
erhtjhtyhy

CHRISTINE SIMPSON
Assistant Computational Scientist

Data Science Group

ALCF

Workflow Software for
Managing Large-Scale
Job Campaigns at ALCF

1
April 26, 2023

ALCF DEVELOPER SESSIONS

Outline
• In this talk we will address how to deploy large computational campaigns on ALCF

machines using workflow tools

• The topics we will address:

• What is a workflow?

• How to approach workflows of varying sizes and what are workflow tools?

• How to use the workflow tool Parsl on ALCF machines

• How to use the workflow tool Balsam on ALCF machines

• How to get more information and help

What does a large job campaign entail?
or “What is a workflow?”

• Large job campaigns, where a user runs a large
number of jobs, are often discussed in the
contexts of workflows

• A workflow is simply any collection of
computational tasks run to achieve a result

• Workflows can vary in size, most users have some
type of workflow whether or not they call it that

• We will discuss workflows in the context of HPC
machines here at ALCF, but many of these
considerations and tools apply to other HPC
machines as well Villarreal et al. “Extreme Scale Survey

Simulation with Python Workflows.”

Proceeding for eScience 2021

• A large collection of tasks, perhaps with the
same or different resource needs

• A collection of dependent tasks coupled to
one another

• A collection of tasks that generate new tasks
when they execute, perhaps from a ML or AI
model

• Tasks that need data staged in from a remote
location or staged out after the tasks complete

Common workflow patterns
tasktasktasktasktasktasktasktasktasktask

tasktasktasktasktask
tasktasktasktasktask

Large Collection of Tasks

tasktasktasktasksims model
training

trained

model

model
inference

Tasks Generating New Tasks Dynamically

Remote Filesystemdata

task

result

Tasks Folded into Data Flow

tasktasktasktasktask task analysis 2task analysis 1 task analysis 1 task analysis 1 task analysis 1

Complex Task Dependencies

A Large Collection of Tasks
Where many people start…
• 1 - 20 tasks

• Each task can be run as its own job that a user can setup by hand, i.e. a user creates
a directory, writes a batch script, and submits a job to the scheduler for each task

• 20 - 100 tasks

• Human scaling starts to become uncomfortable

• A few bash scripts that automate run setup and submission may be a good solution.

• > 100 tasks

• Queuing policies start to become an issue, and running each task as its own job

becomes difficult. For example, Polaris only allows for 100 queued jobs at one time.

• Running ensemble batch jobs that launch multiple mpiexec/aprun calls in one script

could be a solution, but it’s not efficient if there’s a large variance in run times  
https://docs.alcf.anl.gov/theta/queueing-and-running-jobs/example-job-scripts/
#running-many-jobs-at-the-same-time

5

https://docs.alcf.anl.gov/theta/queueing-and-running-jobs/example-job-scripts/#running-many-jobs-at-the-same-time
https://docs.alcf.anl.gov/theta/queueing-and-running-jobs/example-job-scripts/#running-many-jobs-at-the-same-time

A Large Collection of Tasks
Where many people start…
• > 100 tasks

• Queuing policies start to become an issue, and running each task as its own job
becomes difficult. For example, Polaris only allows for 100 queued jobs at one time.

• Running ensemble batch jobs that launch multiple mpiexec/aprun calls in one script
could be a solution, but it’s not efficient if there’s a large variance in run times.

• > 1000 tasks, at this scale several considerations make a workflow tool a must

• Packing tasks efficiently into a batch job to minimize idle node time is important

• How can a user judge the outcome of runs? Looking at >1000 files is difficult

• What happens if some number of your tasks fail? How do you restart them?

• For context, on ALCF machines:

• Theta: 280K concurrent processes possible, 1 per CPU.

• Polaris: 1984 concurrent processes, 1 per GPU

• Aurora: 60K concurrent processes, 1 per GPU

6

A workflow tool is the solution
What is a workflow tool?
• A workflow tool is a piece of software that orchestrates the execution of large numbers of tasks

on compute resources, handling dependencies, data flows, and errors/timeouts

• What a workflow tool can provide for:

• Running many tasks concurrently and one after another in one batch job

• Task dependencies

• Automated error handling and restarts

• Data movement into/out of the file system

• There are many tools! A few that are used at ALCF are Balsam, Parsl and Fireworks

• There are also hyperparameter search and ML tools that couple with workflow tools such as
DeepHyper, libEnsemble & Colmena, which can be useful for some workflows, but we won’t
cover those tools today

7

Parsl
A parallel programming library for Python

• Simple installation with pip

• Apps define how to run tasks

• Python apps call Python functions

• Bash apps call external applications

• Apps return futures: a proxy for a result that might not
yet be available

• Apps run concurrently respecting dependencies

• Community of 70+ developers, including many at
ALCF, UIUC & UChicago including Kyle Chard and
Yadu Babuji

