
Overview of TAU
ALCF Handson HPC Workshop
Sameer Shende
University of Oregon and ParaTools, Inc.
1:30pm – 1:45pm CT, Wednesday, Oct. 11, 2023
2:30pm – 5pm Room 1406. Breakout session

http://tau.uoregon.edu/TAU_ALCF23.pdf

Argonne Leadership Computing Facility2

TAU Quickstart Guide on Polaris at ALCF

Setup:
• % module load tau

Profiling with an un-instrumented application:
• MPI: % aprun -n 64 tau_exec -ebs ./a.out

• CUDA+Sampling: % aprun –n 64 tau_exec –T cupti –cupti –ebs ./a.out

• Pthread: % aprun -n 64 tau_exec –T mpi,pthread –ebs ./a.out

Analysis: % pprof –a –m | more; % paraprof (GUI)

Tracing:
• Vampir: MPI: % export TAU_TRACE=1; export TAU_TRACE_FORMAT=otf2

 % aprun -n 64 tau_exec ./a.out; vampir traces.otf2 &

• Chrome: % export TAU_TRACE=1; aprun -n 64 tau_exec ./a.out; tau_treemerge.pl;

 % tau_trace2json tau.trc tau.edf –chrome –ignoreatomic –o app.json

 Chrome browser: chrome://tracing (Load -> app.json) or Perfetto.dev

• Jumpshot: % export TAU_TRACE=1; aprun -n 64 tau_exec ./a.out; tau_treemerge.pl;

 % tau2slog2 tau.trc tau.edf –o app.slog2; jumpshot app.slog2 &

Argonne Leadership Computing Facility3

Setup: Installing TAU on Laptops

• Prerequisites: Java in your path

• Microsoft Windows
• Install Java from Oracle.com

• http://tau.uoregon.edu/tau.exe
• Install, click on a ppk file to launch paraprof

• macOS (x86_64)
• Install Java 11.0.3:

• Download and install http://tau.uoregon.edu/java.dmg
• If you have multiple Java installations, add to your ~/.zshrc (or ~/.bashrc as appropriate):

• export PATH=/Library/Java/JavaVirtualMachines/jdk-11.0.3.jdk/Contents/Home/bin:$PATH
• Download and install TAU (copy to /Applications from dmg):

• http://tau.uoregon.edu/tau.dmg
• export PATH=/Applications/TAU/tau/apple/bin:$PATH
• paraprof app.ppk &

• macOS (arm64, Apple Silicon M1/M2)
• http://tau.uoregon.edu/java_arm64.dmg
• http://tau.uoregon.edu/tau_arm64.dmg

• Linux (http://tau.uoregon.edu/tau.tgz)
• ./configure; make install; export PATH=<taudir>/x86_64/bin:$PATH; paraprof app.ppk &

http://tau.uoregon.edu/tau.exe
http://tau.uoregon.edu/java.dmg
http://tau.uoregon.edu/java_arm64.dmg

Argonne Leadership Computing Facility4

TAU Performance System®

• Parallel performance framework and toolkit
⏤Supports all HPC platforms, compilers, runtime system
⏤Provides portable instrumentation, measurement, analysis

Argonne Leadership Computing Facility5

TAU Performance System®

• Instrumentation
• Fortran, C++, C, UPC, Java, Python, Chapel, Spark
• Automatic instrumentation
• Map manual instrumentation APIs from other tools to TAU

• NVTX, ROCTx
• CAMTimers, PerfStubs, PETSc, Caliper, Kokkos API

• Measurement and analysis support
• MPI, OpenSHMEM, ARMCI, PGAS, DMAPP
• pthreads, OpenMP, OMPT interface, hybrid, other thread models
• GPU: Intel oneAPI DPC++/SYCL, AMD ROCm (RocProfiler and RocTracer), CUDA, OpenCL, OpenACC,

Kokkos
• Parallel profiling and tracing

• Analysis
• Parallel profile analysis (ParaProf), data mining (PerfExplorer)
• Performance database technology (TAUdb)
• 3D profile browser

Argonne Leadership Computing Facility6

• How much time is spent in each application routine and outer loops? Within loops, what is the
contribution of each statement? What is the time spent in OpenMP loops? In kernels on GPUs. How
long did it take to transfer data between host and device (GPU)?

