June 11, 2024

Alexander Tsyplikhin

13

AGENDA

« Porting TensorFlow2/Keras

« Porting a Keras script, leverage loop on device, replicate and run data-parallel, pipeline

* Porting PyTorch

« PopTorch example, DatalLoader, options to optimize performance

STANDARD ML FRAMEWORK SUPPORT

Develop models using standard high-level frameworks or port existing models

O PyTor‘Ch 1F TensorFlow

T G PyTorch > T O PyTorch
TensorFlow I TensorFlow
o PyTorch Lightning @ & PyG Easy port of) & PyG
HUGGING FACE o o hig h-level
. Keras Torch Lightning framework Keras ° PyTorch Lightning
33 PaddiePaddie HALO models 33 PaddiePaddie HALO
Existing models on -
’%’fl PyG | Ke ras | alternative platforms
POPLAR®

7/.)'/.)' PaddlePaddle

HALO |

IPU-
@ Processor
Platforms

GRAPHCOFRE SOFTWARE MATURITY

NLP/TRANSFORMERS o am®

FRONTENDS jupyter INFERENCE DEPLOYMENT
N TOOLKIT

IMAGE CLASSIFICATION/CNNS

JUPYTER NOTEBOOKS

OBJECT DETECTION

1F O @ONNX HALO @

Keras /33 PaddiePaddle

FRAMEWORKS
LARGE MODELS

MLPERF

XLA POPART+ POPDIST

CONDITIONAL SPARSITY

POPVISION TOOLS

FW BACKENDS
GNNS

PARTITIONER POPIR POPIT
ML APPLICATIONS

POPLIBS GCL POPLAR
TUTORIALS

POPLAR® SYSTEM MONITORING

CODE EXAMPLES

GRAPH ENGINE GRAPH COMPILER PROMETHEUS @

DOCUMENTATION GRAFANA

VIDEOS GC DEVICE ACCESS LAYER JOB DEPLOYMENT

NATIVE IPU CODERS PROGRAM DRIVERS

IPUOF DRIVER PCle DRIVER @ K8S SLURM

APPS PORTFOLIO

DEVELOPER ECOSYSTEM POPLAR® SDK SYSTEM SOFTWARE

® GRAPHCORE

VIDECQ + GITHUB TUTORIALS

A comprehensive set of online developer training materials and educational content

® TUTORIALS

Learn how to create and run programs using Poplar and
PopLibs with our hands-on programming tutorials.

valuating Eatch Sizes o Programs and Variables Using PopLibs
Profiling Output Basic Machine Learning
Example
Matrix-Vector Multiplication Simple PyTorch for the IPU
Optimisation

he IFU: NLF

THE POPLAR GRAPH

Tutorial 1: programs and variables

Copy the file tutl_variables/start_here/tutl.cpp to your working directory and open it in an editor. The file contains the outline of a
C++ program including some Poplar kibrary headers and a namespace.

Graphs, variables and programs

All Poplar programs require a Graph object to construct the computation graph. Graphs are always created for a specific target (where the
target is a description of the hardware being targeted, such as an IPU). To obtain the target we need to choose a device.

p The tutorials use a simulated target by default, so will run on any machine even if it has no Graphcore hardware attached. On systems with
Getting started with Fop ; Y) accelerator hardware, the header file poplar/DeviceManager.hpp contains API calls to enumerate and return Device objects for the
[attached hardware

Simulated devices are created with the IPuModel class, which models the functionality of an IPU on the host. The createDevice function
creates a new virtual device to work with. Once we have this device we can create a Graph object to target it.

* Add the following code to the body of main

reate the IPU Model device

IPUModel ipuModel;

Device device = ipuModel.createDevice();

Target target = device.getTarget();
Create the Graph object

Graph graph(target);

Any program running on an IPU needs data to work on. These are defined as variables in the graph.

Getting started wi Funning TensorFlow on the IFU + Add the following code to create the first variable in the program
I

Writing Vertex Code

Matrix-Vector Multiplication

Tutorial 5: a basic machine
learning example

This tutorial contains a complete training program that
performs a logistic regression on the MNIST data set, using
gradient descent. The files for the demo are in tut5_ml .
There are no coding steps in the tutorial. The task is to
understand the code, build it and run it. You can build the
code using the supplied makefile.

