June 11, 2024

Alexander Tsyplikhin

13

AGENDA

Architecture Refresher

Software Ecosystem

TensorFlow2/Keras

PyTorch

Poplar

ARCHITECTURE REFRESHER

Parallelism

Processors [

Memory

Memory Access

IPLl - ARCHITECTURED FOF Al

Massive parallelism with ultrafast memory access

CPU

Designed for scalar processes

Off-chip memory

GPU

SIMD/SIMT architecture. Designed
for large blocks of dense
contiguous data

INEEE
A
INEEE
“ EEEEE ©

Model and data spread across off-
chip and small on-chip cache, and
shared memory

IPU

Massively parallel MIMD. Designed
for fine-grained, high-
performance computing

Model and data tightly coupled,
and large locally distributed SRAM

PROVEN IPU ADVANTAGE

SELECT CASE STUDIES ACROSS MANY INDUSTRIES & FIELDS

E’E:::;;::: LabGenius MMan r) plenSO

FINANCE - OPTION PRICING Al SaaS - TEHT ANALYTICS

CASE STUDY : NLP > CASE STUDY : SIM

CASE STUDY : NLP >

SENSORO v S ECMWF

TRACTABLE
SMART CITY FINANCE - INSURANCE WEATHER FORECASTING

¥ ! L]
CASE STUDY : CV > CASE STUDY : CV > CASE STUDY : SIM >

CASE STUDY >

Argonne & =7

NATIONAL LABORATORY Pacific Northwest
NATIONAL LABORATORY

RESEARCH / BIG LABS COMPUTATIONAL CHEMISTRY

CASE STUDY >

2o UNIVERSITY OF

1 Ay TN)
> OXFORD

ACCELERATOR

dl—l‘\\o LABORATORY

HIGH ENERGY PHYSICS DYNAMIC GRAPHS

i

CASE STUDY : GNN

PCle
PCl Gen4 x16

64 GB/s bidirectional bandwidth to host
10 x IPU-Links,

IPU-Links™
320GB/s chip to chip bandwidth

IPU-Exchange™
11 TB/s all to all IPU-Exchange™

Non-blocking, any communication pattern

1472 independent IPU-Tiles™ each with an
IPU-Core™ and In-Processor-Memory™

1472 independent IPU-Core™
900MB In-Processor-Memory™ per [PU

IPU-Tiles™

IPU-Core™

8832 independent program threads
executing in parallel
In-Processor-Memory™
65TB/s memory bandwidth per IPU

EXECUTION MODEL

COMPUTATIONAL GRAPH BSP SCHEDLULE COPTIMIZED IPU ERECUTION

I I BSP EXECUTION TRACE - IPU TILES O - 1215

data

EXCHANGE

[
COMPUTE

| syne |

EXCHANGE

[
COMPUTE

| syne |

EXCHANGE

: ; OUTPUT FROM POPVISION GRAPH ANALYSER

GRAFHCORE

result [0]

)‘(IJOZ‘T OOO'(I]SI'K 000‘991'1 OOO'QVI'I 000'(I)ZI'T 000'901'1 000‘?00'T 000'990'l 000‘?70'[000'!‘)20‘1 000'(‘)00'1 000;096 000I096 000

BOoWw-2000 [P MACHINE

Il blade form factor delivering 1.4 PetaFLOPS Al Compute

100GbE IPU Gateway I IPU-Links

for host |
connectivity IPU-GW Links

BOW-2000 TOPOLIGY

DRAM DRAM

Bow IPU

Bow IPU

[u}
o€

NIC/SmartNIC

Bow W IPU

(m]
o€

COMPUTE

DATA

COMMUNICATIONS

x16 IPU-Link [64GB/s]
Host-Link Network I/F [100Gbps]

IPU-GW Link [100Gbps]
x8 PCle G4 [32GB/s]

4x Bow IPUs
* 1.4 PFLOP; compute
» 5,888 processor cores
+ > 35,000 independent parallel threads

Exchange Memory
» 3.6GB In-Processor-Memory @ 260 TB/s
* 128GB Streaming Memory DRAM (up to 256GB)

IPU-Fabric managed by IPU-GW

* Host-Link - 100GE to Poplar Server for standard
data center networking

« |PU-Link - 2D Torus for intra-POD64
communication

* GW-Link - 2x 100Gbps Gateway-Links for rack-to-
rack - flexible topology

BOW-POD64 TOPOLOGY

Servers

<
N

Host-Links:
100Gbps connectivity for each Bow-2000 to host server

Bow Pod64

Enabling disaggregation of host server, with optimal server/Bow-2000 ratio.

GW-Links (part of IPU-Fabric):
2x 100Gbps Gateway-Links for rack-to-rack communication

Redundant rack-to-rack communication for large scaleout beyond Pod64

s 16 IPU-Link 64GB/s
Esssssssmm= 100Gbps Host-Link Network I/F

100Gbps IPU-GW Link

x8 PCle G4 32GB/s 10

\J

IPU DEVELOPEFR ECOSYSTEM

GRAFHCORE

GRAPHCORE SOFTWARE ECOSYSTEM

Homa Abouts Productss Industriess Devaloper» ion careerss [N

GRAFHCORE

/ Quickstart Docs -> j Try on Paperspace >

TUTORIALS + CODE

EXAMFLES
Access our open source

Hands-on code tutorials, libraries, APIs, applications
< I> and code examples. O

simple application and
feature examples.

