

PROGRAMMING MODELS:
Kokkos / RAJA

Brian Homerding
Performance Engineer
Argonne Leadership Computing Facility (ALCF) October 10th, 2023

§ Allows for parameterization based
on template parameters.

§ Constructs a closure. An unnamed
function object.

LAMBDAS

3

TEMPLATES

SOME C++ CONCEPTS

template <typename T>
T templatedMax(T a, T b) {
 return (a > b) ? a : b;
}

auto lmbda = [&] (int b) {
 return (a > b) ? a : b;
}
a = {...}
newMax = lbmda(b);

KOKKOS

What is Kokkos?
§ A C++ Programming Model for Performance Portability

§ Implemented as a template library on top of CUDA, OpenMP, HPX, …
§ Aims to be descriptive not prescriptive
§ Aligns with developments in the C++ standard

§ Expanding solution for common needs of modern science/engineering codes
§ Math libraries based on Kokkos
§ Tools which allow inside into Kokkos

§ It is Open Source
§ Maintained and developed at https://github.com/kokkos

§ It has many users at wide range of institutions.

5

https://github.com/kokkos

Kokkos EcoSystem

Execution Spaces

Kokkos/FORTRAN
Library

6

Kokkos Core Abstractions
Kokkos

Execution Spaces (“Where”)

Execution Patterns

Execution Policies (“How”)

Memory Spaces (“Where”)

Memory Layouts

Memory Traits (“How”)

Parallel ExecutionData Structures

- CPU, GPU, Executor Mechanism

- parallel_for/reduce/scan, task-spawn

- Range, Team, Task-Graph

- HBM, DDR, Non-Volatile, Scratch

- Row/Column-Major, Tiled, Strided

- Streaming, Atomic, Restrict

7

Kokkos Core Capabilities
Concept Example

Parallel Loops parallel_for(N, KOKKOS_LAMBDA (int i) { ...BODY… });

Parallel Reduction parallel_reduce(RangePolicy<ExecSpace>(0,N), KOKKOS_LAMBDA (int i, double& upd) {
 …BODY...

upd += ...
}, Sum<>(result));

Tightly Nested
Loops

parallel_for(MDRangePolicy<Rank<3> > ({0,0,0},{N1,N2,N3},{T1,T2,T3},
 KOKKOS_LAMBDA (int i, int j, int k) {…BODY...});

Non-Tightly Nested
Loops

parallel_for(TeamPolicy<Schedule<Dynamic>>(N, TS), KOKKOS_LAMBDA (Team team) {
 … COMMON CODE 1 ...

parallel_for(TeamThreadRange(team, M(N)), [&] (int j) { ... INNER BODY... });
 … COMMON CODE 2 ...
});

Task Dag task_spawn(TaskTeam(scheduler , priority), KOKKOS_LAMBDA (Team team) { … BODY });

Data Allocation View<double**, Layout, MemSpace> a(“A”,N,M);

Data Transfer deep_copy(a,b);

Atomics atomic_add(&a[i],5.0); View<double*,MemoryTraits<AtomicAccess>> a(); a(i)+=5.0;

Exec Spaces Serial, Threads, OpenMP, Cuda, HPX (experimental), HIP (experimental), OpenMPTarget
(experimental) 8

More Kokkos Capabilities

parallel_scan
DualView

ScatterView
OffsetView

StaticWorkGraph

UnorderedMap RandomPool
sort

kokkos_malloc kokkos_free

BitsetVector

LayoutLeft

LayoutRight

LayoutStrided

ReducersMemoryPool

UniqueToken ScratchSpace ProfilingHooks

9

CG Solve: The AXPBY

void axpby(int n, View<double*> z, double alpha, View<const double*> x,
 double beta, View<const double*> y) {
 parallel_for("AXpBY", n, KOKKOS_LAMBDA (const int i) {
 z(i) = alpha*x(i) + beta*y(i);
 });
}

§ Simple data parallel loop: Kokkos::parallel_for
§ Easy to express in most programming models
§ Bandwidth bound
§ Serial Implementation:

§ Kokkos Implementation:

void axpby(int n, double* z, double alpha, const double* x,
 double beta, const double* y) {
 for(int i=0; i<n; i++)
 z[i] = alpha*x[i] + beta*y[i];
}

Parallel Pattern: for loop

String Label: Profiling/Debugging
Execution Policy: do n iterations

Iteration handle: integer index
Loop Body

10

Kokkos Kernels
§ BLAS, Sparse and Graph Kernels on top of Kokkos and its View abstraction

§ Scalar type agnostic, e.g. works for any types with math operators
§ Layout and Memory Space aware

