October 10-12, 2023

‘.

o A

ALCF Hands-on
HPC Workshop

P - - o -
/ - e
-~ o~ s
e o
- -~

Argonne A

NATIONAL LABORATORY

PROGRAMMING MODELS:

Kokkos / RAJA

Brian Homerding
Performance Engineer
Argonne Leadership Computing Facility (ALCF) October 10th, 2023

SOME C++ CONCEPTS

TEMPLATES LAMBDAS

= Allows for parameterization based » Constructs a closure. An unnamed
on template parameters. function object.
template <typename T> auto 1Imbda = [&] (int b) {
T templatedMax(T a, T b) { return (a > b) ? a : b;
return (a > b) ? a : b; }
} a={...}

newMax = lbmda(b);

AAAAAAAAAAAAAAAAAA

~ What is Kokkos? () i

Laboratories

= A C++ Programming Model for Performance Portability
= |mplemented as a template library on top of CUDA, OpenMP, HPX, ...
= Aims to be descriptive not prescriptive
= Aligns with developments in the C++ standard
= Expanding solution for common needs of modern science/engineering codes
= Math libraries based on Kokkos
= Tools which allow inside into Kokkos
= |tis Open Source
= Maintained and developed at https://github.com/kokkos
= |t has many users at wide range of institutions.

https://github.com/kokkos

-~ Kokkos EcoSystem

m—

Kokkos

Tools

Science and Engineering Applications

Trilinos

Sandia
National
Laboratories

Kokkos EcoS ystem
Kokkos Kernels

e Y

Kokkos Core

[

Kokkos Remote Spaces

Execution Spaces

|

Kokkos/FORTRAN
Library

~ Kokkos Core Abstractions

IR "okkos

Data Structures

Memory Spaces (“Where™)
- HBM, DDR, Non-Volatile, Scratch

Memory Layouts
- Row/Column-Major, Tiled, Strided

Memory Traits ("How")

- Streaming, Atomic, Restrict

Sandia
National
Laboratories

Parallel Execution

Execution Spaces (“Where")
- CPU, GPU, Executor Mechanism

Execution Patterns

- parallel_for/reduce/scan, task-spawn

Execution Policies (“How”)

- Range, Team, Task-Graph

~ Kokkos Core Capabilities ()

Laboratories

Conont B

Parallel Loops

Parallel Reduction

Tightly Nested
Loops

Non-Tightly Nested
Loops

Task Dag

Data Allocation
Data Transfer
Atomics

Exec Spaces
]

parallel_for(N, KOKKOS_LAMBDA (inti){...BODY... });

parallel_reduce(RangePolicy<ExecSpace>(0,N), KOKKOS_ LAMBDA (int i, double& upd) {
...BODY...
upd += ...

}, Sum<>(result));

parallel_for(MDRangePolicy<Rank<3> > ({0,0,0},{N1,N2,N3},{T1,T2,T3},
KOKKOS_LAMBDA (inti, intj, int k) {...BODY...});

parallel_for(TeamPolicy<Schedule<Dynamic>>(N, TS), KOKKOS_LAMBDA (Team team) {
... COMMON CODE 1 ...
parallel_for(TeamThreadRange(team, M(N)), [&] (intj) {... INNER BODY... });
... COMMON CODE 2 ...

D;
task_spawn(TaskTeam(scheduler , priority), KOKKOS_LAMBDA (Team team) { ... BODY });

View<double**, Layout, MemSpace> a(“A”,N,M);
deep_copy(a,b);
atomic_add(&ali],5.0); View<double*,MemoryTraits<AtomicAccess>> a(); a(i)+=5.0;

Serial, Threads, OpenMP, Cuda, HPX (experimental), HIP (experimental), OpenMPTarget

- (experimental) m

Sandia
National
Laboratories

~ More Kokkos Capabilities

MemoryPool
w kokkos_malloc g

parallel_scan
LayoutRight StaticWorkGraph

“ “ LayoutStrided
UniqueToken ScratchSpace ProfilingHooks

” CG Solve: The AXPBY) i

= Simple data parallel loop: Kokkos::parallel for
= Easy to express in most programming models

= Bandwidth bound
= Serial Implementation:

void axpby(int n, doublex z, double alpha, const doublex x,
double beta, const doublex y) {
for(int i=0; i<n; i++) . String Label: Profiling/Debugging]

z[i] = alphaxx[i] + betaxy[i];