GFRAPHCORE GITHUE

DOCLUMENTATION

Explore our software
documentation, user
guides and technical notes. l

o

See more -

See more >

See more

HOW-TO VIDEOS

Watch practical how-to
® videos and demos by ‘@

MODEL GARDEN

Access a repository of
deployable ML applications

@ oncheru

See more >

DOCKEFR HUE

Access a selection of
Poplar SDK container
images via Docker Hub.

Graphcore engineers.

See more -

See more -

RESEAFRCH PAPERS POFVISION™ TOOLS
Read publications from O Download PopVision to ®
Graphcore's Research team EI (N analyse IPU performance

[;_ and utilisation. &‘

and IPU innovators.
See more - ‘

WEBINARS

Register for upcoming
Graphcore webinars or
watch on-demand.

->

See more >

See more

GRAFHCORE

Graphcore Documents
Version: Latest

Search docs

Getting Started
Software Documents
Hardware Documents
Technical Notes and White Papers
Examples and Tutorials
Document Updates
Alphabetical List of All Documents

Graphcore License Agreements

O PyTorch

GRAPHCORE DOCUMENTS

Documentation for installing

Background information and
and using IPU-Machines and

quick-start guides for Documentation for the
Poplar SDK and other

Graphcloud and Pod
Pod systems

systems software

The latest news about new
Tutorials and application

documents and examples
examples for running on the

Technical notes and white
papers on Graphcore
IPU

technology

Getting started with PyTorch for the IPU

Running a basic model for training and inference

Al Customer Engineer, Chris Bogdiukiewicz
introduces PyTorch for the IPU. With PopTorch™ - a
simple Python wrapper for PyTorch programs,
developers can easily run models, directly on

Graphcore IPUs with a few lines of extra code. Getthe Code -

In this video, Chris provides a quick demo on
running a basic model for both training and
inference using a MNIST based example.

Read the Guide -

GRAPHCORE

12

® © ® () Graphcore - GitHub x e

& github.com/graphcore * B a
COPEN SOURCE
Graphcore
a itories 6 @ g 2 people ['] Projects

github.com/graphcore E T e

GitHub is home to over 50 million developers working together. Join them to grow your own
teams, permissit and on projects.

« As part of our ethos to put power in D
the hands of Al developers,
Graphcore open sourced in 2020

examples Top languages
Example code and applications for machine learning on Graphcore IPUs @®C++ @ Python
1 ™ P A RT P T h & machine-learning deep-learning graphcore
« PopLibs™, PopART, PyTorc
OPython ¥25 w16 (0 118 Updated 3 days ago People .

TensorFlow for IPU fully open = e o
source and available on GitHub demos Manbelpommisiocdind o SN

i . who' rt of this organ ¥
Demonstrators and experimental applications for ML using Graphcore IPUs 0’8 8 part ot s organTzation
®cC++ MBMT Y1 w2 @O0 110 Updated 4 days ago

e Our code is public and open for _—]
code contributions from the wider g LA
ML developer community

tensorflow N\
Graphcore port of TensorFlow for the IPU

®C++ Mapache-20 ¥2 w19 0 110 Updatedon8 Jul

popart WA AN

®c++ ¥2 9 (0 110 Updatedon8ul

poprithms

®c++ Y1 9 ©Oo0 110 updatedon8Jul

http://github.com/graphcore

VIDECQ + GITHUB TUTORIALS

A comprehensive set of online developer training materials and educational content

® TUTORIALS

Learn how to create and run programs using Poplar and
PopLibs with our hands-on programming tutorials.

valuating Eatch Sizes o Programs and Variables Using PopLibs
Profiling Output Basic Machine Learning
Example
Matrix-Vector Multiplication Simple PyTorch for the IPU
Optimisation

he IFU: NLF

THE POPLAR GRAPH

Tutorial 1: programs and variables

Copy the file tutl_variables/start_here/tutl.cpp to your working directory and open it in an editor. The file contains the outline of a
C++ program including some Poplar kibrary headers and a namespace.

Graphs, variables and programs

All Poplar programs require a Graph object to construct the computation graph. Graphs are always created for a specific target (where the
target is a description of the hardware being targeted, such as an IPU). To obtain the target we need to choose a device.

p The tutorials use a simulated target by default, so will run on any machine even if it has no Graphcore hardware attached. On systems with
Getting started with Fop ; Y) accelerator hardware, the header file poplar/DeviceManager.hpp contains API calls to enumerate and return Device objects for the
[attached hardware

Simulated devices are created with the IPuModel class, which models the functionality of an IPU on the host. The createDevice function
creates a new virtual device to work with. Once we have this device we can create a Graph object to target it.

* Add the following code to the body of main

reate the IPU Model device

IPUModel ipuModel;

Device device = ipuModel.createDevice();

Target target = device.getTarget();
Create the Graph object

Graph graph(target);

Any program running on an IPU needs data to work on. These are defined as variables in the graph.

Getting started wi Funning TensorFlow on the IFU + Add the following code to create the first variable in the program
I

Writing Vertex Code

Matrix-Vector Multiplication

Tutorial 5: a basic machine
learning example

This tutorial contains a complete training program that
performs a logistic regression on the MNIST data set, using
gradient descent. The files for the demo are in tut5_ml .
There are no coding steps in the tutorial. The task is to
understand the code, build it and run it. You can build the
code using the supplied makefile.

Before you can run the code you will need to run the
get_mnist.sh script to download the MNIST data.

The program accepts an optional command line argument
to make it use the IPU hardware instead of a simulated IPU.

As you would expect, training is significantly faster on the
IPU hardware.

Copyright (c) 2018 Graphcore Ltd. All rights reserved.