Before you can run the code you will need to run the
get_mnist.sh script to download the MNIST data.

The program accepts an optional command line argument
to make it use the IPU hardware instead of a simulated IPU.

As you would expect, training is significantly faster on the
IPU hardware.

Copyright (c) 2018 Graphcore Ltd. All rights reserved.

B
o
°
Q
3]
9]
o
B
o
°
Q
3]
c
i
=
-
(7]
-l

TF2/KERAS ON IPU

KERAS ON IPU

IPU optimized Keras Model and Sequential with
the following features:

« On-device training loop for reduction of
communication overhead.

« Gradient accumulation for simulating larger
batch sizes.

« Automatic data-parallelisation of the model
when placed on a multi-IPU device.

as tf import tensorflow as tf
as.layers import x from tensorflow.keras.layers import x
-~ + from tensorflow.python import ipu IF)LJ
+ cfg = ipu.config.IPUConfig()
+ cfg.auto_select_ipus = 1
+ cfg.configure_ipu_system()
~ +with ipu.ipu_strategy.IPUStrategy().scope():
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data() (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifarl0.load_data()
x_train = x_train.astype('float32') / 255.0 x_train = x_train.astype('float32') / 255.0
y_train = tf.keras.utils.to_categorical(y_train, 10) y_train = tf.keras.utils.to_categorical(y_train, 10)
ds_train = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(64, drop_remainde ds_train = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(64, drop_rema
model = tf.keras.Sequential([model = tf.keras.Sequential([
Conv2D(32, (3, 3), padding='same', input_shape=x_train.shape[1:]), Conv2D(32, (3, 3), padding='same', input_shape=x_train.shapel[1:1),
Activation('relu'), Activation('relu'),
Conv2D(32, (3, 3)), Conv2D(32, (3, 3)),
Activation('relu'), Activation('relu'),
MaxPooling2D(pool_size=(2, 2)), MaxPooling2D(pool_size=(2, 2)),
Dropout(0.25), Dropout(0.25),
Conv2D(64, (3, 3), padding='same'), = Conv2D(64, (3, 3), padding='same'), —
Activation('relu'), Activation('relu'),
Conv2D(32, (3, 3)), Conv2D(32, (3, 3)),
Activation('relu'), Activation('relu'),
MaxPooling2D(pool_size=(2, 2)), MaxPooling2D(pool_size=(2, 2)),
Dropout(0.25), Dropout(0.25),
Flatten(), Flatten(),
Dense(512), Dense(512),
Activation('relu'), Activation('relu'),
Dropout(0.5), Dropout(0.5),
Dense(10), Dense(10),
Activation('softmax') Activation('softmax')
1) 1)
model.compile(loss="'categorical_crossentropy’, model.compile(loss="'categorical_crossentropy',
optimizer=tf.optimizers.SGD(learning_rate=0.016), optimizer=tf.optimizers.SGD(learning_rate=0.016),
metrics=['accuracy']) metrics=['accuracy'])

model.fit(ds_train, epochs=40) model.fit(ds_train, epochs=40)

@ gpu_cnn_keras.py ¢ ipu_cnn_keras.py tf_keras i I AN [R

TF2/KERAS TUTORIALS

Sample commands: https://bit.ly/ALCF2406

Continued in the repositories below (follow the READMESs)

qgithub.com/graphcore/examples/tree/master/tutorials/tutorials/tensorflow2/keras

https://bit.ly/ALCF2406
https://github.com/graphcore/examples/tree/master/tutorials/tutorials/tensorflow2/keras

INTRO TO POPTORCH

GRAFHCORE

WHAT IS POPTORCH?

PopTorch

O PyTorch

. POPART

main.py

°

Poplar
compute
‘graph.

o
L
—
o
=
O
@)
L
o
<
o
O

GRAPH RUN TIME

11

WHAT IS POPTORCH?

PopTorch is a set of extensions for PyTorch to enable PyTorch models to run on
Graphcore's IPU hardware.

PopTorch supports both inference and training. To run a model on the IPU you wrap
your existing PyTorch model in either a PopTorch inference wrapper or a PopTorch
training wrapper.

You can provide further annotations to partition the model across multiple IPUs.
Using the user-provided annotations, PopTorch will use PopART to parallelise the

model over the given number of IPUs.