• How many instructions are executed in these code regions?
Floating point, Level 1 and 2 data cache misses, hits, branches taken? What is the extent of
vectorization for loops?

• How much time did my application spend waiting at a barrier in MPI collective operations?
• How can I use my app multi-node GPU systems? With unmodified binary on all 3 vendor GPUs?
• What is the memory usage of the code? When and where is memory allocated/de-allocated? Are there

any memory leaks? What is the memory footprint of the application? What is the memory high water
mark?

• How much energy does the application use in Joules? What is the peak power usage?
• What are the I/O characteristics of the code? What is the peak read and write bandwidth of individual

calls, total volume?
• How does the application scale? What is the efficiency, runtime breakdown of performance across

different core counts?

Application Performance Engineering using TAU

Argonne Leadership Computing Facility7

Instrumentation

• Add hooks in the code to perform measurements
• Source instrumentation using a preprocessor

• Add timer start/stop calls in a copy of the source code.
• Use Program Database Toolkit (PDT) for parsing source code.
• Requires recompiling the code using TAU shell scripts (tau_cc.sh, tau_f90.sh)
• Selective instrumentation (filter file) can reduce runtime overhead and narrow

instrumentation focus.

• Compiler-based instrumentation
• Use system compiler to add a special flag to insert hooks at routine entry/exit.
• Requires recompiling using TAU compiler scripts (tau_cc.sh, tau_f90.sh…)

• Runtime preloading of TAU’s Dynamic Shared Object (DSO)
• No need to recompile code! Use aprun tau_exec ./app with options.

Argonne Leadership Computing Facility8

Profiling and Tracing

• Tracing shows you when the events
take place on a timeline

Profiling Tracing

• Profiling shows you how much
(total) time was spent in each routine

• Profiling and tracing

Profiling shows you how much (total) time was spent in each routine
Tracing shows you when the events take place on a timeline

Argonne Leadership Computing Facility9

Instrumentation

• Direct and indirect performance observation
• Instrumentation invokes performance measurement
• Direct measurement with probes
• Indirect measurement with periodic sampling or hardware performance

counter overflow interrupts
• Events measure performance data, metadata, context, etc.

• User-defined events
• Interval (start/stop) events to measure exclusive & inclusive duration
• Atomic events take measurements at a single point

• Measures total, samples, min/max/mean/std. deviation statistics
• Context events are atomic events with executing context

• Measures above statistics for a given calling path

Argonne Leadership Computing Facility10

Inclusive vs. Exclusive values

■ Inclusive
■ Information of all sub-elements aggregated into single value

■ Exclusive
■ Information cannot be subdivided further

Inclusive Exclusive

int foo()
{
int a;
a = 1 + 1;

bar();

a = a + 1;
return a;

}

Argonne Leadership Computing Facility11

Inclusive Measurements

Argonne Leadership Computing Facility12

Exclusive Time

Argonne Leadership Computing Facility13

How much data do you want?

Limited
Profile

Flat
Profile

Loop
Profile

Callsite
Profile

Callpath
Profile

Trace

O(KB) O(TB)

Performance Data Measurement

Direct via Probes Indirect via Sampling

• Exact
measurement

• Fine-grain control
• Calls inserted

into code

• No code modification
• Minimal effort
• Relies on debug

symbols (-g)

Call
START(‘potential’)
// code
Call
STOP(‘potential’)

Argonne Leadership Computing Facility15

Event-Based Sampling (EBS)

• Running program is periodically interrupted to take measurement
⏤Timer interrupt, OS signal, or HWC overflow
⏤Service routine examines return-address stack
⏤Addresses are mapped to routines using symbol table information

• Statistical inference of program behavior
⏤Not very detailed information on highly volatile metrics
⏤Requires long-running applications

• Works with unmodified executables (tau_exec –ebs)

Time
main foo(0) foo(1) foo(2) int main()