& graphcore.ai/resources * B a
F; E s |:| I.I F; |:: E s |:: E N T F: E GRAFHCORE Home Abouts Products» Industriess Developer» Blog Careers) |GRSIRSISN
RESOURCES

graphcore.ai/resources

RESEARCH

WHITE — HOW-TO
PAPERS E(If)\ PAPERS — VIDEOS E
i Central Source Of researCh See more > I_‘ See more > See more >
papers, white papers, videos,
: WEEINARS SOFTWARE
on-demand yvebmars and R o
documentation
See more > See more >
 Product resources for ML
Engineers & IT / Infrastructure T o .
Managers now available LT RN e e———— | GRAPHCORE tome tooes motes tntris toioes g caers [N
WEEINARS RESEARCH FAPERS

GRAFHCORE

Imperial College London: Bundle Adjustment on a Graph
Processor

IPU-M2000 and IPU-POD: New Breakthroughs in Al at Scale (EN) ; Joseph Ortiz, Mark Pupils, Stefan Leutenegger, Andrew J. Danvison

https://graphcore.ai/resources

GRAPHCORE DEVELOPER ECOSYSTEM

1" TensorFlow

O PyTorch

& medium.com

Graphcore Announces
Production Release of Py Torch
for IPU

7,0\
- pyTorcn (GIED) ©
O, oz smmes 0000

Author: Matt Fyles, SVP Software, Graphcore

PyTorch + GRAFHCORE

oday we are introducing our first production release of PyTorch for

IPU — PopTorch — combining the performance of the Graphcore IPU-

M2000 system and the developer-ready accessibility of PyTorch.This will
enable the fast-growing PyTorch developer community to make new
breakthroughs in machine intelligence with Graphcore IPU systems, while

maintaining the dynamic PyTorch experience.

Keras

o PyTorch Lightning

& medium.com

Graphcore and Hugging Face launch new lineup
of IPU-ready transformers

Graphcore and Hugging Face have significantly expanded the range of
modalities and tasks available in Hugging Face Optimum, an open-source library
for performance optimization.

GRAFHCORE + £ HuggingFace

NEW IPU-EEADY TRANSFORMERS

raphcore and Hugging Face have significantly expanded the range of

modalities and tasks available in Hugging Face Optimum, an open-source
library for performance optimization. Developers now have convenient access to
a wide range of off-the-shelf Hugging Face Transformer models, optimised to

deliver the best possible performance on Graphcore’s IPU.

Weights & Biases

.5/_)' PaddlePaddle

ﬁ.' docker

vmware

s-_
Jupyter
S’

HALO

openstack.

GitHub

16

STANDARD ML FRAMEWORK SUPPORT

Develop models using standard high-level frameworks or port existing models

O PyTor‘Ch 1F TensorFlow

T G PyTorch > T O PyTorch
TensorFlow I TensorFlow
o PyTorch Lightning @ & PyG Easy port of) & PyG
HUGGING FACE o o hig h-level
. Keras Torch Lightning framework Keras ° PyTorch Lightning
33 PaddiePaddie HALO models 33 PaddiePaddie HALO
Existing models on -
’%’fl PyG | Ke ras | alternative platforms
POPLAR®

7/.)'/.)' PaddlePaddle

HALO |

IPU-
@ Processor
Platforms

3

NLP/TRANSFORMERS

IMAGE CLASSIFICATION/CNNS

OBJECT DETECTION

LARGE MODELS

MLPERF

CONDITIONAL SPARSITY

GNNS

ML APPLICATIONS

TUTORIALS

CODE EXAMPLES

DOCUMENTATION

VIDEOS

NATIVE IPU CODERS PROGRAM

APPS PORTFOLIO

DEVELOPER ECOSYSTEM

GRAPHCORE SOFTWAERE

FRONTENDS Jupyter INFERENCE DEPLOYMENT
o~ TOOLKIT
JUPYTER NOTEBOOKS

1F O @ ONNX" HALO >

FRAMEWORKS
Keras /33 PaddiePaddle
XLA POPART+ POPDIST

FW BACKENDS

PARTITIONER POPIR POPIT

POPLIBS

POPLAR®

GRAPH ENGINE GRAPH COMPILER

GC DEVICE ACCESS LAYER

DRIVERS

IPUOF DRIVER PCle DRIVER

POPLAR® SDK

POPVISION TOOLS

SYSTEM MONITORING

PROMETHEUS
GRAFANA

JOB DEPLOYMENT

SYSTEM SOFTWARE

G

18

ENHANCED MODEL GAFRDEN

MODEL
GARDEN

LIERARY

Type:

[Paperspace
New

[Benchmarked
[Training

O inference

Framework:

[J PyTorch

[TensorFlow 1

[TensorFlow 2
[Hugging Face
[PopART

[PaddlePaddle

[Poplar
Category:

[Natural Language Processing
[Computer Vision

[Speech Processing

[Jenn

[J Multimodal

[Al for Simulation

[Recommender

[Probabilistic Modelling

[Reinforcement Learning

[other

GPS++ INFERENCE

A hybrid GNN/Transformer for Molecular

Property Prediction inference using IPUs trained
on the PCQM4Mv2 dataset. Winner of the Open

Graph Benchmark Large-Scale Challenge

© Ty onPaperspace) view Repository

Search:

STABLE DIFFUSION TEXT-TO-
IMAGE INFERENCE

The popular latent diffusion model for generative
Al with support for text-to-image on IPUs using
Hugging Face Optimum.