To install:

$ module load conda

$ conda create -n parsl

$ conda activate parsl

$ pip install parsl

8

Parsl Apps and Futures
How tasks are made and linked

9

• Parsl extends the
Python
concurrent.futures
module

• Tasks are created by
invoking apps that
return an AppFuture

• Task dependencies can
be created by passing
the AppFuture from one
task to another

 Concurrent Tasks

 Dependent Tasks

@python_app

def double(x):

 v = x * 2

 return v

@python_app

def square(x):

 v = x * x

 return v

 2nd task

v = x * 2

return(v)

1st task
…

d = double(3)

s = square(d.result())

…

print(s.result())

 3rd task

v = x * x

return(v)

@python_app

def double(x):

 v = x * 2

 return v

A complete Parsl example - hello_cuda.py
• First load a Config object from a file config.py.

The Config tells Parsl how to schedule jobs and
distribute tasks over compute nodes

• The app echos the value of
CUDA_VISIBLE_DEVICES. Each task should
report a different value if pinned to different GPUs

• Create 4 tasks by calling the app 4 times, creating
4 futures saved in the list tasks.

• Finally, this script will wait for each task future by
calling t.result(). Bash apps return 0 for
success.

• The wait time will depend on the queuing time and
execution time of the tasks. You may wish to put
the script in the background or use screen if you
are running a longer example.

• Executing this script from a Polaris login node
starts a process that creates task futures, writes a
Polaris batch script, submits it, & waits for results.
If futures are outstanding when the job completes,
Parsl will create more jobs.

hello_cuda.py

import parsl

from parsl import bash_app

from config import polaris_config

Load config for polaris

parsl.load(polaris_config)

Application that says hello to each GPU

@bash_app

def hello_device(stdout='hello.stdout', stderr='hello.stderr'):

 return 'echo "Hello Polaris CUDA device "$CUDA_VISIBLE_DEVICES'

Create futures calling 'hello_device', store them in list 'tasks'

tasks = []

for i in range(4):

 tasks.append(hello_device(stdout=f"hello_{i}.stdout"))

Wait on futures to return, when they do, print results

for i,t in enumerate(tasks):

 if t.result() == 0:

 with open(f"hello_{i}.stdout", "r") as f:

 print(f.read())

Workflow complete!

print("Hello tasks completed")

> python hello_cuda.py

Hello Polaris CUDA device 0

Hello Polaris CUDA device 1

Hello Polaris CUDA device 2

Hello Polaris CUDA device 3

Hello tasks completed
 10

Parsl Config
• How does Parsl know how to execute its tasks on

Polaris compute resources?

• The Config object specifies details of the
provider, executors, connection channel, allocation
size, queues, durations, and data management
options.

• Different machines need different Configs. The
Parsl documentation has example Config objects
for all ALCF machines: https://
parsl.readthedocs.io/en/stable/userguide/
configuring.html

Parsl Program

11

Babuji et.al. "Parsl: Pervasive Parallel Programming
in Python." ACM International Symposium on High-
Performance Parallel and Distributed Computing
(HPDC). 2019.

https://parsl.readthedocs.io/en/stable/userguide/configuring.html
https://parsl.readthedocs.io/en/stable/userguide/configuring.html
https://parsl.readthedocs.io/en/stable/userguide/configuring.html

Parsl Config

for Polaris

config.py

from parsl.config import Config

from parsl.providers import PBSProProvider

from parsl.executors import HighThroughputExecutor

from parsl.launchers import MpiExecLauncher

from parsl.addresses import address_by_hostname

polaris_config = Config(

 executors=[

 HighThroughputExecutor(

 available_accelerators=4,

 address=address_by_hostname(),

 cpu_affinity=“alternating",

 prefetch_capacity=0,

 start_method="spawn",

 provider=PBSProProvider(

 account="datascience",

 queue=“debug",

 worker_init="source /path/to/env; cd /path/to/rundir“,

 walltime="0:10:00",

 scheduler_options="#PBS -l filesystems=home:eagle",

 launcher=MpiExecLauncher(

 bind_cmd="--cpu-bind",

 overrides="--depth=64 --ppn 1"

),

 select_options="ngpus=4",

 nodes_per_block=1,

 min_blocks=0,

 max_blocks=1,

 cpus_per_node=64,

),

),

]

)

 sets 1 manager per node

 sets how many nodes
per block aka per job

Activate environment, load modules, set
env variables for app here

 sets how many blocks/jobs
will run concurrently

 sets 4 workers per node,
one per GPU

12

• With this Config, Parsl will submit 1
node batch jobs that run for 10
minutes each to the debug queue

• It will only submit one batch job at a
time, but increase max_blocks to
submit more jobs at once

• The HighThroughputExecutor
with the MPIExecLauncher are
common Config settings for Polaris.
Always use the PBSProProvider
for Polaris.