{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Measurement

t9t7t6t5t4t1 t2 t3 t8

Argonne Leadership Computing Facility16

Instrumentation

• Measurement code is inserted such that every event of interest is
captured directly
⏤Can be done in various ways

• Advantage:
⏤Much more detailed information

• Disadvantage:
⏤Processing of source-code / executable

necessary
⏤Large relative overheads for small functions

Time
Measurement int main()

{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Time

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12t13 t14

main foo(0) foo(1) foo(2)

TAU_START(“main”);

TAU_STOP(“main”);

TAU_START(“foo”);

TAU_STOP(“foo”);

Argonne Leadership Computing Facility17

Using TAU’s Runtime Preloading Tool:
tau_exec

• Preload a wrapper that intercepts the runtime system call and substitutes with another

⏤MPI

⏤OpenMP

⏤POSIX I/O

⏤Memory allocation/deallocation routines

⏤Wrapper library for an external package

• No modification to the binary executable!

• Enable other TAU options (communication matrix, OTF2, event-based sampling)

Argonne Leadership Computing Facility18

TAU Execution Command (tau_exec)

•Uninstrumented execution
⏤ % aprun -n 256 ./a.out

•Track GPU operations
⏤ % aprun -n 256 tau_exec -T rocprofiler –rocm ./a.out
⏤ % aprun -n 256 tau_exec –l0 ./a.out
⏤ % aprun -n 256 tau_exec –cupti ./a.out
⏤ % aprun -n 256 tau_exec –opencl ./a.out
⏤ % aprun -n 256 tau_exec –openacc ./a.out

•Track MPI performance
⏤ % aprun -n 256 tau_exec ./a.out

•Track I/O, and MPI performance (MPI enabled by default)
⏤ % aprun -n 256 tau_exec -io ./a.out

• Track OpenMP and MPI execution (using OMPT)
⏤ % export TAU_OMPT_SUPPORT_LEVEL=full;
⏤ % aprun -n 256 tau_exec –T ompt,mpi -ompt ./a.out

•Track memory operations
⏤ % export TAU_TRACK_MEMORY_LEAKS=1
⏤ % aprun -n 256 tau_exec –memory_debug ./a.out (bounds check)

•Use event based sampling (compile with –g)
⏤ % aprun -n 256 tau_exec –ebs ./a.out
⏤ Also -ebs_source=<PAPI_COUNTER> -ebs_period=<overflow_count> -ebs_resolution=<file | function | line>

Argonne Leadership Computing Facility19

% cd /soft/perftools/tau/tau-2.32; cat .all_configs
 ./configure -ompt -mpi -bfd=download -unwind=download -iowrapper -dwarf=download
 –papi=<dir> -pdt=<dir> -pdt_c++=g++ -otf=download
% make install
% module load tau
% ls $TAU/Makefile*
/soft/perftools/tau/tau-2.32/craycnl/lib/Makefile.tau-gnu-mpi-cupti-pdt
/soft/perftools/tau/tau-2.32/craycnl/lib/Makefile.tau-gnu-papi-mpi-pdt
/soft/perftools/tau/tau-2.32/craycnl/lib/tau-gnu-papi-mpi-pthread-cupti-pdt

% aprun –n 4 tau_exec –T cupti –cupti –ebs ./a.out
Will preload libTAU.so from
/soft/perftools/tau/tau-2.32/craycnl/lib/shared-gnu-mpi-cupti-pdt/

Corresponding to
/soft/perftools/tau/tau-2.32/craycnl/lib/Makefile.tau-gnu-mpi-cupti-pdt

-T mpi is chosen by default. Please use –T serial for non-mpi cases.

Configuring TAU and choosing a configuration in tau_exec

Argonne Leadership Computing Facility20

RUNTIME PRELOADING

• Injects TAU DSO in the executing application

• Requires dynamic executables

• We must compile with –dynamic –g

• Use tau_exec while launching the application

Argonne Leadership Computing Facility21

ParaProf Profile Browser

% paraprof

Argonne Leadership Computing Facility22

ParaProf Profile Browser

Argonne Leadership Computing Facility23

ParaProf Profile Browser

MPI
Threads

OpenMP
Threads

CUDA
Activity

Argonne Leadership Computing Facility24

ParaProf Profile Browser: Choose Thread Statistics Window

Right click

Argonne Leadership Computing Facility25

ParaProf Thread Statistics Table

Using sampling, TAU can explain 11.971 seconds out of 12.111 seconds using 396 samples.