Additional parallelism can be expressed via a replication factor which enables you to
data-parallelise the model over more |PUs.

12

https://docs.graphcore.ai/projects/popart-user-guide/en/latest/intro.html

GETTING STARTED: TRAINING A MODEL

TRAINING A MODEL

1. Import packages

PopTorch is a separate package from PyTorch, and must be imported.

2. Load dataset using torchvision.datasets and poptorch.DatalLoader

In order to make data loading easier and more efficient, PopTorch offers an extension of
torch.utils.data.DataLoader class:

poptorch.Dataloader class is specialised for the way the underlying POpART
framework handles batching of data.

3. Define model and loss function using torch API
The only difference here from pure PyTorch is the loss computation, which has to be part
of the forward function. This is to ensure the loss is computed on the IPU and not on the

CPU, and to give us as much flexibility as possible when designing more complex loss
functions.

18

15

TRAINING A MODEL

4. Prepare training

Instantiate compilation and execution options, these are used by PopTorch’s wrappers
such as poptorch.Dataloader and poptorch.trainingModel.

5. Train the model

Define the optimizer using PyTorch’s API.

Use poptorch.trainingModel wrapper, to wrap your PyTorch model. This wrapper will
trigger the compilation of our model, using TorchScript, and manage its translation to a
program the IPU can run. Then run your training loop.

16

if __name__ == '__main__':

—_—r Al = LUILII-IIId)\\pICUJ.LLJ.UIIb, E N
provide labels only for samples, where prediction is available (during the training, nof
ions.size()[0]:]

P T h ch.eq(ind, labels)).item() / labels.size 0
ylorc GPU

parser = argparse.ArgumentParser(description="MNIST training in PopTorch')

parser.add_argument('—-batch-size', type=int, default=8, help='batch size for training (de
parser.add_argument('—-test-batch-size', type=int, default=8, help='batch size for testinc
parser.add_argument('--epochs', type=int, default=10, help='number of epochs to train (de"
parser.add_argument('—1r', type=float, default=0.05, help='learning rate (default: 0.05)'

args = parser.parse_args()

training_data = torch.utils.data.DatalLoader(m
torchvision.datasets.MNIST('mnist_data/', train=True, download=True, 1
batch_size=args.batch_size, shuffle=True, drop_last=True)

test_data = torch.utils.data.Dataloader(I
torchvision.datasets.MNIST('mnist_data/', train=False, download=True,

model = Network()
training_model = TrainingModelWithLoss(model)
optimizer=optim.SGD(model.parameters(), lr=args.lr)

Run training
for _ in range(args.epochs):
for data, labels in training_data:
preds, losses = training_model(data, labels)
optimizer.zero_grad() I
losses.backward()
optimizer.step()

Run validation
sum_acc = 0.0
with torch.no_grad():
for data, labels in test_data:
output = model(data)
sum_acc += accuracy(output, labels)
print("Accuracy on test set: {:0.2f}%".format(sum_acc / len(test_data)))

—_r Al = LUILII-IIIG}\\pICuLLLJ.UII), L/
provide labels only for samples, where prediction is available (during the training, noi
labels = labels[-predictions.size()[0]:]

accuracy = torch.sum(torch.eq(ind, labels)).item() / labels.si 100.0
return accuracy IF)lJ
if __name__ == '__main__':

parser = argparse.ArgumentParser(description="MNIST training in PopTorch')
parser.add_argument('--batch-size', type=int, default=8, help='batch size for training (de
parser.add_argument('--test-batch-size', type=int, default=8, help='batch size for testin
parser.add_argument('--epochs', type=int, default=10, help='number of epochs to train (def
parser.add_argument('--1r', type=float, default=0.05, help='learning rate (default: 0.05)'
parser.add_argument('--device-iterations', type=int, default=50, help='device iterations |
args = parser.parse_args()

opts = poptorch.Options().deviceIterations(args.device_iterations)

training_data = poptorch.DatalLoader(opts,
torchvision.datasets.MNIST('mnist_data/', train=True, download=True, tran:
batch_size=args.batch_size, shuffle=True, drop_last=True)

test_data = poptorch.DatalLoader(opts,
torchvision.datasets.MNIST('mnist_data/', train=False, download=True, trar

model = Network() -
training_model = TrainingModelWithLoss(model) —
optimizer=optim.SGD(model.parameters(), lr=args.lr)

training_model = poptorch.trainingModel(training_model, opts, optimizer=optimizer)
inference_model = poptorch.inferenceModel(model) =

