 2020

• PopLibs™, PopART, PyTorch &
TensorFlow for IPU fully open
source and available on GitHub

• Our code is public and open for
code contributions from the wider
ML developer community

github.com/graphcore

OPEN SOURCE

http://github.com/graphcore

14

VIDEO + GITHUB TUTORIALS

Getting started with PyTorch for the IPU Evaluating Batch Sizes on IPUs

Bulk Synchronous Parallel Execution Running PyTorch on the IPU: NLP

Getting started with PopVision Fundamental of Poplar

Getting started with PopART Running TensorFlow on the IPU

A comprehensive set of online developer training materials and educational content

15

RESOURCES CENTRE

• Central source of research
papers, white papers, videos,
on-demand webinars and
documentation

• Product resources for ML
Engineers & IT / Infrastructure
Managers now available

graphcore.ai/resources

https://graphcore.ai/resources

16GRAPHCORE CONFIDENTIAL

GRAPHCORE DEVELOPER ECOSYSTEM

STANDARD ML FRAMEWORK SUPPORT
Develop models using standard high-level frameworks or port existing models

IPU-
Processor
Platforms

POPLAR®

Easy port of
high-level
framework

models

Existing models on
alternative platforms

18

POPLAR® SDK

POPVISION TOOLS

DEVELOPER ECOSYSTEM

TUTORIALS

CODE EXAMPLES

VIDEOS

NATIVE IPU CODERS PROGRAM

GRAPH ENGINE

GC DEVICE ACCESS LAYER

PCIe DRIVERIPUOF DRIVER

GRAPH COMPILER

POPLIBS GCL POPLAR

POPLAR®

DRIVERS

FW BACKENDS

FRAMEWORKS

GRAPH ANALYZER

SYSTEM ANALYZER

PARTITIONER POPIR POPIT

INFERENCE DEPLOYMENT
TOOLKIT

FRONTENDS

DEBUGGER

DEVELOPMENT ENVIRONMENT

APPS PORTFOLIO

DOCUMENTATION

ML APPLICATIONS

IMAGE CLASSIFICATION/CNNS

OBJECT DETECTION

LARGE MODELS

MLPERF

CONDITIONAL SPARSITY

GNNS

NLP/TRANSFORMERS

JUPYTER NOTEBOOKS

SYSTEM SOFTWARE

POPLAR

V-IPU

SYSTEM MONITORING

JOB DEPLOYMENT

K8S SLURM

PROMETHEUS
GRAFANA

XLA POPART+ POPDIST

GRAPHCORE SOFTWARE

HALOONNX

ENHANCED MODEL GARDEN

PUBLIC ACCESS TO WIDE VARIETY OF
MODELS, READY TO RUN ON IPU

NEW FILTER/SEARCH CAPABILITY

DIRECT ACCESS TO GITHUB

https://www.graphcore.ai/resources/model-garden

COMPUTER VISION

IMAGE
CLASSIFICATION

OBJECT
DETECTION

NLP
SPEECH

STT (ASR) TTS

OTHER

BERT

Dolly

Group | Packing

ViT

EfficientNet-B0

EfficientNet-B4

ResNet50 v1.5

ResNeXt-101

YOLO v4

YOLO v3

DIN
DIEN

DeepVoice3

Sales Forecast

RNN-T

Faster RCNN

OBJECT
SEGMENTATION

Unet (Industrial)

Unet (Medical)