Argonne Leadership Computing Facility26

ParaProf Thread Statistics Table

Argonne Leadership Computing Facility27

ParaProf Thread Statistics Table

Argonne Leadership Computing Facility28

TAU supports Python, MPI, and CUDA

• Without any modification to the source code or DSOs or interpreter, it instruments and samples the
application using Python, MPI, and CUDA instrumentation. TAU needs to be built with the same
Python as the application.

% aprun –np 230 tau_python –T cupti,mpi,pdt –ebs –cupti ./exafel.py
Instead of:
% aprun –np 230 python ./exafel.py

Kernel on GPU

Argonne Leadership Computing Facility29

TAU Thread Statistics Table

Python, MPI, CUDA, and samples from DSOs are all integrated in a single view

Argonne Leadership Computing Facility30

ParaProf

• Click on Columns:
• to sort by incl time

• Open binvcrhs
• Click on Sample

Argonne Leadership Computing Facility31

ParaProf

Right click

Argonne Leadership Computing Facility32

TAU Context Event Window

TAU tracks the data transfers between the host and the GPU.

Argonne Leadership Computing Facility33

TAU’s tracking of Python and MPI

TAU can observe events in closed-source vendor libraries (e.g., in MPI_Bcast)!

Argonne Leadership Computing Facility34

Callstack Sampling in TAU

% export TAU_SAMPLING=1; export TAU_EBS_UNWIND=1

Argonne Leadership Computing Facility35

UNWINDING CALLSTACKS

% export TAU_SAMPLING=1; export TAU_EBS_UNWIND=1

Argonne Leadership Computing Facility36

Event-Based Sampling (EBS)

% aprun -n 16 tau_exec –ebs a.out

Argonne Leadership Computing Facility37

Callsite Profiling and Tracing

% export TAU_CALLSITE=1

Argonne Leadership Computing Facility38

Identifying Collective Wait States: Thread Callpath Relations
Window

MPI Collective Sync is the time spent in a barrier operation inside a collective

Argonne Leadership Computing Facility39

ParaProf Thread Comparison Window

Comparing Rank 118 with 22.
Right click on “node 118” -> Add node to comparison window

Argonne Leadership Computing Facility40

TAU – Context Events

Bytes written to each file

Write bandwidth per file

% tau_exec –io ./a.out

Argonne Leadership Computing Facility41

ParaProf 3D Profile Browser: Triangle Mesh

Windows -> 3D Visualization

Argonne Leadership Computing Facility42

ParaProf 3D Profile Browser: Bar Plot

Argonne Leadership Computing Facility43

TAU – ParaProf 3D Visualization: Bar Plot using cross-hairs to
zoom into a location (function, thread)

% paraprof app.ppk
Windows -> 3D Visualization -> Bar Plot (right pane)

Argonne Leadership Computing Facility44

TAU: ParaProf Topology Plot Window

Argonne Leadership Computing Facility45

TAU – 3D Communication Window

% export TAU_COMM_MATRIX=1; aprun … tau_exec ./a.out
% paraprof ; Windows -> 3D Communication Matrix

Using TAU on GPUs

Argonne Leadership Computing Facility47

TAU: Intel oneAPI DPC++ on an Intel Gen12LP or DG1
GPU

% tau_exec –T level_zero,serial –l0 ./a.out

Argonne Leadership Computing Facility48

TAU: Intel oneAPI DPC++ on an Intel Gen12LP or DG1 GPU

% tau_exec –T level_zero,serial –l0 ./a.out

Argonne Leadership Computing Facility49

Intel Level Zero (TigerLake Gen12LP integrated CPUs or DG1)