© Ty onPaperspace) view Repository

GPS++ TRAINING

A hybrid GNN/Transformer for training Molecular
Property Prediction using IPUs on the PCQM4Mv2
dataset. Winner of the Open Graph Benchmark
Large-Scale Challenge

© v on Paperspace) view Repository

DISTRIBUTED KGE - TRANSE
(256) INFERENCE

Knowledge graph embedding (KGE) for link
prediction inference on IPUs using Poplar with the
WikiKG9OMv2 dataset. Winner of the Open Graph
Benchmark Large-Scale Challenge.

) view Repository

DISTILBERT TRAINING

DistilBERT is a small, fast

cheap and light

DISTRIBUTED KGE - TRANSE (256)
TRAINING

Knowledge graph embedding (KGE) for link
prediction training on IPUs using Poplar with
the WikiKG90Mv2 dataset. Winner of the Open
Graph Benchmark Large-Scale Challenge.

) view Repository

STABLE DIFFUSION IMAGE-TO-
IMAGE INFERENCE

The popular latent diffusion modelfor generative
Al with support for image-to-image on IPUs using
Hugging Face Optimum

© v on Paperspace () view Repository

GPS++ INFERENCE

A hybrid GNN/Transformer for Molecular Property
Prediction inference using IPUs trained on the
PCQMAMv2 dataset. Winner of the Open Graph
Benchmark Large-Scale Challenge.

© Ty on Paperspace) view Repository

DISTRIBUTED KGE - TRANSE
(256) TRAINING

Knowledge graph embedding (KGE) for link
prediction training on IPUs using PyTorch with the
WikiKG90OMv2 dataset. Winner of the Open Graph
Benchmark Large-Scale Challenge.

) view Repository

MAE TRAINING

Implementation of MAE computer vision model in

GPT-J 6B FINE-TUNING

GPT-J 6B fine-tuned using the GLUE MNLI
dataset leveraging the Hugging Face
Transformer library.

) viewrepository

STABLE DIFFUSION INPAINTING
INFERENCE

The popular latent diffusion modelfor generative
Al with support for inpainting on IPUs

Hugging Face Optimum.

° Try on Paperspace) view Repository

DISTRIBUTED KGE - TRANSE
(256) TRAINING

Knowledge graph embedding (KGE) for link
prediction training on IPUs using Poplar with the
WikiKG9OMv2 dataset. Winner of the Open Graph
Benchmark Large-Scale Challenge.

) view Repository

GPT-J 6B FINE-TUNING

GPT-J 68 fine-tuned using the GLUE MNLI dataset
leveraging the Hugging Face Transformer library.

) viewRepository

FROZEN IN TIME TRAINING

Implementation of Frozen in Time on the IPU in

@ https://www.graphcore.ai/resources/model-garden

PUBLIC ACCESS TO WIDE VARIETY OF
MODELS, READY TO RUN ON IPU

NEW FILTER/SEARCH CAPABILITY

DIRECT ACCESS TO GITHUB

MODEL GARDEN COVERAGE

COMPUTER VISION N %D GNN N
s\ s\
@& mace r®1 OBJECT TGN iy Cluster-GCN &5
CLASSIFICATION L™4 DETECTION MPNN-GIN & SchNet & |
ResNet50 vlI.5 —
: o : YOLO v3 GPS++ NBFNet &
iIcien et-
— YOLO v4 Distr. KGE
| EfficientNet-B4 | \ Y,
[ResNeXt-101 | Faster RCNN Al FOR SIMULATION .
|__MobileNetv2 | Efiicienthet - DeepMD | | CosmoFlow |
| _MobileNet v3 | | DeepDriveMD | [ABC Covid-19 |
le ViT | € osuect | ETO |
| | SEGMENTATION J
2l Unet (Industrial) = REINFORCEMENT & PROBABILISTIC —
| SWIN | @
| MAE | Unet (Medical) RL | MCMC |
- NLP o Reinforcement Learning | VAE |
(& I
& 2 SPEECH A
v Dolly | [= RoBERTa | 3
@ — HE Deberta | | STT (ASR) | TTS
= RNN-T DeepVoice3
| Group | PackingJ | BART | [Conformer | B
& T5 | FastSpeech2 |
| GPT-2 | = ubert | Wav2Vec2
- | Whisper | FastPitch |
L GPT-y | [F_DistilBERT |/ J
@ RECOMMENDER MULTIMODAL OTHER
Autoencoder [LXMERT | [Mini DALL-E | S AU
DIN :
| | | CLIP | | Frozen In Time | Neural Image Fields
| DIEN | [Stable Diffusion |

2\

&y PyG
O PyTorch
T TensorFlow

'~ Hugging Face

Keras

7/.)'/.5 PaddlePaddle

'."_‘

POPVISION®

INDUSTRY LEADING Al APPLICATION PERFORMANCE ANALYSIS TOOLS

. . . . SUPPORTED PLATFORMS
Introduced in Q2 2020 our PopVision analysis tools

provide detailed observability of IPU applications J

* Poplar Graph Analyser allows visual inspection of IPU

execution down to the individual tile level

* Poplar System Analyser gives users the ability to view

host side application and IPU interaction

* Both tools extend debug information back up into

Tensorflow and Pytorch for developers

@ GRAPHCORE CONFIDENTIAL

izing_unet/step1a_profile]

21

PCOPVISICON TOQLS

IPU MEMORY ANALYSIS

Capture memory information from your ML
models when executed on IPUs. Inspect
variable placement, size and liveness
throughout the execution.

HOST EXECUTION ANALYSIS

Understand the execution of IPU-targeted
software on your host system processors.
Identify any bottlenecks between CPUs and
IPUs across a visual interactive timeline.