}

Execution Policy: do n iterations]
Loop Body

[Parallel Pattern: for loop }]
. e 2
. :
Kokkos Implementation: . lteration handle: integer index]

void axpby(int n, View<doublexs z,~double alpha, View<const doublex> x,
double beta, Miew<const doublex> y) {
[parallel_for("AXpBY" 'n,| KOKK _LAMBDA[(const int i) }

| z(1) = alpha*x(3I) + betaxy(i);

}});

K3

Kokkos Kernels ()

= BLAS, Sparse and Graph Kernels on top of Kokkos and its View abstraction
= Scalar type agnostic, e.g. works for any types with math operators
= Layout and Memory Space aware

" Can call vendor libraries when available

= Views contain size and stride information => Interface is simpler

// BLAS // Kokkos Kernels
int M,N,K,LDA,LDB; double alpha, beta; double xA, *B, *C; double alpha, beta; View<doublexx> A,B,C;
dgemm('N"','N',M,N,K,alpha,A,LDA,B,LDB,beta,C,LDC); gemm('N','N',alpha,A,B,beta,();

" |nterface to call Kokkos Kernels at the teams level (e.g. in each CUDA-Block)

parallel_for("NestedBLAS", TeamPolicy<>(N,AUTO0), KOKKOS_LAMBDA (const team_handle_t& team_handle) {
// Allocate A, x and y in scratch memory (e.g. CUDA shared memory)
// Call BLAS using parallelism in this team (e.g. CUDA block)

gemv(team_handle, 'N',alpha,A, x,beta,y)

});

~ Kokkos Tools () s
= Profiling
= New tools are coming out
= Worked with NVIDIA to get naming info into their system
= Auto Tuning (Under Development)
" |nternal variables such as CUDA block sizes etc.
= User provided variables
= Same as profiling: will use dlopen to load external tools
= Debugging (Under Development)
= Extensions to enable clang debugger to use Kokkos naming information
= Static Analysis (Under Development)
= Discover Kokkos anti patterns via clang-tidy

~~

». Kokkos Tools Static Analysis) i

Laboratories

= clang-tidy passes for Kokkos semantics

= Under active development, requests welcome

IDE integration

Kokkos :: parallel_for(
TPolicy, KOKKOS_LAMBDA(TeamMember const& t) {
int a = 0:

Kokkos :: parallel_for(TTR(t, 1), [&](int i) { Lambda capture modifies reference capture variable 'a' that is a local
a += 1;
cv() += 1;

iE

iF

Kokkos :: parallel_for(
TPolicy, KOKKOS_LAMBDA(TeamMember const& t) {
int b 0;
auto lambda [6]1(int i) { Lambda capture modifies reference capture variable 'b' that is a local
b += 1;
cv() += 1;
e
Kokkos :: parallel_for(TTR(t, 1), lambda);
g

” : Sandia
» Some Kokkos Users ~7) =

. NATIONAL LABORATORY
National

/AN |
Laboratories
> Los Alamos ARL (-

@ Sandia Pacific Northwest

EST.1943

NATIONAL RENEWABLE ENERGY LABORATORY

%O0akRce Argonne & SEATE
National Laboratory NATIONAL LABORATORY ‘
ESSEQXQNJ <@, CSCS
THE LABORATORY
U UNIVERSITY
OF UTAH | . TI.ITI
d) JULICH

. Forschungszentrum TECHNlSCHE
Max-Planck-Institut UNIVERSITAT
MUNCHEN

fiir Plasmaphysik o @) Rensselaer

BERKELEY LAB

= Links D .
= https://github.com/kokkos Kokkos Github Organization
= Kokkos: Core library, Containers, Algorithms

= Kokkos-Kernels: Sparse and Dense BLAS, Graph, Tensor (under development)
= Kokkos-Tools: Profiling and Debugging
= Kokkos-MiniApps: MiniApp repository and links
= Kokkos-Tutorials: Extensive Tutorials with Hands-On Exercises
= https://cs.sandia.gov Publications (search for 'Kokkos’)

= Many Presentations on Kokkos and its use in libraries and apps
= http://on-demand-gtc.gputechconf.com Recorded Talks

" Presentations with Audio and some with Video
= https://kokkosteam.slack.com Slack channel for user support

https://github.com/kokkos
https://cs.sandia.gov/
http://on-demand-gtc.gputechconf.com/
https://kokkosteam.slack.com/

Intro

RAJA and performance portability

= RAJA s a library of C++ abstractions that enable you to write portable,
single-source kernels — run on different hardware by re-compiling
— Multicore CPUs, Xeon Phi, NVIDIA GPUs, ...

