
HIP ON AURORA: HIP FOR INTEL GPUS

CHIPSTAR: A HIP IMPLEMENTATION FOR
AURORA

erhtjhtyhy

HIP ON AURORA PROJECT TEAM
Colleen Bertoni, Brice Videau

2024/08/21

WHAT IS HIP?

• HIP is AMD's Portable GPU programming model
• Very similar to CUDA

– CUDA programs can be automatically translated to HIP (HIPIFY)
– HIP programs run natively on AMD GPUs using ROCm + LLVM/Clang
– HIP programs run natively on NVIDIA GPUs using CUDA + nvcc

• AMD provides GPU accelerated math libraries
– hipBLAS, hipFFT, hipSPARSE, …
– Wrappers around AMD and Nvidia GPU compute libraries

– Example: hipBLAS wraps rocBLAS and cuBLAS
• High performance on both AMD and Nvidia GPUs by design

Heterogeneous-Computing Interface for Portability

2

https://github.com/ROCm-Developer-Tools/HIPIFY

HIP ON AURORA PROJECT OBJECTIVES

• 2 Exascale systems will feature AMD GPUs (Frontier OLCF, El Capitan LLNL)
– HIP is a likely target for many exascale applications
– 3 Pre-exascale systems use Nvidia GPUs (Summit, Perlmutter, Polaris)

• What about Aurora with its Intel GPUs?
– Bring HIP support to Aurora

• HIP on Aurora project, originally lead by Hal Finkel:
– Implement HIP on top of Level Zero (Intel native API on Aurora) or OpenCL;
– Restructure HIP to accept several backend plugins;
– Create a test suite with code of interest to ECP;
– Support selected ECP applications;
– Implement HIP math libraries on top of oneMKL;
– Investigate CUDA support.

Support HIP Applications on Intel GPUs

3

4

• National labs
– Compiler and runtime researchers focused on HPC

community
– Users and developers of HPC applications

HIP ON AURORA TEAM COLLABORATORS
Team is made up of National Labs, Academia, Industry

• Academia
– Compiler and runtime researchers focused on new

programming technologies

• Industry
– Developers of HIP
– Developers of Intel GPUs

HIP WORKFLOW

• AMD's HIP is derived from the C++ CUDA programming model
• C++ Kernels + Device Management API

Multipass Compilation

5

HIP source code

HIP source code

HIP source code

HIP Host IR

HIP Device IR

LLVM HIP Frontend

X86 Binary + HIP API

AMD IR

LLVM AMD backend

LLVM X86 Backend
Executable

HIP Fat
Binary

LLVM Linker

HIP
Library
RocM

HIP API

HIPCC

CHIPSTAR WORKFLOW

• HIP on top of Level Zero or OpenCL
• https://github.com/CHIP-SPV/chipStar

Multipass Compilation

6

HIP source code

HIP source code

HIP source code

HIP Host IR

HIP Device IR

(Modified) LLVM HIP Frontend

X86 Binary + HIP API

SPIR-V IR

LLVM-SPIRV translator

LLVM X86 Backend
Executable

HIP Fat
Binary

LLVM Linker

HIP Level
Zero or
OpenCL
Library

HIP API

Additional LLVM Passes

Modified HIPCC

https://github.com/CHIP-SPV/chipStar

7

SUPPORTED SOFTWARE

CHIPSTAR

§ Available online: https://github.com/CHIP-SPV/chipStar
§ Built from open source components:

– HIP Common
– HIP Tests
– ROCm-Device-Libs
– LLVM (15, 16, 17)
– SPIRV LLVM Translator

§ GitHub action CI leverages AMD unit tests
§ Version 1.1 released early 2024, focus on performance improvements
§ Currently supported by ALCF (through PaganLC) and Intel.
§ CUDA is experimentally supported by converting CUDA calls to chipStar calls

A HIP and CUDA Implementation on top of Level Zero and OpenCL

9

https://github.com/CHIP-SPV/chipStar

SUPPORTED LIBRARIES

§ Actively supported and built on top of oneMKL, thank to oneAPI SYCL
interoperability

§ Unified architecture to interface with SYCL oneMKL
§ Delivered to ECP

– hipRTC
– hipBLAS
– hipSOLVER

§ Work in progress
– hipFFT
– hipCUB

§ Prospective
– hipRand

Provide HIP Math Libraries for Applications

10

SUPPORTED APPLICATIONS

§ Actively engaged with application teams
§ Functional, optimizing performance

– CP2K (several CP2K apps are supported, more are coming)
– LibCEED (some quirks exist for some patterns)
– GAMESS

§ In progress
– ExaBiome

§ Prospective, always looking for more
– LS_DALTON (TAL_SH)
– DIRAC (TAL_SH)
– TRITON
– OpenMM

Help ECP, ESP, and others to use HIP on Aurora

11

LIMITATIONS

§ Kernel limitations (apply to SYCL as well)
– Some masked group functions are not supported