Run training
for _ in range(args.epochs): -
for data, labels in training_data:
preds, losses = training_model(data, labels) —

Detach the training model so that the same IPU could be used for validation L—
training_model.detachFromDevice()

Run validation
sum_acc = 0.0
with torch.no_grad():
for data, labels in test_data:
output = inference_model(data)
sum_acc += accuracy(output, labels)
print("Accuracy on test set: {:0.2f}%".format(sum_acc / len(test_data)))

POPTORCH TUTORIALS

Continued in the repositories below (follow the READMES)

qgithub.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/basics

qgithub.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/mixed precision

github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/efficient_data_loading

github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/pipelining

18

https://github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/basics
https://github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/mixed_precision
https://github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/efficient_data_loading
https://github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/pipelining

POPTORCH.OPTIONS

 The compilation and execution on the IPU can be controlled using poptorch.Options

« Full list of options available here: https://docs.graphcore.ai/projects/poptorch-user-
guide/en/latest/overview.html#options

« Some examples:
(i) deviceIterations
This option specifies the number of batches that is prepared by the host (CPU) for
the IPU. The higher this number, the less the IPU has to interact with the CPU, for
example to request and wait for data, so that the IPU can loop faster. However,
the user will have to wait for the IPU to go over all the iterations before getting
the results back. The maximum is the total number of batches in your dataset,
and the default value is 1.

(i) replicationFactor
This is the number of replicas of a model. We use replicas as an implementation
of data parallelism. To achieve the same behavior in pure PyTorch, you'd wrap
@ your model with torch.nn.DataParallel, but with PopTorch, this is an option. 19

https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/overview.html
https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/overview.html

B
o
°
Q
3]
9]
o
B
o
°
Q
3]
c
i
=
-
(7]
-l

USEFUL ENV VARIABLES

LOGGING

Logging messages can be generated when your program runs. This is controlled by the environment
variables described below. For more detailed information see the docs:
https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/env-vars.html

POPLAR_LOG_LEVEL: Enable logging for Poplar
POPLAR_LOG _DEST: Specify the destination for Poplar logging (“stdout”, “stderr” or a file name)

No logging information. The default.

“OFF”

“ERR” Only error conditions will be reported.

WARN” Warnings when, for example, the software cannot achieve what was requested (for example, if the convolution planner can’t keep to the
memory budget, or Poplar has determined that the model won't fit in memory but the debug.allowOutOfMemory option is enabled).

“INFO” Very high level information, such as PopLibs function calls.

“DEBUG” Useful per-graph information.

“TRACE” The most verbose level. All useful per-tile information.

https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/env-vars.html

CREATE EXECUTION PROFILE

POPLAR_ENGINE_OPTIONS='{"autoReport.all":"true", "autoReport.directory":"./report"}’

« The PopVision Graph Analyser uses report files generated during compilation and execution
by the Poplar SDK.

« These files can be created using POPLAR_ENGINE_OPTIONS.

* |n order to capture the reports needed for the PopVision Graph Analyser you only need to
set POPLAR_ENGINE_OPTIONS='{"autoReport.all":"true"}' before you run a program. By
default this will enable instrumentation and capture all the required reports to the current

working directory.

22

EXECUTABLE CACHE

If you often run the same models you might want to enable executable caching to
save time:

POPTORCH:

* You can do this by either setting the POPTORCH_CACHE_DIR environment
variable or by calling poptorch.Options.enableExecutableCaching.

TENSORFLOW:

* You can use the flag --executable_cache_path to specify a directory where
compiled files will be placed. Fused XLA/HLO graphs are hashed with a 64-bit
hash and stored in this directory.

Warning

The cache directory might grow large quickly. Poplar doesn’t evict old models from the
cache and, depending on the number and size of your models and the number of IPUs
used, the executables might be quite large.

It is the your responsibility to delete the unwanted cache files.

23

https://docs.sourcevertex.net/files/poptorch-poptorch-user-guide-latest/reference.html

SYNTHETIC-DATA

TF_POPLAR_FLAGS="--use_synthetic_data --synthetic_data_initializer=random"

Used for measuring the IPU-only throughput and disregards any host/CPU activity.