% mpirun –np 64 tau_exec –l0 ./a.out

Time spent in
GEMM kernel

Units: microseconds

Units:
seconds

Argonne Leadership Computing Facility50

TAU and Vampir [TU Dresden]: Intel oneAPI with MPI

% export TAU_TRACE=1; export TAU_TRACE_FORMAT=otf2
% mpirun –np 4 tau_exec –T level_zero –opencl ./a.out

Argonne Leadership Computing Facility51

AMD GPU Tracing support uses RocTracer

Each device has 2-3 virtual
threads:
1) kernels,
2) memory transfers
3) synchronization
(prevents overlapping timers)

TAU output shown in Vampir

Argonne Leadership Computing Facility52

Tracing: Jumpshot [ANL] (ships with TAU)

Argonne Leadership Computing Facility53

Tracing: Chrome Browser

% export TAU_TRACE=1
% mpirun –np 256 tau_exec ./a.out
% tau_treemerge.pl; tau_trace2json tau.trc tau.edf –chrome –ignoreatomic –o app.json
 Chrome browser: chrome://tracing (Load -> app.json)

Argonne Leadership Computing Facility54

Perfetto.dev Trace Browser: Kokkos Example

Argonne Leadership Computing Facility55

Perfetto.dev Trace Browser

CUDA
streams

Flow
Events

Argonne Leadership Computing Facility56

Vampir [TU Dresden] Timeline: Kokkos

% export TAU_TRACE=1; export TAU_TRACE_FORMAT=otf2
% tau_exec –T serial,ompt -ompt ./a.out
% vampir traces.otf2 &

Argonne Leadership Computing Facility57

Kokkos

• Provides abstractions for node level parallelism (X in MPI+X)

• Productive, portable, and performant shared-memory programming model

• Helps you create single source performance portable codes

• Provides data abstractions

• C++ API for expressing parallelism in your program

• Aggressive compiler transformations using C++ templates

• Low level code targets backends such as OpenMP, Pthread, CUDA

• Creates a problem for performance evaluation tools

• Gap: performance data and higher-level abstractions

• Solution: Kokkos profiling API for mapping performance data

Argonne Leadership Computing Facility58

TAU’s Support for Runtime Systems

• MPI
⏤PMPI profiling interface
⏤MPI_T tools interface using performance and control variables

• Pthread
⏤Captures time spent in routines per thread of execution

• OpenMP
⏤OMPT tools interface to track salient OpenMP runtime events
⏤Opari source rewriter
⏤Preloading wrapper OpenMP runtime library when OMPT is not supported

• OpenACC
⏤OpenACC instrumentation API
⏤Track data transfers between host and device (per-variable)
⏤Track time spent in kernels

Argonne Leadership Computing Facility59

TAU’s Support for Runtime Systems (contd.)

• OpenCL
⏤OpenCL profiling interface
⏤Track timings of kernels

• CUDA
⏤Cuda Profiling Tools Interface (CUPTI)
⏤Track data transfers between host and GPU
⏤Track access to uniform shared memory between host and GPU

• ROCm
⏤Rocprofiler and Roctracer instrumentation interfaces
⏤Track data transfers and kernel execution between host and GPU

• Kokkos
⏤Kokkos profiling API
⏤Push/pop interface for region, kernel execution interface

• Python
⏤Python interpreter instrumentation API
⏤Tracks Python routine transitions as well as Python to C transitions`

Argonne Leadership Computing Facility60

Examples of Multi-Level Instrumentation

• MPI + OpenMP
⏤MPI_T + PMPI + OMPT may be used to track MPI and OpenMP

• MPI + CUDA
⏤PMPI + CUPTI interfaces

• OpenCL + ROCm
⏤Rocprofiler + OpenCL instrumentation interfaces

• Kokkos + OpenMP
⏤Kokkos profiling API + OMPT to transparently track events

• Kokkos + pthread + MPI
⏤Kokkos + pthread wrapper interposition library + PMPI layer

• Python + CUDA + MPI
⏤Python + CUPTI + pthread profiling interfaces (e.g., Tensorflow, PyTorch) + MPI

• MPI + OpenCL
⏤PMPI + OpenCL profiling interfaces

Argonne Leadership Computing Facility61

TAU Execution Command (tau_exec)