• 3 argument shuffles
• HW limitation, working on emulation

– Early exit from thread will cause issues
• HW limitation
• Working on compiler pass to alleviate simple cases

§ Missing libraries
– Supporting new libraries can be done, some are in progress
– Intel oneMKL and other libraries usually map one to one with CUDA libraries

§ Bugs, they should be reported and the project will address them

Most Common Encountered Issues

12

BENCHMARKING WITH HECBENCH

EVALUATING CHIPSTAR WITH THE HECBENCH
BENCHMARK SET

§ Goals:
– Assess the functionality of chipStar for HIP and CUDA APIs by looking at the

pass rate of the benchmark set
– Report any bugs found
– Assess the performance of chipStar by comparing the performance of HIP

codes running with chipStar to SYCL codes running with Intel oneAPI on Intel
GPUs

§ We chose to use HeCBench (https://github.com/zjin-lcf/HeCBench) since it is
extensive and has the same code written in multiple different languages

14

BENCHMARKING WITH HECBENCH: HIP API

16

§ Running chipStar on PVC, 88.12% of
(230/261) HIP benchmarks compiled
successfully, and within the compiled
ones, 85.65% (197/230) ran
successfully. For those ran and had
result verification, 92.39% (85/92)
passed.

§ The errors are a variety of Intel
runtime errors, hangs, incorrect
answers, and chipStar errors

HECBENCHMARK: HIP FUNCTIONALITY

Credit to Kali Balleda (Intel)

HECBENCHMARK: HIP PERFORMANCE ON PVC

17 Credit to Kali Balleda (Intel)

Note:
• > 1.0 means HIP is better
• Close to 1.0 means HIP and SYCL are similar
• < 1.0 means HIP is worse

HECBENCHMARK: PERFORMANCE ON GEN9

18 Credit to Jenny Chen (ALCF summer intern)

EVALUATING CUDA SUPPORT WITH HECBENCH

HECBENCHMARK: CUDA FUNCTIONALITY

Start

•Benchmarks couldn’t be run because of the nvcc
wrapper script naming

•Modified benchmarking script to adapt and successfully
ran HeCBench with chipStar

First Run

•Start running benchmarks to identify bugs
•A total of 180 CUDA benchmarks were run

Fixing

•Testing and digging into errors
•Fixing, proposing solutions, and reporting issues

Current
Result

•Compilation, running, and passing rates are greatly
improved

20

RESULTS
Overall Results – Compilation, Running, Passing Rates

21 Credit to Jenny Chen (ALCF summer intern)

APPLICATION HIGHLIGHT: GAMESS

23

§ General Atomic and Molecular Electronic Structure System (GAMESS) is a
quantum chemistry software package
– Contains a CUDA/HIP library targeting Summit and Frontier

§ To port to chipStar, we focused on the Hartee-Fock (HF) method.
– Over 20,000 lines of HIP/CUDA kernel code and multiple hipBLAS and

hipSOVLER routines (hipblasDscal, hipblasDgemm, hipblasDcopy,
hipblasDaxpy, hipblasDdot, hipblasDgemv, hipblasDgeam,
hipsolverDsyevd.)

§ The kernels use shared memory with __syncthreads() calls to ensure copying
values from global memory to shared memory completed for the threadblock
before using it.

GAMESS: INTRODUCTION

24

§ Porting effort was relatively low
– Build files are very similar

• We could use the same cmake
for HIP on Nvidia, AMD, and Intel
HW

– One issue was due to kernel
thread synchronization: In CUDA
group barriers don’t count exited
threads but in LevelZero and
OpenCL this is a undefined
behavior and can deadlock

GAMESS: TIMING COMPARISON
Hardware SCF time (s)

Nvidia A100 1.998

AMD MI250 (one
GCD)

26.09*

Intel PVC (one
tile)

5.31

* This is due to the eigensolve in hipBLAS being relatively slow.

TRY IT OUT ON JLSE OR SUNSPOT!

QUICK START: CHIPSTAR ON JLSE

26

> # get a node
> qsub -q iris -A ${project} –n 1 –t 120 -I

> # put the appropriate modules in your path
> module use /soft/modulefiles/

> # puts chipStar 1.2 Preview in your environment
> module load chipStar/1.2-preview

> # clone training repo
> git clone https://github.com/jz10/hip-training.git
> cd hip-training/simple

QUICK START: CHIPSTAR ON JLSE

27

> # compile and run CUDA and HIP examples with chipStar
> make
hipcc -o saxpy_hip saxpy_hip.cpp
nvcc -o saxpy_cuda saxpy_cuda.cu
warning: cucc is a work-in-progress. It is incomplete and may behave incorrectly.