24

GRAPHCORE COMMAND LINE TOOLS

gc-docker Allows you to use IPU devices in Docker containers using the Docker container engine.

gc-flops Allows you to benchmark the number of floating point operations per second on one or more IPU pro-
cessors.

gc-info Determines what IPU cards are present in the system.
gc-inventory Lists device IDs, physical parameters and firmware version numbers.

gc-links Displays the status and connectivity of each of the IPU-Links that connect IPUs. See also IPU-Link channel
mapping for connectivity in an IPU Server containing C2 cards.

gc-monitor Monitors IPU activity on shared systems.

gc-reset Resets IPU devices.

gc-exchangetest Allows you to test the internal exchange fabric in an IPU.
gc-exchangewritetest Tests direct writes to the IPU’s tile memory via the host.
gc-gwlinkstraffictest Tests GW-Links on multi-rack IPU-POD systems.

gc-hostsynclatencytest Reports the latency of transfers between the host machine and the IPUs (in both direc-
tions).

gc-hosttraffictest Allows you to test the data transfer between the host machine and the IPUs (in both directions).
gc-iputraffictest Allows you to test the data transfer between IPUS.

gc-memorytest Tests all the memory in an IPU, reporting any tiles that fail.

gc-podman Allows you to use IPU devices in Docker containers using the Podman container engine.

gc-powertest Tests power consumption and temperature of the IPU processors.

@ https://docs.graphcore.ai/projects/command-line-tools/en/latest/index.html

https://docs.graphcore.ai/projects/command-line-tools/en/latest/index.html

APPLY AND JOIN TODAY

Jo
1l

HOME / SCIENCE

Director’s Discretionary Allocation Program

The ALCF Director’s Discretionary program provides “start up”
awards to researchers working to achieve computational
readiness for for a major allocation award.

Molecular dynamics simulations based on machine learning help scientists learn about the movement of
the boundary between ice grains (yellow/green/cyan) and the stacking disorder that occurs when
hexagonal (orange) and cubic (blue) pieces of ice freeze together. Image: Henry Chan and Subramanian
Sankaranarayanan, Argonne National Laboratory

Apply at alcf.anl.gov/science/directors-
discretionary-allocation-program

1t general v

n

charlieb 6:05 AM
;\\q'}' Pleased to share with you all some new work from the Graphcore research team! ;

Our paper Unit Scaling introduces a new method for low-precision number formats, making FP16
We've managed to train BERT in these formats for the first time without loss scaling.

e You can find our blog post here: https:/www.graphcore.ai/posts/simple-fp16-and-fp8-traini
e Paperspace notebook (try it yourself!): https:/ipu.dev/qXfm2a
e Arxiv paper: https:/arxiv.org/abs/2303.11257
(& we were also featured on Davis Blalock’s popular ML newsletter this week) (edited)
graphcore.ai
Simple FP16 and FP8 training with unit scaling
Unit Scaling is a new low-precision machine learning method able to train language
models in FP16 and FP8 without loss scaling. (69 kB) ~

wa N

X arXiv.org

Unit Scaling: Out-of-the-Box Low-Precision Training

We present unit scaling, a paradigm for designing deep learning models that
simplifies the use of low-precision number formats. Training in FP16 or the
recently proposed FP8 formats offers substantial efficiency gains, but can lack
sufficient range for out-of-the-box training. Unit scaling addresses this by
introducing a principled approach to model numerics: seeking unit variance of
Show more

s

Join at graphcore.ai/join-community

https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.graphcore.ai/join-community

- 1:15PM

- 1:45PM

— 2:30 PM

- 2:45PM

- 3:15PM

— 4:00 PM

— 1:45 PM

- 215PM

— 2:30 PM

- 3:115PM

— 4:.00 PM

TuespbAy, 11 June
Introduction
Graphcore BowPod64 Hardware

Software Stack: TensorFlow, PyTorch, and Poplar

Porting applications with Poplar

How to use Bow Pod64@ ALCF

WEDNESDAY, 12 JUNE

Deep Dive on Graph neural networks and Large Language Models

Profiling with PopVision

Hands-on session

Best Practices, Q&A

THANK YOU

Alexander Tsyplikhin
alext@graphcore.ai