§ Can call vendor libraries when available
§ Views contain size and stride information => Interface is simpler

§ Interface to call Kokkos Kernels at the teams level (e.g. in each CUDA-Block)

// BLAS
int M,N,K,LDA,LDB; double alpha, beta; double *A, *B, *C;
dgemm('N','N',M,N,K,alpha,A,LDA,B,LDB,beta,C,LDC);

// Kokkos Kernels
double alpha, beta; View<double**> A,B,C;
gemm('N','N',alpha,A,B,beta,C);

parallel_for("NestedBLAS", TeamPolicy<>(N,AUTO), KOKKOS_LAMBDA (const team_handle_t& team_handle) {
 // Allocate A, x and y in scratch memory (e.g. CUDA shared memory)
 // Call BLAS using parallelism in this team (e.g. CUDA block)
 gemv(team_handle,'N',alpha,A,x,beta,y)

});

11

Kokkos Tools
§ Profiling

§ New tools are coming out
§ Worked with NVIDIA to get naming info into their system

§ Auto Tuning (Under Development)
§ Internal variables such as CUDA block sizes etc.
§ User provided variables
§ Same as profiling: will use dlopen to load external tools

§ Debugging (Under Development)
§ Extensions to enable clang debugger to use Kokkos naming information

§ Static Analysis (Under Development)
§ Discover Kokkos anti patterns via clang-tidy

12

Kokkos Tools Static Analysis
§ clang-tidy passes for Kokkos semantics
§ Under active development, requests welcome
§ IDE integration

13

Some Kokkos Users

14

Links
§ https://github.com/kokkos Kokkos Github Organization

§ Kokkos: Core library, Containers, Algorithms
§ Kokkos-Kernels: Sparse and Dense BLAS, Graph, Tensor (under development)
§ Kokkos-Tools: Profiling and Debugging
§ Kokkos-MiniApps: MiniApp repository and links
§ Kokkos-Tutorials: Extensive Tutorials with Hands-On Exercises

§ https://cs.sandia.gov Publications (search for ’Kokkos’)
§ Many Presentations on Kokkos and its use in libraries and apps

§ http://on-demand-gtc.gputechconf.com Recorded Talks
§ Presentations with Audio and some with Video

§ https://kokkosteam.slack.com Slack channel for user support

15

https://github.com/kokkos
https://cs.sandia.gov/
http://on-demand-gtc.gputechconf.com/
https://kokkosteam.slack.com/

RAJA

LLNL-PRES-781841
17

§ RAJA is a library of C++ abstractions that enable you to write portable,
single-source kernels – run on different hardware by re-compiling
— Multicore CPUs, Xeon Phi, NVIDIA GPUs, …

§ RAJA insulates application source code from hardware and programming
model-specific implementation details
— OpenMP, CUDA, SIMD vectorization, …

§ RAJA supports a variety of parallel patterns and performance tuning options
— Simple and complex loop kernels
— Reductions, scans, atomic operations, multi-dim data views for changing access patterns, …
— Loop tiling, thread-local data, GPU shared memory, …

RAJA and performance portability
Intro

RAJA provides building blocks that extend the generally-accepted “parallel for” idiom.

LLNL-PRES-781841
18

RAJA design goals target usability and
developer productivity
§ We want applications to maintain single-source kernels (as much as possible)

§ In addition, we want RAJA to…

— Be easy to understand and use for app developers (esp. those who are not CS experts)

— Allow incremental and selective adoption

— Not force major disruption to application source code

— Promote flexible algorithm implementations via clean encapsulation

— Make it easy to parameterize execution via type aliases

— Enable systematic performance tuning

These goals have been affirmed by production LLNL application teams using RAJA.

Intro

LLNL-PRES-781841
19

§ RAJA User Guide: getting started info, details
about features and usage, etc.
(readthedocs.org/projects/raja)

§ RAJA Project Template: shows how to use RAJA in
an application that uses CMake or Make
(https://github.com/LLNL/RAJA-project-template)

§ RAJA Performance Suite: loop kernels for assessing
compilers and RAJA performance. Used by us,
vendors, for DOE platform procurements, etc.
(https://github.com/LLNL/RAJAPerf)

§ CHAI: array abstraction library that automatically
migrates data as needed based on RAJA execution
contexts (https://github.com/LLNL/CHAI)

We maintain other related open source projects…

All of these are linked on the RAJA GitHub project page.