FastSpeech2Conformer

TGN

MPNN-GIN

MobileNet v2

MobileNet v3

GPT-J

REINFORCEMENT

RL
Reinforcement Learning

RECOMMENDER

Autoencoder

PROBABILISTIC

MCMC

DINO

FastPitch

EfficientDet

Cluster-GCN

Neural Image Fields

GPT-2

SWIN

RoBERTa
Deberta

BART
T5

Hubert

LXMERT

GNN

AI FOR SIMULATION

DeepMD
DeepDriveMD

CosmoFlow
ABC Covid-19

ET0

CLIP

VAE

MULTIMODAL

SchNet

Mini DALL-E
Frozen In Time

MAE

Stable Diffusion

GPS++

Distr. KGE

DistilBERT

NBFNet

20

Wav2Vec2
Whisper

MODEL GARDEN COVERAGE

POPVISION®
INDUSTRY LEADING AI APPLICATION PERFORMANCE ANALYSIS TOOLS

GRAPHCORE CONFIDENTIAL
21

Introduced in Q2 2020 our PopVision analysis tools

provide detailed observability of IPU applications

• Poplar Graph Analyser allows visual inspection of IPU

execution down to the individual tile level

• Poplar System Analyser gives users the ability to view

host side application and IPU interaction

• Both tools extend debug information back up into

Tensorflow and Pytorch for developers

SUPPORTED PLATFORMS

22

POPVISION TOOLS

GRAPHCORE CONFIDENTIAL

POPVISION PERFORMANCE ANALYSER

Utilization/memory map of every tile/every IPU

GRAPHCORE CONFIDENTIAL

LSTM Encoder Decoder

24

TF2/KERAS ON IPU

LSTM Encoder Decoder

25

KERAS ON IPU

• IPU optimized Keras Model and Sequential
are available for the IPU. These have the
following features:

 * On-device training loop for reduction of
communication overhead.

 * Gradient accumulation for simulating
larger batch sizes.

 * Automatic data-parallelisation of the
model when placed on a multi-IPU device.

GPU IPUKeras

27

github.com/graphcore/examples/tree/master/tutorials/tutorials/tensorflow2

TF2/KERAS TUTORIALS

https://github.com/graphcore/examples/tree/master/tutorials/tutorials/tensorflow2

INTRO TO POPTORCH

WHAT IS POPTORCH?

29

PopART

G
RA

PH
 C

O
M

PI
LE

R

G
RA

PH
 R

U
N

 T
IM

E

Poplar
compute

graph

PopTorch

main.py

GPU IPUPyTorch

32

github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch

POPTORCH TUTORIALS

https://github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch

33

UNDER THE HOOD: BSP

host I/O

host I/O

in
te

r-
ch

ip
 s

yn
c

sy
nc

sy
nc

sy
nc

sy
nc

sy
nc

sy
nc

 (1
 ti

le
 a

bs
ta

in
s)

in
te

r-
ch

ip
 s

yn
c

compute phase

exchange phase

BULK SYNCHRONOUS
PARALLEL (BSP)

BSP software bridging model – massively parallel
computing with no concurrency hazards

3 phases: compute, sync, exchange

Easy to program – no live-locks or dead-locks

Widely-used in parallel computing – Google, FB, …

First use of BSP inside a parallel processor

IPU
2

IPU
1

sync
|

inter-chip
sync

|

sync
(1 tile abstains)

|
host I/O

|
sync

|
sync

|
sync

host I/O
|

syncinter-
chip
sync

time

35

COMPUTATIONAL GRAPH

COMPUTE

COMPUTE

COMMUNICATION

COMMUNICATION

COMMUNICATION

GRAPH EXECUTION MODEL

T
IM

E

SYNC

SYNC

36

POPLAR FRAMEWORK

37

WHAT IS POPLAR?

• Parallel programming framework that targets the IPU

• Simple but powerful programming model

• Close to the metal

• General purpose, extensible

38

POPLAR FRAMEWORK

1. Graphs, Variables & Vertices
2. Compute Sets & Execution
3. Host IPU Execution Model

39

THE POPLAR GRAPH

0.3 3.1344.53.22 6.49

24.3 0.230.019.2 93.1

0.22 5.673.213.2 55.3

5.6 8.667.2299.8 22.1

0.3 44.53.22

24.3 0.019.2

0.3 3.1344.53.22 6.49

0.3 3.1344.53.22

24.3 0.230.019.2

0.22 5.673.213.2

The graph is made up of:
• Data (variables in the graph)
• Compute tasks (vertices)
• Edges that connect them

40

0.3 3.1344.53.22 6.49

24.3 0.230.019.2 953.1

0.22 5.673.2123.2 55.3

5.6 8.667.2299.8 22.1

0.3 3.1344.53.22 6.49

24.3 0.230.019.2 953.1

0.22 5.673.2123.2 55.3

5.6 8.667.2299.8 22.1

0.3 3.1344.53.22 6.49

24.3 0.230.019.2 953.1

0.22 5.673.2123.2 55.3

5.6 8.667.2299.8 22.1

3-d tensor (3 x 4 x 5)

0.3 3.1344.53.22 6.49

1-d tensor (5)

0.3 3.22

24.3 9.2

2-d tensor (2 x 2)

Data is stored in the graph in fixed size multi-dimensional tensors.