@ GRAPHCORE CONFIDENTIAL

a8 » om

e BT BCED
e wilase PUSEOT I -
LU LR L} womn
L) L8]] UL i mn
8 |) | LI
eane
s ke popartons i

crom Fovar PO .o

EXECUTION TRACE REPORT

View the output of instrumenting a Poplar
program, capturing cycle counts for each
step. See execution statistics, tile balance,
cycle proportions and compute-set details.

i S A k]

T e s

GRAPH DATA

Plot graph data of any numerical data points
from the host or IPU processor systems,
such as board temperature, power
consumption and IPU utilisation.

REPORT COMPARISONS

Open two reports at once to compare their
memory, execution, liveness and operations.
Visualise where efficiencies can be made
with different model parameters.

LOCAL + REMOTE REFORTS

Ability to open reports either on your local

machine, or remotely on the host machine.

The Graph Analyser also supports local and
remote report access.

22

POPVISION PERFORMANCE ANALYSEFR

Navigation @ Q& 65787% & &« » <

421,400,000 421,600,000 421,800,000 422,000,000 422,200,000 422,400,000 422,600,000

IPUO Engine::run #0

gnn_node |gnn_node

4 | 1/conv Il 4 | O/conv

bat...466 conv ‘l batc...466 conv S.. I bond_encoder Gather...ateAdd batc...466 conv ‘| batc...466 conv S.. I bond...oder
op...s |Iinear_2 | ‘ op..s linear 2 ‘ 2/E...dd ’0/E...dd ’1/E...Add U- RI|| op...s |Iinear_2 | op..s linear 2 “ 2/E...dd ‘

||N...s| MatMul...ouped MatMul:Ma...d/Conv_1 ||| ”MatMuI .ouped |MatMuI :Ma...d/Conv_1 - -- | ”INsl MatMul...ouped MatMul:Ma...d/Conv_1 ||| ”MatMuI .ouped |MatMuI :Ma...d/Conv_1 ‘ - I

] e [D0 cers [| A Il 1] feone IIC°-I|III [[[eora |- | |
i - - | Ml -

L] COI- I COI- |

a = | I e I

100% I — HIH | ‘ {1110 7

& : ; i

i1 I ! | | A_ |
| - | I } -

A | z

Utilization/memory map of every tile/every IPU

—
ST
e e i
e e i i

L)

T
T

o
L L

maka)

@ GRAPHCORE CONFIDENTIAL

B
o
°
Q
3]
9]
o
B
o
°
Q
3]
c
i
=
-
(7]
-l

TF2/KERAS ON IPU

KERAS ON IPU

« |PU optimized Keras Model and Sequential
are available for the IPU. These have the
following features:

* On-device training loop for reduction of
communication overhead.

* Gradient accumulation for simulating
larger batch sizes.

* Automatic data-parallelisation of the
model when placed on a multi-IPU device.

as tf import tensorflow as tf
as.layers import x from tensorflow.keras.layers import x
-~ + from tensorflow.python import ipu IF)LJ
+ cfg = ipu.config.IPUConfig()
+ cfg.auto_select_ipus = 1
+ cfg.configure_ipu_system()
~ +with ipu.ipu_strategy.IPUStrategy().scope():
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data() (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifarl0.load_data()
x_train = x_train.astype('float32') / 255.0 x_train = x_train.astype('float32') / 255.0
y_train = tf.keras.utils.to_categorical(y_train, 10) y_train = tf.keras.utils.to_categorical(y_train, 10)
ds_train = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(64, drop_remainde ds_train = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(64, drop_rema
model = tf.keras.Sequential([model = tf.keras.Sequential([
Conv2D(32, (3, 3), padding='same', input_shape=x_train.shape[1:]), Conv2D(32, (3, 3), padding='same', input_shape=x_train.shapel[1:1),
Activation('relu'), Activation('relu'),
Conv2D(32, (3, 3)), Conv2D(32, (3, 3)),
Activation('relu'), Activation('relu'),
MaxPooling2D(pool_size=(2, 2)), MaxPooling2D(pool_size=(2, 2)),
Dropout(0.25), Dropout(0.25),
Conv2D(64, (3, 3), padding='same'), = Conv2D(64, (3, 3), padding='same'), —
Activation('relu'), Activation('relu'),
Conv2D(32, (3, 3)), Conv2D(32, (3, 3)),
Activation('relu'), Activation('relu'),
MaxPooling2D(pool_size=(2, 2)), MaxPooling2D(pool_size=(2, 2)),
Dropout(0.25), Dropout(0.25),
Flatten(), Flatten(),
Dense(512), Dense(512),
Activation('relu'), Activation('relu'),
Dropout(0.5), Dropout(0.5),
Dense(10), Dense(10),
Activation('softmax') Activation('softmax')
1) 1)
model.compile(loss="'categorical_crossentropy’, model.compile(loss="'categorical_crossentropy',
optimizer=tf.optimizers.SGD(learning_rate=0.016), optimizer=tf.optimizers.SGD(learning_rate=0.016),
metrics=['accuracy']) metrics=['accuracy'])

model.fit(ds_train, epochs=40) model.fit(ds_train, epochs=40)

@ gpu_cnn_keras.py ¢ ipu_cnn_keras.py tf_keras i I AN [R

TF2/KERAS TUTORIALS

github.com/graphcore/examples/tree/master/tutorials/tutorials/tensorflow?2

27

https://github.com/graphcore/examples/tree/master/tutorials/tutorials/tensorflow2

INTRO TO POPTORCH

GRAFHCORE

WHAT IS POPTORCH?