= RAJA insulates application source code from hardware and programming
model-specific implementation details
— OpenMP, CUDA, SIMD vectorization, ...

= RAJA supports a variety of parallel patterns and performance tuning options

— Simple and complex loop kernels
— Reductions, scans, atomic operations, multi-dim data views for changing access patterns, ...

— Loop tiling, thread-local data, GPU shared memory, ...

RAJA provides building blocks that extend the generally-accepted “parallel for” idiom.

Lawrence Livermore National Laboratory N‘VS;?% 17
LLNL-PRES-781841 National Nuclear Security Administration

RAJA design goals target usability and

Intro

developer productivity

= We want applications to maintain single-source kernels (as much as possible)

= |n addition, we want RAJA to...

Be easy to understand and use for app developers (esp. those who are not CS experts)
Allow incremental and selective adoption

Not force major disruption to application source code

Promote flexible algorithm implementations via clean encapsulation

Make it easy to parameterize execution via type aliases

Enable systematic performance tuning

These goals have been affirmed by production LLNL application teams using RAJA.

i i o
Lawrence Livermore National Laboratory NISQ‘-O& 18
National Nuclear Security Administration

LLNL-PRES-781841

Intro

We maintain other related open source projects...

= RAJA User Guide: getting started info, details
about features and usage, etc.
(readthedocs.org/projects/raja)

A RAJA

Docs » Getting Started With RAJA O Edit on GitHub

= RAJA Project Template: shows how to use RAJAIN [Getting started ith Rasa

Getting Started With RAJA

dan a ppl ication that uses C M d ke or M d ke Requirements This section will help get you up and running with RAJA quickly.
. 1 _ 1 _ Get the Code
(https://github.com/LLNL/RAJA-project-template) ettt Requirements

Learning to Use RAJA
= The primary requirement for using RAJA is a C++11 compliant

= RAJA Performance Suite: loop kernels for assessing

RAJA Features compiler. Accessing various programming model back-ends requires

com pl Ie rsan d RAJA pe rfO rmance. U Sed by u SI Application Considerations that they be supported by the compiler you chose. Available options
Vendors for DOE platform procu rements etc RAJA Tutorial and how to enable or disable them are described in Build
htt //' th b /LLN L/RA_]AP f ’) DR R A heon Configuration Options. To build and use RAJA in its simplest form

. | . m r ires:

(pS g u o €) Build Configuration Options requires
. . . Plugins o C++ il ith C++11 rt
= CHAI: array abstraction library that automatically Contibating to RAIA - CMake version 3.9 or greater.
migrates data as needed based on RAJA execution RAJA License
Get the Code

contexts (https://github.com/LLNL/CHAI)

All of these are linked on the RAJA GitHub project page.

Lawrence Livermore National Laboratory N" SZ&‘% 19
LLNL-PRES-781841 National Nuclear Security Administration

Simple loops

Let’s start simple...

Simple loop execution

- - yal
Lawrence Livermore National Laboratory N " Sg_oé 20
L N L PRES'78 1 841 National Nuclear Security Administration

Simple loops

Consider a typical C-style for-loop...

“‘daxpy” operation: y =a * x +y, where X, y are vectors of length N, a is a scalar

for (int i = 0; i < N; ++i)
{

yl[i] = a * x[i] + y[i];
}

Note that all aspects of execution are explicit in the source code —

execution (sequential), loop iteration order, data access pattern, etc.

Lawrence Livermore National Laboratory N " Sg_&‘% 21
LLNL-PRES-781841 National Nuclear Security Administration

Simple loops

Converting a loop to RAJA mainly involves
changing the loop header

for (int i = 0; i < N; ++1i)
{
C-style for-loop v[i] = a * x[i] + y[il;

}

“RAJA Transformation”

RAJA: :forall< EXEC POL >(it space, [=] (int i)
RAJA-style loop {

})

yl[i] = a * x[i] + yl[i];

i i o
& Lawrence Livermore National Laboratory NISQ‘-O& 22
National Nuclear Security Administration

LLNL-PRES-781841

Simple loops

RAJA encapsulates loop execution details

for (int i = 0; i < N; ++i)
{

C-style for-loop

ylil = a * x[1] + y[i];
} Typically, definitions

like these go in

using EXEC POL = ...; // header files.