> ./saxpy_hip
Max error: 0.000000
> ./saxpy_cuda
Max error: 0.000000

QUICK START: CHIPSTAR ON SUNSPOT

28

> # get a node
> qsub -q workq -A ${project} -l walltime=0:120:00 -l select=1 -I

> # put the appropriate modules in your path
> module use /home/bertoni/modulefiles/

> # puts chipStar 1.2 Preview in your environment
> module load chipStar/1.2-preview

> # clone training repo
> git clone https://github.com/jz10/hip-training.git
> cd hip-training/simple

QUICK START: CHIPSTAR ON SUNSPOT

29

> # compile and run CUDA and HIP examples with chipStar
> make
hipcc -o saxpy_hip saxpy_hip.cpp
nvcc -o saxpy_cuda saxpy_cuda.cu
warning: cucc is a work-in-progress. It is incomplete and may behave incorrectly.

> ./saxpy_hip
Max error: 0.000000
> ./saxpy_cuda
Max error: 0.000000

QUICK START: PROFILING AND DEBUGGING
§ For profiling and debugging, on Sunspot you can use iprof with "module load

thapi" just like with Intel OneAPI SYCL and OpenMP!

30

> LTTNG_UST_HIP_LIBAMDHIP64=libCHIP.so iprof ./saxpy_hip
Max error: 0.000000
...
BACKEND_HIP,BACKEND_ZE | 1 Hostnames | 1 Processes | 2 Threads |

 Name | Time | Time(%) | Calls | Average |
 __hipUnregisterFatBinary | 542.69ms | 53.85% | 1 | 542.69ms |
 __hipRegisterFatBinary | 306.79ms | 30.44% | 1 | 306.79ms |

 hipLaunchKernel | 69.53ms | 6.90% | 1 | 69.53ms |
 zeModuleCreate | 69.09ms | 6.86% | 1 | 69.09ms |

 hipMalloc | 6.61ms | 0.66% | 2 | 3.31ms |
zeCommandQueueExecuteCommandLists | 3.75ms | 0.37% | 12 | 312.17us |

 hipMemcpy | 2.81ms | 0.28% | 3 | 936.32us |
 zeCommandListAppendMemoryCopy | 1.34ms | 0.13% | 5 | 267.81us |
...

QUICK START: PROFILING AND DEBUGGING 2

LTTNG_UST_HIP_LIBAMDHIP64=libCHIP.so iprof –l – mpriun –n 2 …

Timeline with iprof from libcchem (GAMESS)

31

CHIPSTAR INSTALLATION

32

CHIPSTAR INSTALLATION

§ Full instructions here:
– https://github.com/CHIP-SPV/chipStar?tab=readme-ov-file#prerequisites

§ Prerequisites:
– Development files for OpenCL and/or Level-Zero
– A working OpenCL or Level-Zero device driver

• POCL or Intel OpenCL CPU work if you want to try on CPU
– Optionally oneAPI + oneMKL for SYCL interoperability and libraries

§ Overview:
– Build and install LLVM/Clang with SPIRV-LLVM-Translator support
– Build and install chipStar
– Optionally Build and Install additional math libraries

33

https://github.com/CHIP-SPV/chipStar?tab=readme-ov-file

CONCLUSION

CONCLUSIONS

§ chipStar 1.0 (delivered almost 50 ECP MS)
– Working HIP implementation
– Supporting selected applications and libraries
– Competitive performances with SYCL

§ chipStar 1.1, focusing on performance improvements
§ Upcoming chipStar 1.2, experimental CUDA, improve performance and stability
§ Deployed on our platforms, can leverage Level Zero or OpenCL

– Sunspot (PVC)
– JLSE (PVC, Iris)

§ Works on your laptop if it uses an Intel GPU
§ But can also be used on CPU using OpenCL

– POCL, Intel OpenCL CPU driver

chipStar is HIP for Aurora

35

PERSPECTIVES

§ Native CUDA support
– Experimental but promising

§ Support for more
– Applications: collaborating with new ECP and ESP teams
– Features: HIP is constantly evolving, focusing on Applications requirements
– Libraries as required by applications
– Platforms

• Extensions to OpenCL to better support HIP and CUDA
• ARM is under investigation
• Rusticl

§ Looking for Additional funding through the S4PST SSO project

Exciting Possibilities

36

ACKNOWLEDGMENTS

ACKNOWLEDGMENTS

§ This research used resources of the Argonne Leadership Computing Facility, a
U.S. Department of Energy (DOE) Office of Science user facility at Argonne
National Laboratory and is based on research supported by the U.S. DOE Office
of Science-Advanced Scientific Computing Research Program, under Contract
No. DE-AC02-06CH11357.

§ This research was supported by the Exascale Computing Project (17-SC-20-
SC), a joint project of the U.S. Department of Energy’s Office of Science and
National Nuclear Security Administration, responsible for delivering a capable
exascale ecosystem, including software, applications, and hardware technology,
to support the nation’s exascale computing imperative