• The MPIExecLauncher uses
mpiexec to place one manager on
each MPI Rank and one MPI Rank
per node. It does not refer to how the
Apps are executed.

Parsl Integration with other Tools
funcX/Globus Compute

• Parsl is part of a wider ecosystem of tools through
Globus Labs, including funcX, now called Globus
Compute

• Globus Compute allows for the remote execution of
tasks, on a fire-and-forget model.

• The user sets up an endpoint on an ALCF machine
that connects to the cloud. The user can send tasks
to the endpoint from anywhere, which are then run
on the machine.

• Globus Compute uses Parsl to execute tasks on the
target machine, and therefore your Parsl config can
be easily adapted to be used by Globus Compute

13

Why Choose Parsl?
• Parsl is an excellent choice for High Throughput workflows, e.g. workflows running

many tasks per second on single nodes or single CPUs/GPUs

• Parsl can manage complex and dynamic task dependencies

• Parsl is lightweight, it does not depend on a database, for example

• Parsl is portable and platform agnostic (the Config is the only thing that needs to be
changed)

• Parsl is native to Python, a great choice for Python applications

• Parsl is part of the Globus community and has integration with many of their other
tools

• Parsl has extensive documentation and an active Slack community supporting users

14

https://parsl.readthedocs.io/en/stable/

https://parsl.readthedocs.io/en/stable/

Balsam Workflow Management Tool
A unified platform to manage high-throughput workflows across the HPC landscape
• Balsam was developed at ALCF and is used for

deploying workflows on DOE HPC machines

• Balsam uses a database model, applications and tasks
are stored in a centralized database on a server that
tracks the progress of tasks, called jobs

• Can execute external apps and native Python apps

• Has a Python API and command line interface

• Centralized server allows for inter-machine workflows

• Requires login to the Balsam server at ALCF where the
database is hosted, and therefore an ALCF account

• Supported configurations for all ALCF machines, and
machines at NERSC & OLCF

To install: 

$ module load conda

$ conda create -n balsam

$ conda activate balsam

$ pip install --pre balsam

To login to the server:

$ balsam login

15

Balsam Site

Balsam Model

Application

…

Database

Batch Job

User

HPC Machine

Scheduler

Compute Nodes

J
JJ
J

JobJobJob

Job JobJobJob

JobJobJob JobJobJob

Server
@ALCF

16

The Balsam Site

17

• The first step to creating a workflow in Balsam
is to make a Balsam Site

• A Site is composed of two elements

• A workspace directory on the machine file
system containing data, logs & settings

• A background process running on the
machine that communicates with the
machine scheduler and the database on
the server

• Sites are ‘active’ when the background
process is running and communicating with
the server. The Site needs to be active for the
workflow to work

• Sites are configured for the machine where
they are located and setup automatically for
the user

From a Polaris login node, first login:

$ balsam login

Next, navigate to where you want your Site on the file system and
create the site:

$ balsam site init -n polaris_tutorial polaris_tutorial

[?] Select system: Polaris (ALCF)

 Perlmutter-GPU (NERSC)

 Cori-KNL (NERSC)

 > Polaris (ALCF)

 MacOS/Linux (Local)

 Perlmutter-CPU (NERSC)

 Cori-Haswell (NERSC)

 Sunspot (ALCF)

 Summit (OLCF)

 Cooley (ALCF)

 Theta-KNL (ALCF)

 Theta-GPU (ALCF)

$ cd polaris_tutorial

$ balsam site start

Started Balsam site daemon [pid 12383] on polaris-login-02

Query the status of your Site:

$ balsam site ls

ID Name Path Active

514 polaris_tutorial .../polaris_tutorial Yes

A Simple Balsam Example
Running a compiled executable, e.g. LAMMPS (lmp)
from balsam.api import ApplicationDefinition, Job, BatchJob

class Lammps(ApplicationDefinition):

 site = “polaris_tutorial"

 def shell_preamble(self):

 return f'source /path/to/envs.sh’

 command_template = 'lmp -in /path/to/input.in -var tinit {{tinit}}'

Lammps.sync()

initial_temps = [0.7,1.0,1.5]

jobs = [Lammps.submit(workdir=f“LJ/{n}”,

 parameters={“tinit”:tinit})

for n,tinit in enumerate(initial_temps)]

jobs = Job.objects.bulk_create(jobs)

site = Site.objects.get(“polaris_tutorial”)