PopTorch

O PyTorch

. POPART

main.py

°

Poplar
compute
‘graph.

o
L
—
o
=
O
@)
L
o
<
o
O

GRAPH RUN TIME

29

if __name__ == '__main__':

—_—r Al = LUILII-IIId)\\pICUJ.LLJ.UIIb, E N
provide labels only for samples, where prediction is available (during the training, nof
ions.size()[0]:]

P T h ch.eq(ind, labels)).item() / labels.size 0
ylorc GPU

parser = argparse.ArgumentParser(description="MNIST training in PopTorch')

parser.add_argument('—-batch-size', type=int, default=8, help='batch size for training (de
parser.add_argument('—-test-batch-size', type=int, default=8, help='batch size for testinc
parser.add_argument('--epochs', type=int, default=10, help='number of epochs to train (de"
parser.add_argument('—1r', type=float, default=0.05, help='learning rate (default: 0.05)'

args = parser.parse_args()

training_data = torch.utils.data.DatalLoader(m
torchvision.datasets.MNIST('mnist_data/', train=True, download=True, 1
batch_size=args.batch_size, shuffle=True, drop_last=True)

test_data = torch.utils.data.Dataloader(I
torchvision.datasets.MNIST('mnist_data/', train=False, download=True,

model = Network()
training_model = TrainingModelWithLoss(model)
optimizer=optim.SGD(model.parameters(), lr=args.lr)

Run training
for _ in range(args.epochs):
for data, labels in training_data:
preds, losses = training_model(data, labels)
optimizer.zero_grad() I
losses.backward()
optimizer.step()

Run validation
sum_acc = 0.0
with torch.no_grad():
for data, labels in test_data:
output = model(data)
sum_acc += accuracy(output, labels)
print("Accuracy on test set: {:0.2f}%".format(sum_acc / len(test_data)))

—_r Al = LUILII-IIIG}\\pICuLLLJ.UII), L/
provide labels only for samples, where prediction is available (during the training, noi
labels = labels[-predictions.size()[0]:]

accuracy = torch.sum(torch.eq(ind, labels)).item() / labels.si 100.0
return accuracy IF)lJ
if __name__ == '__main__':

parser = argparse.ArgumentParser(description="MNIST training in PopTorch')
parser.add_argument('--batch-size', type=int, default=8, help='batch size for training (de
parser.add_argument('--test-batch-size', type=int, default=8, help='batch size for testin
parser.add_argument('--epochs', type=int, default=10, help='number of epochs to train (def
parser.add_argument('--1r', type=float, default=0.05, help='learning rate (default: 0.05)'
parser.add_argument('--device-iterations', type=int, default=50, help='device iterations |
args = parser.parse_args()

opts = poptorch.Options().deviceIterations(args.device_iterations)

training_data = poptorch.DatalLoader(opts,
torchvision.datasets.MNIST('mnist_data/', train=True, download=True, tran:
batch_size=args.batch_size, shuffle=True, drop_last=True)

test_data = poptorch.DatalLoader(opts,
torchvision.datasets.MNIST('mnist_data/', train=False, download=True, trar

model = Network() -
training_model = TrainingModelWithLoss(model) —
optimizer=optim.SGD(model.parameters(), lr=args.lr)

training_model = poptorch.trainingModel(training_model, opts, optimizer=optimizer)
inference_model = poptorch.inferenceModel(model) =

Run training
for _ in range(args.epochs): -
for data, labels in training_data:
preds, losses = training_model(data, labels) —

Detach the training model so that the same IPU could be used for validation L—
training_model.detachFromDevice()

Run validation
sum_acc = 0.0
with torch.no_grad():
for data, labels in test_data:
output = inference_model(data)
sum_acc += accuracy(output, labels)
print("Accuracy on test set: {:0.2f}%".format(sum_acc / len(test_data)))

POPTORCH TUTORIALS

qgithub.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch

32

https://github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch

UNDER THE HOOD: BSP

BULK SYNCHRONOUS
PARALLEL (BSP)

BSP software bridging model - massively parallel
computing with no concurrency hazards

3 phases: compute, sync, exchange

Easy to program - no live-locks or dead-locks

Widely-used in parallel computing - Google, FB, ...

First use of BSP inside a parallel processor

. compute phase

exchange phase

IPU

IPU

sync

time——

inter-chip sync
sync sync (1 tile abstains)
| | |
host I/O
'\\\/ |
N\
N
N\e
_f/ A host I/0 |
| A |
sync Inter- sync sync
chip
sync

COMPUTATIONAL GRAPH

data
m m

I—— -_— _—— = —— - -_— —_——-

[l AdderVertex [vO0] AdderVertex [v1]

GFRAPH EHRECUTION MODEL

COMPUTE
SYNC

COMPUTE
SYNC

35

POPLAR FRAMEWORK

WHAT IS POPLAR?

« Parallel programming framework that targets the IPU
« Simple but powerful programming model
« Close to the metal

« General purpose, extensible

S -

POPLAR FRAMEWORK

1. Graphs, Variables & Vertices

38

0.3 322 | 445 | 313 | 6.49
24.3 9.2 0.01 | 023 | 931
0.22 | 139 3.2 5.67 | 543
5.6 4 7.22 466 2.