Intro

LLNL-PRES-781841
20

Simple loop execution

Let’s start simple…
Simple loops

LLNL-PRES-781841
21

for (int i = 0; i < N; ++i)
{

y[i] = a * x[i] + y[i];
}

“daxpy” operation: y = a * x + y, where x, y are vectors of length N, a is a scalar

Simple loops

Note that all aspects of execution are explicit in the source code –
execution (sequential), loop iteration order, data access pattern, etc.

Consider a typical C-style for-loop…

LLNL-PRES-781841
22

Converting a loop to RAJA mainly involves
changing the loop header

for (int i = 0; i < N; ++i)
{

y[i] = a * x[i] + y[i];
}

C-style for-loop

Simple loops

RAJA-style loop

RAJA::forall< EXEC_POL >(it_space, [=] (int i)
{

y[i] = a * x[i] + y[i];
});

“RAJA Transformation”

LLNL-PRES-781841
23

RAJA encapsulates loop execution details
for (int i = 0; i < N; ++i)
{

y[i] = a * x[i] + y[i];
}

C-style for-loop

Simple loops

RAJA-style loop

using EXEC_POL = ...;

RAJA::RangeSegment it_space(0, N);

RAJA::forall< EXEC_POL >(it_space, [=] (int i)
{

y[i] = a * x[i] + y[i];
});

Typically, definitions
like these go in

header files.

By changing the “execution policy” and “iteration space”, you change the way the loop runs.

LLNL-PRES-781841
24

The loop header is different with RAJA, but
the loop body is the same (in most cases)

for (int i = 0; i < N; ++i)
{

y[i] = a * x[i] + y[i];
}

C-style for-loop

Simple loops

RAJA-style loop

using EXEC_POL = ...;

RAJA::RangeSegment it_space(0, N);

RAJA::forall< EXEC_POL >(it_space, [=] (int i)
{

y[i] = a * x[i] + y[i];
});

Same loop body.

LLNL-PRES-781841
25

RAJA loop execution has four core concepts
using EXEC_POLICY = ...;
RAJA::RangeSegment range(0, N);

RAJA::forall< EXEC_POLICY >(range, [=] (int i)
{

// loop body...
});

1. Loop execution template (e.g., ‘forall’)

2. Loop execution policy type (EXEC_POLICY)

3. Loop iteration space (e.g., ‘RangeSegment’)

4. Loop body (C++ lambda expression)

Simple loops

LLNL-PRES-781841
26

RAJA::forall< EXEC_POLICY > (iteration_space,
 [=] (int i) {

// loop body
 }
);

RAJA loop execution core concepts

§ RAJA::forall method runs loop based on:
— Execution policy type (sequential, OpenMP, CUDA, etc.)

Simple loops

LLNL-PRES-781841
27

RAJA::forall< EXEC_POLICY > (iteration_space,
 [=] (int i) {

// loop body
 }
);

RAJA loop execution core concepts

§ RAJA::forall template runs loop based on:
— Execution policy type (sequential, OpenMP, CUDA, etc.)
— Iteration space object (stride-1 range, list of indices, etc.)

Simple loops

LLNL-PRES-781841
28

RAJA::forall< EXEC_POLICY > (iteration_space,
 [=] (int i) {

// loop body
 }
);

These core concepts are common threads
throughout our discussion

§ RAJA::forall template runs loop based on:
— Execution policy type (sequential, OpenMP, CUDA, etc.)
— Iteration space object (contiguous range, list of indices, etc.)

§ Loop body is cast as a C++ lambda expression
— Lambda argument is the loop iteration variable

Simple loops

The programmer must ensure the loop body works with the execution policy; e.g., thread safe

LLNL-PRES-781841
29

RAJA::forall< EXEC_POLICY >(range, [=] (int i)
{

x[i] = a * x[i] + y[i];
});

RAJA::simd_exec

RAJA::omp_parallel_for_exec

RAJA::cuda_exec<BLOCK_SIZE, Async>

RAJA::omp_target_parallel_for_exec<MAX_THREADS_PER_TEAM>

RAJA::tbb_for_exec

The execution policy determines the
programming model back-end

Simple loops

A sample of RAJA loop
execution policy types.

LLNL-PRES-781841
30

§ Complete working example codes are available in the RAJA source
repository
— https://github.com/LLNL/RAJA
— Many similar to examples we presented today and expands on them
— Look in the “RAJA/examples” and “RAJA/exercises” directories

§ The RAJA User Guide
— Topics we discussed today, plus configuring & building RAJA, etc.
— Available at http://raja.readthedocs.org/projects/raja (also linked on the RAJA

GitHub project)

Materials that supplement this presentation
are available

Wrap up

https://github.com/LLNL/RAJA
http://raja.readthedocs.org/projects/raja/