BatchJob.objects.create(

 site_id=site.id,

 num_nodes=2,

 wall_time_min=10,

 job_mode="mpi",

 project="datascience",

 queue="debug",)

Application

• Includes executable in
command_template

• Can pass input parameters with
{{ }}

• Can set environment variables, load
modules in shell_preamble

Jobs

• Each job runs an application

• Required to set a workdir for each

job

• Can vary inputs, resources for each

job, set tags

Batch Job

• Creates Job on the scheduler that

runs the Balsam ‘jobs’ saved in the
database

• ‘mpi’ mode means the executable in
the application will be passed to
mpiexec

18

Asynchronous Node Packing in Balsam
Many tasks, many different resource needs

• The user can define different resource needs for each job, even
jobs calling the same Application

• The Balsam model of job packing will dynamically fill available
nodes within a batch job to achieve maximal utilization of nodes

• An example of how to specify resources for a Balsam job:

19

2 node job

2 node job
1 node

job

1 node
job

1 node
job 1 node job

2 node
job

time

N
od

es

3 Node Batch Job running 7 Balsam jobs
requiring different run times and node

numbers

Job(app_id="Lammps",

 site_name="polaris_tutorial",

 workdir="demo",

 parameters={"tinit":1.5},

 wall_time_min=5, # an estimate for the run time

 num_nodes=2,

 ranks_per_node=4,

 gpus_per_rank=1,

 threads_per_rank=8, #This sets OMP_NUM_THREADS

 launch_params={"cpu_bind":"depth"},

 tags={"parameter_test":"temp"},

)

https://argonne-lcf.github.io/balsam/user-guide/jobs/#defining-compute-resources

https://argonne-lcf.github.io/balsam/user-guide/jobs/#defining-compute-resources

Why Choose Balsam?
• Balsam is an excellent choice to run large collections of multi-node MPI jobs

• Balsam can manage complex job dependencies between jobs on the same or different
machines

• Balsam uses a database which makes tracking job provenance and performance
straightforward

• Balsam’s database is hosted in the cloud which allows for workflows that span machines

• Balsam has support for data transfers via Globus Online

• Balsam has both static and elastic queuing modes that allows for different levels of control in
submitting Batch Jobs to the scheduler

• Balsam is preconfigured for all ALCF machines, little machine specific setup is required

• Balsam has documentation and an active Slack where users can get help

20

https://argonne-lcf.github.io/balsam/

https://argonne-lcf.github.io/balsam/

Where to get more information
• Parsl

• docs: https://parsl.readthedocs.io/en/stable/

• github: https://github.com/Parsl/parsl

• slack: https://parsl-project.org/support.html

• Globus Compute (formally funcX): https://funcx.org/

• Balsam

• docs: https://argonne-lcf.github.io/balsam/

• github: https://github.com/argonne-lcf/balsam

• slack: https://join.slack.com/t/balsam-workflows/shared_invite/zt-1t0736hsz-6hxsmC~0MBFpuP~WvouwWQ

• Recent workflows workshop materials (includes materials on how to run GNU Parallel, Parsl, Balsam & Fireworks
on Polaris): https://github.com/CrossFacilityWorkflows/DOE-HPC-workflow-training

• Workflows community (group where you can discover new workflow tools & connect with workflows community) :
https://workflows.community/

https://parsl.readthedocs.io/en/stable/
https://github.com/Parsl/parsl
https://parsl-project.org/support.html
https://funcx.org/
https://argonne-lcf.github.io/balsam/
https://github.com/argonne-lcf/balsam
https://join.slack.com/t/balsam-workflows/shared_invite/zt-1t0736hsz-6hxsmC~0MBFpuP~WvouwWQ
https://github.com/CrossFacilityWorkflows/DOE-HPC-workflow-training
https://workflows.community/

Summary
How to deploy large job campaigns

• Projects often need to deploy large numbers of jobs with complex dependencies on ALCF machines

• ALCF supports multiple tools to facilitate this work, we discussed two, Parsl and Balsam, and how to
use them on Polaris

• These tools are well suited to handle high throughput workflows that run many tasks per second and
workflows that run large numbers of multi-node MPI jobs

• Other tools can be used at the facility such as Fireworks and GNU Parallel

• Many of these tools can be coupled to hyperparameter space search tools like DeepHyper, Colmena or
libEnsemble

• Currently, Theta and Polaris can support large scale workflows running thousands to 10s of thousands of
concurrent processes. Aurora will enable even larger workflows, supporting over 60K concurrent
processes on GPUs. Workflow tools such as Parsl and Balsam will allow users to make use of these
capabilities.