•Uninstrumented execution
⏤ % aprun -n 256 ./a.out

•Track GPU operations
⏤ % aprun –np 256 tau_exec –rocm ./a.out
⏤ % aprun –np 256 tau_exec –cupti ./a.out
⏤ % aprun –np 256 tau_exec –opencl ./a.out
⏤ % aprun -np 256 tau_exec –l0 ./a.out
⏤ % aprun –np 256 tau_exec –openacc ./a.out

•Track MPI performance
⏤ % aprun -n 256 tau_exec ./a.out

•Track I/O, and MPI performance (MPI enabled by default)
⏤ % aprun -n 256 tau_exec -io ./a.out

• Track OpenMP and MPI execution (using OMPT for Intel v19+ or Clang 8+)
⏤ % export TAU_OMPT_SUPPORT_LEVEL=full;
⏤ % aprun –np 256 tau_exec –T ompt,intel,mpi -ompt ./a.out

•Track memory operations
⏤ % export TAU_TRACK_MEMORY_LEAKS=1
⏤ % aprun –np 256 tau_exec –memory_debug ./a.out (bounds check)

•Use event based sampling (compile with –g)
⏤ % aprun –np 256 tau_exec –ebs ./a.out
⏤ Also -ebs_source=<PAPI_COUNTER> -ebs_period=<overflow_count> -ebs_resolution=<file | function | line>

Argonne Leadership Computing Facility62

AMD HIPCC: OMPT Target Offload Support in TAU

Argonne Leadership Computing Facility63

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_CALLPATH 0 Setting to 1 turns on callpath profiling

TAU_TRACK_MEMORY_FOOTPRINT 0 Setting to 1 turns on tracking memory usage by sampling periodically the resident set size and high water mark of memory
usage

TAU_TRACK_POWER 0 Tracks power usage by sampling periodically.

TAU_CALLPATH_DEPTH 2 Specifies depth of callpath. Setting to 0 generates no callpath or routine information, setting to 1 generates flat profile and
context events have just parent information (e.g., Heap Entry: foo)

TAU_SAMPLING 1 Setting to 1 enables event-based sampling.

TAU_TRACK_SIGNALS 0 Setting to 1 generate debugging callstack info when a program crashes

TAU_COMM_MATRIX 0 Setting to 1 generates communication matrix display using context events

TAU_THROTTLE 1 Setting to 0 turns off throttling. Throttles instrumentation in lightweight routines that are called frequently

TAU_THROTTLE_NUMCALLS 100000 Specifies the number of calls before testing for throttling

TAU_THROTTLE_PERCALL 10 Specifies value in microseconds. Throttle a routine if it is called over 100000 times and takes less than 10 usec of inclusive
time per call

TAU_CALLSITE 0 Setting to 1 enables callsite profiling that shows where an instrumented function was called. Also compatible with tracing.

TAU_PROFILE_FORMAT Profile Setting to “merged” generates a single file. “snapshot” generates xml format

TAU_METRICS TIME Setting to a comma separated list generates other metrics. (e.g.,
ENERGY,TIME,P_VIRTUAL_TIME,PAPI_FP_INS,PAPI_NATIVE_<event>:<subevent>)

TAU’s Runtime Environment Variables

Argonne Leadership Computing Facility64

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_TRACE_FORMAT Default Setting to “otf2” turns on TAU’s native OTF2 trace generation (configure with –otf=download)

TAU_EBS_UNWIND 0 Setting to 1 turns on unwinding the callstack during sampling (use with tau_exec –ebs or TAU_SAMPLING=1)

TAU_EBS_RESOLUTION line Setting to “function” or “file” changes the sampling resolution to function or file level respectively.

TAU_TRACK_LOAD 0 Setting to 1 tracks system load on the node

TAU_SELECT_FILE Default Setting to a file name, enables selective instrumentation based on exclude/include lists specified in the file.

TAU_OMPT_SUPPORT_LEVEL basic Setting to “full” improves resolution of OMPT TR6 regions on threads 1.. N-1. Also, “lowoverhead” option is
available.

