AI DRIVEN COSMOLOGY

Nesar Ramachandra <u>nramachandra@anl.gov</u> Computational Science Division Argonne National Laboratory

INTRODUCTION

This talk highlights a subset of the AI-for-Cosmology efforts at Argonne.

Common themes here are:

- Synthetic/simulation datasets and their connection with real astronomical observations.
- Science requirements:
 - Bayesian/probabilistic schemes rather than point-predictions.
 - Explainability of the AI algorithms.
 - Physics inclusion

Case study:

- Image processing pipelines for de-noising, de-blending etc.
- Probabilistic classification and regression
- Latent space exploration

SHORT INTRO TO COSMOLOGY

Source: open.edu

Name (Symbol)	Description	Value
Hubble Constant (H₀)	Current rate of expansion of the universe.	67.4 ± 0.5 km/s/Mpc
Cosmological Constant (A)	Energy density of space, or vacuum energy.	$1.1056 imes 10^{-52}$ m ⁻²
Dark Energy Density ($\Omega\Lambda$)	Fraction of the universe's energy density consisting of dark energy.	0.6847 ± 0.0073
Dark Matter Density (Ωc)	Fraction of the universe's energy density consisting of dark matter.	0.264 ± 0.013
Baryon Density Parameter (Ωb h²)	Density of ordinary matter (baryons) relative to the critical density.	0.0224 ± 0.0001

STUDYING THE UNIVERSE: JOINT EFFORTS

Theoretical and Computational Cosmology

U.S. DEPARTMENT OF ENERGY Office of Science

Observational Astronomy Zavala, J.; Frenk, C.S. Dark Matter Haloes and Subhaloes. *Galaxies* **2019**, *7*, 81.

CAVEATS IN COSMOLOGICAL STUDIES

- Multi-modal data:
 - Graphs, images, time-series, summary vectors, scalars, text.
- Expensive:
 - Both simulations and observations are from expensive science campaigns
- Multi-fidelity:
 - Data from different sources have different resolutions, approximations and systematic effects.
 - Transfer of knowledge is not straightforward.
- Data coverage:
 - Gaps, biased datasets are common. No assumption of a 'fair' sampling.

- Analysis requirements
 - Precision cosmology has high error requirements
 - Traditional statistical analyses have been highly successful.
- Prior domain knowledge:
 - Studies assume known physics, conservation laws.

TRAIN

A FEW EXAMPLES: BAYESIAN INFERENCE WITH EMULATORS

A FEW EXAMPLES: FINDING UNKNOWN UNKNOWNS OBJECTS IN THE SKY Subaru

A FEW EXAMPLES: MULTI-MODAL FOUNDATION MODELS

- Foundation models (like Large Language models) encode diverse data into a cohesive representation space
- Going beyond text is the next frontier

 unique problems arise in scientific datasets.

 Foundation models are designed to work on tasks that are not pre-defined a major paradigm shift in Al

CASE STUDY: GALAXY-SCALE STRONG LENSING

- Strong-lenses are rare objects.
 - But understanding them is key to several questions: Distribution of dark matter, expansion of the Universe.
- Discrepancy with current amount of observed data vs future data
 - Observed data is/will be a highly imbalanced dataset
 - Tractable physical models

INTERPRETABLE LEARNING PIPELINES

- Each AI-module is independently trained and validated. (Super-resolution modules for Denoising and deblending, Information bottleneck design for detection and regression)
- Synthetic data allows one to train modular pipelines that enable better control over systematics than end-to-end training methods

INTERPRETABLE STRONG LENS END-TO-END ANALYSIS Argonne PIPELINE

Sandeep Madireddy, **NR** et al: arxiv.org:1911.03867

Variational Information Bottleneck and representation learning

Uncertainty quantification for classification

- Cosmological studies involve variety of data modalities, with vast amount of data. This makes data-driven AI-models extremely valuable.
- Synthetic datasets are often a necessity in Cosmological analysis.
- Careful experimental design, robust data creation, extensive validations are all required while dealing with synthetic data.
- Interpretable, uncertainty quantified models are still very important, probably even more so while using synthetic data in training.