RAJA: :RangeSegment it space (0, N);

RAJA-style loop

RAJA: :forall< EXEC POL >(it space, [=] (int i)

{

yl[i] = a * x[i] + y[i];

})

By changing the “execution policy” and “iteration space”, you change the way the loop runs.

Lawrence Livermore National Laboratory N " SZ&‘% 23
LLNL-PRES-781841 National Nuclear Security Administration

The loop header is different with RAJA, but Simple loops
the loop body is the same (in most cases)

for (int i = 0; i < N; ++1i)

{
C-style for-loop |y[i] =a * x[i] + y[i];
}
using EXEC POL = ...; Same loop body.

RAJA: :RangeSegment it space(0; N);

RAJA-style loop

RAJA: :forall< EXEC POL >(it space, [F] (int i)

{
ylil = a * x[i] + y[il;
})

- - (\"‘l
& Lawrence Livermore National Laboratory N"S;-oé\ 24
National Nuclear Security Administration

LLNL-PRES-781841

Simple loops

RAJA loop execution has four core concepts

using EXEC POLICY = ...;
RAJA: :RangeSegment range (0, N);

RAJA: :forall< EXEC POLICY >(range, [=] (int i)

{
// loop body...
})

1. Loop execution template (e.g., ‘forall’)
2. Loop execution policy type (EXEC_ POLICY)
3. Loop iteration space (e.g., ‘RangeSegment’)

4. Loop body (C++ lambda expression)

w Lawrence Livermore National Laboratory N" S;g&‘j 25
- |
LLNL- National Nuclear Security Administration

PRES-781841

Simple loops

RAJA loop execution core concepts

‘RAJA::forall< EXEC_ POLICY >’(iteration_space,

[=] (int i) {
// loop body
}

);

= RAJA::forall method runs loop based on:

— Execution policy type (sequential, OpenMP, CUDA, etc.)

- - (o5
w Lawrence Livermore National Laboratory NIS“"aé 26
National Nuclear Security Administration

LLNL-PRES-781841

Simple loops

RAJA loop execution core concepts

RAJA: : forall< EXEC_POLICY > (iteration_space, |

[=] (int i) {
// loop body
}

);

= RAJA::forall template runs loop based on:

— Execution policy type (sequential, OpenMP, CUDA, etc.)

— Iteration space object (stride-1 range, list of indices, etc.)

- - (o5
w Lawrence Livermore National Laboratory NIS“'oi 27
National Nuclear Security Administration

LLNL-PRES-781841

These core concepts are common threads Simple loops
throughout our discussion

RAJA: :forall< EXEC POLICY > (iteration_space,

7] (int i) {
// loop body
}

AN J

);
= RAJA::forall template runs loop based on:
— Execution policy type (sequential, OpenMP, CUDA, etc.)

— |teration space object (contiguous range, list of indices, etc.)

= Loop body is cast as a C++ lambda expression

— Lambda argument is the loop iteration variable

The programmer must ensure the loop body works with the execution policy; e.g., thread safe

Lawrence Livermore National Laboratory NA‘S@% 28
LLNL-PRES-781841 National Nuclear Security Administration

The execution policy determines the Simple loops
programming model back-end

RAJA: :fora11<[EXEC_POLICY} >(range, [F] (int i)

{
x[1] = a * x[1] + y[1i];

})

RAJA: : ;s,imd_exec ’

A sample of RAJA loop
RAJA: :omp parallel for exec] execution policy types.

RAJA: :cuda exec<BLOCK SIZE, Async>

RAJA: :omp target parallel for exec<MAX THREADS PER TEAM>]

RAJA: :tbb for exec

Lawrence Livermore National Laboratory N‘VS;@‘% 29
LLNL-PRES-781841 National Nuclear Security Administration

Materials that supplement this presentation Wrap up
are available

= Complete working example codes are available in the RAJA source
repository
— https://github.com/LLNL/RAJA
— Many similar to examples we presented today and expands on them

— Look in the “RAJA/examples” and “RAJA/exercises” directories

= The RAJA User Guide

— Topics we discussed today, plus configuring & building RAJA, etc.

— Available at http://raja.readthedocs.org/projects/raja (also linked on the RAJA
GitHub project)

- - (o5
L Lawrence Livermore National Laboratory NIS“"O& 30
National Nuclear Security Administration

LLNL-PRES-781841

https://github.com/LLNL/RAJA
http://raja.readthedocs.org/projects/raja/

_— . ATIONAL LABORATORY