VARIABLES

41

0.3

3.1
3

44.
5

3.2
2

6.4
9

24.
3

0.2
3

0.
01

9.2

95
3.1

0.2
2

5.6
7

3.2

123
.2

55.
3

5.6

8.6
6

7.2
2

99.
8

22.
1

0.3 3.1344.53.22 6.49

24.3 0.230.019.2 93.1

0.22 5.673.213.2 55.3

5.6 8.667.2299.8 22.1

VARIABLES

Variables can be
distributed over

multiple tiles

42

0.3 3.1344.53.22 6.49

24.3 0.230.019.2 93.1

0.22 5.673.213.2 55.3

5.6 8.667.2299.8 22.1

A vertex is a specific piece of work to
be carried out.

The edges determine which variable
elements are processed by the vertex.
A vertex can connect to a single
element or a range of elements.

VERTICES

0.3 3.1344.53.22

24.3 0.230.019.2

Input
edges

Output
edges

43

0.3 3.1344.53.22 6.49

24.3 0.230.019.2 93.1

0.22 5.673.213.2 55.3

5.6 8.667.2299.8 22.1

Input<float> x;
Input<Vector<float>> y;
Output<float> z;

*z = x + sum(y);

Each vertex is associated with a
codelet.

VERTICES

0.3 3.1344.53.22

24.3 0.230.019.2

Codelet AA

44

A vertex runs on a
single tile

VERTICES

45

Many vertices are
needed to fully

utilize the device

VERTICES

46

POPLAR FRAMEWORK

1. Graphs, Variables & Vertices
2. Compute Sets & Execution
3. Host IPU Execution Model

47

COMPUTE SETS

0.3 3.1344.53.22 6.49

24.3 0.230.019.2 93.1

0.22 5.673.213.2 55.3

5.6 8.667.2299.8 22.1

0.3 44.53.22

24.3 0.019.2

0.3 3.1344.53.22 6.49

0.3 3.1344.53.22

24.3 0.230.019.2

0.22 5.673.213.2

Compute sets specify
sets of vertices to
execute in parallel

Poplar verifies the
compute set is free of
data races

Compute Set A

Compute Set B

Compute Set C

48

Compute

Exchange
inputs

Sync

Sync

Exchange
outputs

A compute sets
execute in 3 steps:

1. Exchange
Transfer inputs

2. Compute
Run vertices in
parallel

3. Exchange
Transfer outputs

TIM
E

Exchange code is generated by
Poplar

COMPUTE SET EXECUTION

Exchange is required when a
vertex in a compute set needs
to read or write data which is
stored on another tile's memory.

COMPUTE SET EXECUTION

50

For each compute set,
each tile will have a
number of vertices to
execute.

Tile 0 Tile 1 Tile 2

Tile 3 Tile 4 Tile 5

COMPUTE SET EXECUTION

Tile 0 Tile 1 Tile 2

Tile 3 Tile 4 Tile 5

51

All tiles start by syncing.

SSS

S S S

COMPUTE SET EXECUTION

Tile 0 Tile 1 Tile 2

Tile 3 Tile 4 Tile 5

52

The tiles then move to
exchange: Required vertex
input data is copied between
memory.

EEE

E E E

BB

COMPUTE SET EXECUTION

Tile 0 Tile 1 Tile 2

Tile 3 Tile 4 Tile 5

53

CCC

C C C

B

A B

Tiles will move to compute
when they have finished
exchange.

During compute vertices will
read from and write to local
tile memory.

C

COMPUTE SET EXECUTION

Tile 0 Tile 1 Tile 2

Tile 3 Tile 4 Tile 5

54

CCC

C C C Each tile processor has
several independent
hardware threads (workers) to
execute code.

Once exchange is complete,
a hardware scheduler
(supervisor) dispatches
vertices onto the workers to
run.

The tiles will run all vertices
and then sync.

Workers Workers Workers

Workers Workers Workers

SSS

S S S

COMPUTE SET EXECUTION

63

SUMMARY

A graph is made up of:
• Data (variables in the graph)
• Compute tasks (vertices)
• Edges that connect them

Vertices:
• Are associated to a codelet (code)
• Run on a single tile

Compute sets:
• Specify sets of vertices to execute in parallel
• Are executed in 3 steps: Exchange inputs, Compute, Exchange outputs

Control program:
• Specifies the order of operations

The program resides on the chip:
• The host takes care of compilation and of the data stream preparation

#include <poplar/Engine.hpp>

 using namespace poplar;
 using namespace poplar::program;

 …

 Graph graph(target);
 graph.addCodelets(“my-codelets.cpp”);

 Program prog1, prog2;

 constructMyGraph(graph, &prog1, &prog2);

 Engine eng(device, graph, {prog1, prog2});
 …

 eng.run(0);

THE HOST PROGRAM

64

Host programs use
the poplar library.

