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THE QUIET REVOLUTION OF NUMERICAL 
WEATHER PREDICTION*
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▪ Weather forecasting is a multi-billion 

enterprise with large socioeconomic 

impacts

▪ Currently weather forecasting and 

climate modeling use physics-based 
numerical models 

▪ Slow, incremental but steady progress 

was been made during the last 40 years 

has lead to a quiet revolution for weather 

forecasting 
– 1 day of forecast skill per decade

– Successful predictions of extreme 

events up to 8 days into the future

Bauer, P., Thorpe, A. & Brunet, G. The quiet 
revolution of numerical weather 
prediction. Nature 525, 47–55 (2015). 
https://doi.org/10.1038/nature14956



THE RISE OF DATA-DRIVEN WEATHER 
FORECASTING*  
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▪ Advances in machine learning architectures, hardware, big data, and financial 

motivation have set the stage for a paradigm shift in weather forecasting

– State-of-the-art machine learning-based models have accuracy on par to 

operational NWP 

• Success has been demonstrated in operational settings

– The efficiency is orders of magnitude better with 10-day forecasts taking just a 

few seconds

*Ben-Bouallegue et al. 2024

https://doi.org/10.1175/BAMS-

D-23-0162.1

* ECMWF seminar on 

data-driven models in 

operational setting
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DAY 5 FORECAST 

https://charts.ecmwf.int/
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https://charts.ecmwf.int/



MACHINE LEARNING APPLICATIONS  
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▪ Data-driven Methods: Use of data-driven techniques for time-series forecasting

– Independent of physics-based modeling (typically) 

▪ Hybrid modeling: The combination of machine learning with existing traditional, 

numerical-based models 

▪ Operational Products:
– Severe Weather - Nadocast 

– Ocean Modeling - ENSO Prediction

– Hurricane intensity forecasting

▪ Uncertain Quantification 

▪ Basically everything else



DATA-DRIVEN APPROACH

▪ Task: Take a snapshot of the 3-d atmosphere and predict the weather for the next 

14 days

▪ Dataset: Use observation-based reanalysis (best guess of the atmosphere) 

– ERA5

▪ Challenges:

– Image size – 721 x 1440

– Channels – 100s to 1000s of channels (each channel represents a 2d field)

– Adaption software and hardware to these datasets
• E.g. Complicated loss functions, using ViT for image translation, etc

▪ Currently using a weather specific ViT to predict the weather 
7



MACHINE LEARNING-BASED WEATHER  
FORECASTING MODEL – STORMER*

8*Nguyen, T., et. al. , 2023: Scaling transformer neural networks for 
skillful and reliable medium-range weather forecasting. 2312.03876

5-day ForecastInitial Conditions 

26 December 2020 00:00 UTC 31 December 2020 00:00 UTC 31 December 2020 00:00 UTC

Ground Truth

m
/s

Successful 5-day prediction of an extratropical cyclone in late 

December 2020 which broke the North Pacific pressure record



STORMER - VISION TRANSFORMER 
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▪ Model : 

– Vision transformer backbone

• adaptive layer normalization 

(adaLN)

– Variable aggregation and 

tokenization 

• single-layer cross-attention 

mechanism

• Model does not scale by 
number of channels
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STORMER - PERFORMANCE

RMSE 

(Lower 

is 

better)



LUCIE - CLIMATE 
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▪ Dataset – ERA5

▪ Inference - 6000 years of simulation per day (stable for at least 1000 years)

▪ Architecture – Spherical Fourier Neural Operator (SFNO)
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LUCIE – CLIMATOLOGY 
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LUCIE can reproduce the general circulation with minimal biases 



CONCLUSIONS

▪ The advent of scalable machine learning architectures, vast amounts of 

quality data, and access a large number of GPUs/TPUs is leading to a 

paradigm shift for weather forecasting 

▪ Climate modeling may soon undergo a similar paradigm shift

▪ Weather is a great test bed for newly developed ML architectures 

– Large data (PetaBytes)
– Pushing limit of current hardware and software

13



QUESTIONS



BACKUP SLIDES



FUTURE OF CLIMATE MODELING

▪ New research demonstrates machine learning only emulators can produce stable 

simulation for a decade 

– ACE Model

▪ Biases, especially for precipitation, are better than SOTA numerical-based climate 

model

16

Watt-Meyer, O., Dresdner, G., McGibbon, J., Clark, S. K., Henn, B., Duncan, J., 
... & Bretherton, C. S. (2023). ACE: A fast, skillful learned global atmospheric 
model for climate prediction. arXiv preprint arXiv:2310.02074.



MACHINE LEARNING-BASED WEATHER  
FORECASTING MODEL - CLIMAX

▪ Using transformer-based machine learning 
architecture based off ClimaX*

▪ Model size: 
– Training Data: right now we are using a data set 

of 28 variables from ERA5 at 1.4 degree 
resolution (WeatherBench Rasp et. al 2020) 
• Temperature, UV-wind, geopotential and 

specific humidity at 250, 500, 700, 850, 
925mb

• Plus U10, V10, 2m Temperature 
– Parameters: ~ 100M and fine-tuned using 40 

A100 GPUs
• Takes ~8 hours 

17

7-day ML-based forecast showing a series of 

atmospheric rivers impacting the west coast
*Nguyen, T., J. Brandstetter, A. Kapoor, J. K. Gupta, and A. Grover, 
2023: Climax: A foundation model for weather and climate. 2301.10343.



UNCERTAINTY QUANTIFICATION USING 
PROBABILISTIC OUTPUT
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▪ Taking advantage of the flexibility of 

a ClimaX foundation model, we 

replace the normal output layer with 

a probabilistic one 

– Training can still be achieved in a 
reasonable amount of time

▪ Creating an output layer that is 

parameterized by a Gaussian 

provides assumption of aleatoric 

uncertainty. 
Example output from a probabilistic model. 

Contours are mean prediction and color-fill 
is the aleatoric uncertainty 



UNCERTAINTY QUANTIFICATION USING 
PROBABILISTIC OUTPUT
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Largest uncertainty is contained in areas with 

synoptic features (e.g. short wave and deep cyclone)  
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▪ Ensemble System

– 40-member ensemble system 7 

day takes 30s on a single A100

– Use aleatoric uncertainty to 

perturb IC’s for ensemble system

– Can be used to estimate B matrix 

in a 4d-var DA system

UNCERTAINTY QUANTIFICATION USING 
PROBABILISTIC OUTPUT

Example forecast using a ClimaX-based ensemble 

system with the black contours being ensemble 
mean and color-fill is ensemble spread



ANALYSIS INCREMENT 
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CLIMATE VARIABILITY – STRATOSPHERE
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Improved variability 



CLIMATE VARIABILITY – PRECIP
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Improved variability 
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