TAU_OMPT_RESOLVE_ADDRESS_EAGERLY 1 Setting to 1 is necessary for event based sampling to resolve addresses with OMPT. Setting to 0 allows the
user to do offline address translation.

Runtime Environment Variables

Argonne Leadership Computing Facility65

Environment Variable Default Description

TAU_TRACK_MEMORY_LEAKS 0 Tracks allocates that were not de-allocated (needs –optMemDbg or tau_exec –memory)

TAU_EBS_SOURCE TIME Allows using PAPI hardware counters for periodic interrupts for EBS (e.g., TAU_EBS_SOURCE=PAPI_TOT_INS
when TAU_SAMPLING=1)

TAU_EBS_PERIOD 100000 Specifies the overflow count for interrupts

TAU_MEMDBG_ALLOC_MIN/MAX 0 Byte size minimum and maximum subject to bounds checking (used with TAU_MEMDBG_PROTECT_*)

TAU_MEMDBG_OVERHEAD 0 Specifies the number of bytes for TAU’s memory overhead for memory debugging.

TAU_MEMDBG_PROTECT_BELOW/ABOVE 0 Setting to 1 enables tracking runtime bounds checking below or above the array bounds (requires –
optMemDbg while building or tau_exec –memory)

TAU_MEMDBG_ZERO_MALLOC 0 Setting to 1 enables tracking zero byte allocations as invalid memory allocations.

TAU_MEMDBG_PROTECT_FREE 0 Setting to 1 detects invalid accesses to deallocated memory that should not be referenced until it is
reallocated (requires –optMemDbg or tau_exec –memory)

TAU_MEMDBG_ATTEMPT_CONTINUE 0 Setting to 1 allows TAU to record and continue execution when a memory error occurs at runtime.

TAU_MEMDBG_FILL_GAP Undefined Initial value for gap bytes

TAU_MEMDBG_ALINGMENT Sizeof(int) Byte alignment for memory allocations

TAU_EVENT_THRESHOLD 0.5 Define a threshold value (e.g., .25 is 25%) to trigger marker events for min/max

Runtime Environment Variables

Argonne Leadership Computing Facility66

TAU: Key takeaways

• There is no need to modify your application source code, build system, or the binary
• TAU supports GPUs (Intel, AMD, NVIDIA) as well as CPUs
• Simply launch the application using tau_exec [options]
• Launch paraprof on Polaris or bring the ppk file to your laptop and launch paraprof
• You may also use Cooley for a VNC session

Argonne Leadership Computing Facility67

Download TAU from U. Oregon

http://tau.uoregon.edu
for more information

Free download, open source, BSD license

Argonne Leadership Computing Facility68

Performance Research Laboratory, University of Oregon,
Eugene

www.uoregon.edu

http://www.uoregon.edu/

• US Department of Energy (DOE)
⏤ ANL
⏤ Office of Science contracts, ECP
⏤ SciDAC, LBL contracts
⏤ LLNL-LANL-SNL ASC/NNSA contract
⏤ Battelle, PNNL and ORNL contract

• Department of Defense (DoD)
⏤ PETTT, HPCMP

• National Science Foundation (NSF)
⏤ SI2-SSI, Glassbox

• NASA
• CEA, France
• Partners:

⏤University of Oregon
⏤The Ohio State University
⏤ParaTools, Inc.
⏤University of Tennessee, Knoxville
⏤T.U. Dresden, GWT
⏤Jülich Supercomputing Center

Support Acknowledgements

Acknowledgment

“This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S.
Department of Energy organizations (Office of Science and the National Nuclear Security Administration) responsible

for the planning and preparation of a capable exascale ecosystem, including software, applications, hardware,
advanced system engineering, and early testbed platforms, in support of the nation’s exascale computing imperative.”

Hands-on session: TAU

Argonne Leadership Computing Facility72

% ssh –Y <login>@polaris.alcf.anl.gov
% module load tau
% tar zxf /soft/perftools/tau/tar/workshop.tgz; cd workshop
% paraprof demo.ppk &

If you are on a Mac with Xquartz, you may need:
% paraprof –fix-xquartz demo.ppk &
In the directory where profile.* files are created. Xquartz 2.7.4 works well without this.
Please do not use paraprof on the compute nodes. You may also use Cooley (VNC) or
install TAU locally on your laptop.