Codelets are
loaded into
the graph.

Control
programs are
built up out of
instances of
the Program
class.

The Engine class
represents a fully
compiled program
ready to run on
hardware.

The Graph class is
used to build up
the computation
graph.

CODELET DEFINITIONS

65

class AdderVertex : public Vertex {
public:
 Input<float> x;
 Input<float> y;
 Output<float> z;
 float bias;

 bool compute() {
 *z = x + y + bias;
 return true;
 }
}

Each codelet is
defined as a C++ class
that inherits from the
Vertex class.

The fields of the
vertex specify its
inputs, outputs and
internal data.

The compute method
specifies the vertex
execution behaviour.

BUILDING THE COMPUTE GRAPH

0.3 3.1344.53.22 6.49

24.3 0.230.019.2 953.1

0.22 5.673.2123.2 55.3

5.6 8.667.2299.8 22.1

9.3 0.001103.22.95

g

t1

t2

Graph g(device);
g.addCodelets("codelets.cpp");

Tensor t1 = g.addVariable(FLOAT, {4, 5});
Tensor t2 = g.addVariable(FLOAT, {4});
ComputeSet cs = g.addComputeSet(“myComputeSet”)

VertexRef v1 = g.addVertex(cs, “AdderVertex”);
VertexRef v2 = g.addVertex(cs, “AdderVertex”);
g.connect(t1[1][1], v1["x"]);
g.connect(t1.slice({3, 1}, {4, 3}), v1["y"]);

g.connect(t2[0], v1["z"]);

cs

v1 v2g.connect(t1[0][3], v2["x"]);
g.connect(t1.slice({2, 2}, {3, 4}), v2["y"]);
g.connect(t2[3], v2["z"]);

g.setTileMapping(t1.slice({0, 0}, {4, 2}), 0);
g.setTileMapping(t1.slice({0, 2}, {4, 5}), 1);
g.setTileMapping(t2, 2);

g.setTileMapping(v1, 0);
g.setTileMapping(v2, 1);

CREATING CONTROL PROGRAMS

Graph g(device);
g.addCodelets("codelets.cpp");

…
auto prog = Sequence();
prog.add(Execute(cs1));
prog.add(Execute(cs2));

0.3 3.1344.53.22 6.49

24.3 0.230.019.2 953.1

0.22 5.673.2123.2 55.3

5.6 8.667.2299.8 22.1

9.3 0.001103.22.95

t1

t2

cs1 9.3 0.001103.22.95 t3

cs2

Execute(cs1);
Execute(cs2);

prog

CREATING THE ENGINE

Graph g(device);
g.addCodelets("codelets.cpp");

…
auto prog = Sequence();
prog.add(Execute(cs1));
prog.add(Execute(cs2));

Engine eng(device, graph, {prog});

0.3 3.1344.53.22 6.49

24.3 0.230.019.2 953.1

0.22 5.673.2123.2 55.3

5.6 8.667.2299.8 22.1

9.3 0.001103.22.95

t1

t2

cs1 9.3 0.001103.22.95 t3

cs2

Execute(cs1);
Execute(cs2);

eng

prog

69

SUMMARY

• Poplar lets you define your own
operations by writing codelets

• Poplar generates “glue code” required
to synchronize / exchange data

• Frees you to concentrate on parallel
algorithm design

Matrix multiply

CalcPartialDotProducts

CalcFinalOutputsLibrary
call

LIBRARIES = MODULAR GRAPH BUILDING

71

POPLIBSTM

popops

Pointwise and
reduction operators

poplin

Matrix multiply and
convolution functions

poprandom

Random number
generation

popnn

Neural network
functions (activation
fns, pooling, loss)

poputil

Utility functions for
building graphs

C / C++ and Python language bindings

POPLAR®

github.com/graphcore/poplibs

72

APPLY AND JOIN TODAY

Apply at alcf.anl.gov/science/directors-
discretionary-allocation-program

Join at graphcore.ai/join-community

https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.graphcore.ai/join-community

THANK YOU

CONFIDENTIAL

Alexander Tsyplikhin
alext@graphcore.ai

74