THE POPLAR GRAPH

0.3

3.22

44.5

3.13

6.49

39

The graph is made up of:

« Data (variables in the graph)
« Compute tasks (vertices)
« Edges that connect them

VARIABLES

3.22 1 44 3.13 6.4

03 322 | 445 | 313 1 649 1_
0.3 | 322 | 445 | 313 | 6.49 Ml 0.3 3.99
24.3 9.2 0.01 | 0.23 | 953.1 ;[03 | 322 | 445 | 313 | 6.49
0.22 | 1232 | 3.2 5.67 | 55.3 - 24.3 9.2
- —— ' 1 1-d tensor (5)
56 | 99.8 | 722 | 8.66 | 221 -d tensor (2 « 2)

3-d tensor (3 x 4 x 5)

Data is stored in the graph in fixed size multi-dimensional tensors.

40

VARIABLES

0.3 3.22 44.5 3.13 6.49

24.3 9.2 0.01 0.23 93.1

0.22 13.2 3.2 5.67 55.3

5.6 99.8 7.22 8.66 221

Variables can be
distributed over
multiple tiles

e .

VERTICES

A vertex is a specific piece of work to
be carried out.

The edges determine which variable
elements are processed by the vertex.

0.3 | 822 | 445 | 3.13 A vertex can connect to a single

03 | 3p2]445 | 343 | 6.49 24.3 | 92 | 0.01 | 0.23 element or a range of elements.

243 | 9.2 | 0.01 | O.p3 | 931

0.22 | 1832 | 3.2 | 5.67 | 55.3

56 | 99.8 | 722 | 8.66 | 221

e ;

VERTICES

0.3

44.5

6.49

0.3

3.22

44.5

3.13

24.3

9.2

0.01

93.1

24.3

9.2

0.01

0.23

0.22

13.2

3.2

55.3

5.6

99.8

71.22

221

43

Codelet A

Input<float> x;
Input<Vector<float>> y;
Output<float> z;

¥z = X + sum(y);

Each vertex is associated with a
codelet.

VERTICES

A vertex runs on a
single tile

VERTICES

sle e oo
- 00 00 | 00 -
sls) e oo

L 4 J o0 o0
00 00| 00
L 1 o0 L 1 J
o0 L 4 J
00 nddm
o0 o0

45

Many vertices are
needed to fully
utilize the device

POPLAR FRAMEWORK

2. Compute Sets & Execution

46

COMPUTE SETS

0.3 3.22 44.5 3.13 6.49

24.3 9.2 0.01 0.23 93.1

022 | 134 | 32 | 567 | 543 Compute sets Specify
5.6, 99.‘ 7.22 8.66 21. 0.3 3.22 44.5 3.13 6.49 o
sets of vertices to
Compute Set C .
~ execute in parallel

Poplar verifies the
compute set is free of
data races

.

Compute Set A \
0.3 3¥2 44.5 . . 44.5 3.13
24.3 9.2 0.01 .\ 24.3 9.2 0.01 0.23
/ 0.22 13.2 3.2 5.67

J

@ Compute Set B

47

COMPUTE SET EXECUTION

A compute sets
execute in 3 steps:

1. Exchange
Transfer inputs

2. Compute
Run vertices in
parallel

3. Exchange

Transfer outputs

Exchange code is generated by
Poplar

48

|
Xz

Sync

Exchange
inputs

Compute

Sync

Exchange
outputs

COMPUTE SET EXECUTION

Exchange is required when a

vertex in a compute set needs

to read or write data which is
stored on another tile's memory.

COMPUTE SET EXECUTION

For each compute set,
each tile will have a
number of vertices to
execute.

50

COMPUTE SET EXECUTION

All tiles start by syncing.

51

COMPUTE SET EXECUTION

The tiles then move to
exchange: Required vertex

input data is copied between
memory.

52

COMPUTE SET EXECUTION

Tiles will move to compute
when they have finished

exchange.

During compute vertices will
read from and write to local
tile memory.

53

—
~= TileO

Workers

o
e

Tile 3

Workers

COMPUTE SET EXECUTION

r‘
< Tile1

Workers

h
“= Tile 4

Workers

—
< Tile 2

Workers

Tile 5

Workers

Each tile processor has
several independent
hardware threads (workers) to
execute code.

Once exchange is complete,
a hardware scheduler
(supervisor) dispatches
vertices onto the workers to
run.

The tiles will run all vertices
and then sync.

54

SUMMARY

A graph is made up of:

« Data (variables in the graph)
« Compute tasks (vertices)
« Edges that connect them

Vertices:
 Are associated to a codelet (code)
« Runonasingle tile

Compute sets:

« Specify sets of vertices to execute in parallel
« Are executed in 3 steps: Exchange inputs, Compute, Exchange outputs

Control program:
« Specifies the order of operations

The program resides on the chip:
« The host takes care of compilation and of the data stream preparation

S .

Host programs use
the poplar library.

The Graph class is
used to build up
the computation

THE HOST PROGRAM

#include <poplar/Engine.hpp>

using namespace poplar;
using namespace poplar::program;

graph.

The Engine class
represents a fully
compiled program
ready to run on
hardware.

18

oGraph graph(target);
graph.addCodelets(“my-codelets.cpp”);

Program progl, prog2; e—
constructMyGraph(graph, &progl, &prog2);

Engine eng(device, graph, {progl, prog2});

eng.run(0);

Codelets are
loaded into
the graph.

Control
programs are
built up out of
instances of
the Program
class.

64

The fields of the
vertex specify its
inputs, outputs and
internal data.

CODELET DEFINITIONS

class AdderVertex :
public:

//

public Vertex {

Input<float> x;
Input<float> y;
Output<float> z;
float bias;

bool compute() {
*z = X + y + bias;
return true;

}
}

Each codelet is
defined as a C++ class
that inherits from the
Vertex class.

The compute method
specifies the vertex
execution behaviour.