• Setup preferred program environment compilers (check instructions)

Using TAU on Polaris natively

Argonne Leadership Computing Facility73

% ssh –Y <login>@polaris.alcf.anl.gov
% module load tau
% tar zxf /soft/perftools/tau/tar/workshop.tgz
% cd workshop/TeaLeaf_CUDA;
% make clean
% make; cd bin
% qsub -I -q fallws23single -t 60 -n 1 -A fallwkshp23
% ./run.sh
% pprof –a | more
% paraprof –-pack app.ppk
You may use paraprof --dump app.ppk to write out the profile.* files.
Bring ppk file to your desktop:
% paraprof app.ppk &

• Setup preferred program environment compilers (check instructions)

TAU Breakout Session – CUDA with MPI on Polaris

Argonne Leadership Computing Facility74

Setup: Installing TAU on Laptops

• Prerequisites: Java in your path

• Microsoft Windows
• Install Java from Oracle.com

• http://tau.uoregon.edu/tau.exe
• Install, click on a ppk file to launch paraprof

• macOS (x86_64)
• Install Java 11.0.3:

• Download and install http://tau.uoregon.edu/java.dmg
• If you have multiple Java installations, add to your ~/.zshrc (or ~/.bashrc as appropriate):

• export PATH=/Library/Java/JavaVirtualMachines/jdk-11.0.3.jdk/Contents/Home/bin:$PATH
• Download and install TAU (copy to /Applications from dmg):

• http://tau.uoregon.edu/tau.dmg
• export PATH=/Applications/TAU/tau/apple/bin:$PATH
• paraprof app.ppk &

• macOS (arm64, Apple Silicon M1/M2)
• http://tau.uoregon.edu/java_arm64.dmg
• http://tau.uoregon.edu/tau_arm64.dmg

• Linux (http://tau.uoregon.edu/tau.tgz)
• ./configure; make install; export PATH=<taudir>/x86_64/bin:$PATH; paraprof app.ppk &

http://tau.uoregon.edu/tau.exe
http://tau.uoregon.edu/java.dmg
http://tau.uoregon.edu/java_arm64.dmg

Argonne Leadership Computing Facility75

% Terminal 1
ssh cooley.alcf.anl.gov
Add to ~/.soft.cooley
+tau
+java
@default

Then, launch:
vncpasswd
(set the VNC password and say no to saving view only password)
qsub -I -n 1 -t 50 -A <ACCOUNT>
see which host (e.g., cc054 or ccXX - using ccXX for the example. Please use correct hostname below instead of ccXX.)
x0vncserver --display=:0.0 --NeverShared=1 --geometry=1400x800+0+0 --PasswordFile=$HOME/.vnc/passwd --MaxProcessorUsage=100

Terminal 2
ssh -L 5900:ccXX:5900 cooley.alcf.anl.gov
ssh ccXX "export DISPLAY=:0.0; ~/.vnc/xstartup"

Open XVNC viewer
localhost:5900
Open a terminal
launch the terminal window.
paraprof app.ppk

• These instructions are also in README.Cooley in /soft/perftools/tau/tar/workshop.tgz

Using VNC on Cooley to use a remote desktop

Argonne Leadership Computing Facility76

% ssh –Y <login>@polaris.alcf.anl.gov
% module load tau
% tar zxf /soft/perftools/tau/tar/workshop.tgz
% cd workshop/petsc-tau
% ./compile.sh
% qsub -I -q fallws23single -t 60 -n 1 -A fallwkshp23
% module load tau
% ./run.sh
% pprof –a | more
% exit
% paraprof & (To run this on a login node on Polaris)
% paraprof –-pack app.ppk
You may use paraprof --dump app.ppk to write out the profile.* files.
Bring ppk file to your desktop or use with VNC on Cooley:
% paraprof app.ppk &

• Setup preferred program environment compilers (check instructions)

TAU Breakout Session – PETSc and CUDA with MPI on Polaris

77