65

BUILDING THE COMPUTE GRAPH

Graph g(device);
g.addCodelets("codelets.cpp");

Tensor tl1 =

Tensor t2

VertexRef vi1

g.addVariable(FLOAT, {4, 5});
g.addVariable(FLOAT, {4});

ComputeSet cs = g.addComputeSet(“myComputeSet”)

VertexRef v2 =

connect(t1[1][1], vi["x"]);
connect(tl.slice({3, 1}, {4, 3}), vi["y"]);

g.
g.

0a 0a Oa o

0o Oa

0o 0q

g.addVertex(cs, “AdderVertex”);
g.addVertex(cs, “AdderVertex”);

.connect(t2[0], vi["z"]);

.connect(t1[0@][3], v2["x"]);
.connect(tl.slice({2, 2}, {3, 4}), v2["y"]);
.connect(t2[3], v2["z"]);

.setTileMapping(tl.slice({@, 0}, {4, 2}), 9);
.setTileMapping(tl.slice({@, 2}, {4, 5}), 1);
.setTileMapping(t2, 2);

.setTileMapping(vl, 0);
.setTileMapping(v2, 1);

0.3

3.22

44.5

3.13

24.3

9.2

'\%1

0.23

953.1

0.22

123.2

3.2\ 5.67

55.3

5.6

99.8

7.22

.66

221

t1l

vl

g

CS

v2

9.3

2.95

103.2

0.001

t2

CREATING CONTROL PROGRAMS

Graph g(device); t1
g.addCodelets("codelets.cpp"); i
0.23 9\.1

* 5.67 5£

prog

Execute(csl);

auto prog = Sequence(); Execute(cs2);
J

prog.add(Execute(csl));
prog.add(Execute(cs2)); Ccs2

C S 1 93 2.95 103.2 0.001 -t 3
t2

CREATING THE ENGINE

Graph g(device);
g.addCodelets("codelets.cpp");

auto prog = Sequence();
prog.add(Execute(csl));
prog.add(Execute(cs2));

Engine eng(device, graph, {prog});

03 3.22 445 313 ?‘h
24.3 9.2 \om 0.23 %.1
0.22 1232 * 5.67 5!

5.6 99.8 y 7} 8.66 221

9.3

2.95

103.2

.001

t1

9.3

0.001

cs2

t2

eng

t3

prog

Execute(csl);
Execute(cs2);

SUMMARY

« Poplar lets you define your own
operations by writing codelets

« Poplar generates “glue code” required
to synchronize / exchange data

* Frees you to concentrate on parallel
algorithm design

& oo

LIBRARIES = MODULAR GRAPH BUILDING

N\ /

CalcPartialDotProducts

Matrix multiply >

CalcFinalOutputs

call

Library

poputil

Utility functions for
building graphs

POPOPS

Pointwise and
reduction operators

Matrix multiply and
convolution functions

»

poplin

POPLAR®

GitHub

github.com/graphcore/poplibs

poprandom

Random number
generation

popnn

Neural network
functions (activation
fns, pooling, loss)

71

APPLY AND JOIN TODAY

Jo
1l

HOME / SCIENCE

Director’s Discretionary Allocation Program

The ALCF Director’s Discretionary program provides “start up”
awards to researchers working to achieve computational
readiness for for a major allocation award.

Molecular dynamics simulations based on machine learning help scientists learn about the movement of
the boundary between ice grains (yellow/green/cyan) and the stacking disorder that occurs when
hexagonal (orange) and cubic (blue) pieces of ice freeze together. Image: Henry Chan and Subramanian
Sankaranarayanan, Argonne National Laboratory

Apply at alcf.anl.gov/science/directors-
discretionary-allocation-program

1t general v

n

charlieb 6:05 AM
;\\q'}' Pleased to share with you all some new work from the Graphcore research team! ;

Our paper Unit Scaling introduces a new method for low-precision number formats, making FP16
We've managed to train BERT in these formats for the first time without loss scaling.

e You can find our blog post here: https:/www.graphcore.ai/posts/simple-fp16-and-fp8-traini
e Paperspace notebook (try it yourself!): https:/ipu.dev/qXfm2a
e Arxiv paper: https:/arxiv.org/abs/2303.11257
(& we were also featured on Davis Blalock’s popular ML newsletter this week) (edited)
graphcore.ai
Simple FP16 and FP8 training with unit scaling
Unit Scaling is a new low-precision machine learning method able to train language
models in FP16 and FP8 without loss scaling. (69 kB) ~

wa N

X arXiv.org

Unit Scaling: Out-of-the-Box Low-Precision Training

We present unit scaling, a paradigm for designing deep learning models that
simplifies the use of low-precision number formats. Training in FP16 or the
recently proposed FP8 formats offers substantial efficiency gains, but can lack
sufficient range for out-of-the-box training. Unit scaling addresses this by
introducing a principled approach to model numerics: seeking unit variance of
Show more

s

Join at graphcore.ai/join-community

https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.graphcore.ai/join-community

- 1:15PM

- 1:45PM

— 2:30 PM

- 2:45PM

- 3:15PM

— 4:00 PM

— 1:45 PM

- 215PM

— 2:30 PM

- 3:115PM

— 4:.00 PM

TuespbAy, 11 June
Introduction
Graphcore BowPod64 Hardware

Software Stack: TensorFlow, PyTorch, and Poplar

Porting applications with Poplar

How to use Bow Pod64@ ALCF

WEDNESDAY, 12 JUNE

Deep Dive on Graph neural networks and Large Language Models

Profiling with PopVision

Hands-on session

Best Practices, Q&A

THANK YOU

Alexander Tsyplikhin
alext@graphcore.ai

