
CUDA to SYCL Migration
Rakshith Krishnappa (rakshith.krishnappa@intel.com)

2

Workshop Agenda

February 15th Introduction to Using the SYCLomatic Tool and
Compiling/Executing SYCL code on Intel Dev Cloud

March 15th Migrating more complex CUDA source with the SYCLomatic
Tool

April 12th Mini Hackathon and Q&A, Migrating your CUDA Code to
SYCL - tips, tricks, and limitations, Migrating CUDA code with
libraries.

3

Session #1 - 02/15/2023, 1:30 – 3:30PM CT

§ Introduction to Using the SYCLomatic Tool and Compiling/Executing
SYCL code on Intel Dev Cloud
• Installing SYCLomatic tool
• Understand SYCLomatic tool usage and command line options

• Migrate a simple CUDA example with just one source file to SYCL

• Migrate a CUDA example with multiple CUDA source files to SYCL

§ In this session we will mainly try to understand how memory allocation
and memory copy is accomplished in CUDA versus SYCL, we will also
look at how a kernel is offloaded to run on GPU in CUDA versus SYCL.

4

Session #2 - 03/15/2023, 1:30 – 3:30PM CT

§ Migrating more complex CUDA source with the SYCLomatic Tool
• Migrate a CUDA example with multiple CUDA source files to SYCL
• Optimize Kernel code with SYCL features.

§ In this session we will understand how CUDA features like Local
Memory, Cooperative groups, warp primitives and atomic operations
are migrated to SYCL, we will inspect the CUDA and SYCL source and
understand how migration was accomplished using SYCLomatic tool.
We will also try to manually optimize the migrated SYCL code for
performance using SYCL features.

5

Session #3 - 04/12/2023, 1:30 – 3:30PM CT

§ Mini Hackathon: Migrating your CUDA Code to SYCL - tips, tricks, and
limitations
• This session will be a mini hackathon where you can bring your own CUDA source

and try to migrate to SYCL, Intel experts will help and answer any questions you
may have about the migration process.

• We will also give an overview of how migration is accomplished when CUDA
source use a library like cuBLAS or cuFFT, we will show case other CUDA to SYCL
migration projects that are completed and can be used as reference. We will also
learn about the current limitation of the SYCLomatic tool, we will learn about
some tips and tricks when migrating CUDA to SYCL using SYCLomatic tool.

6

Pre-requisites

§ CUDA development machine: Have system ready with CUDA SDK
installed, you should be able to compile/run a simple CUDA sample code.

§ Sign up for Intel Developer Cloud account at devcloud.intel.com/oneapi

https://devcloud.intel.com/oneapi

7

Workshop Overview

§ These sessions involve 2 steps:

1. Migrating the CUDA source on CUDA development machine

2. Executing migrated SYCL source on Intel CPUs/GPUs on Intel Developer Cloud

§ The audience is expected to have a CUDA development machine ready for this workshop, we will install
SYCLomatic tool on the CUDA development and then migrate the CUDA source to SYCL.

§ Once the code migration is complete, we will transfer the migrated SYCL source to Intel Developer Cloud to
compile, execute and optimize on Intel CPUs/GPUs.

If you do not have a CUDA development machine available, you can just watch the demonstration of step one
(CUDA to SYCL migration) and then do the step two on Intel Developer Cloud.

8

Why Migrate to SYCL?

9

Accelerating Choice with SYCL
Khronos Group Standard

§ Open, standards-based
§ Multiarchitecture performance
§ Freedom from vendor lock-in

§ Comparable performance to native CUDA on Nvidia
GPUs

§ Extension of widely used C++ language
§ Speed code migration via open source SYCLomatic

or Intel® DPC++ Compatibility Tool

Architectures Intel | Nvidia | AMD CPU/GPU | RISC-V | ARM Mali | PowerVR | Xilinx

X

https://github.com/oneapi-src/SYCLomatic

10

CUDA to SYCL Migration Made Easy
Open Source SYCLomatic Tool Reduces Code Migration Time

Assists developers migrating code written in CUDA to
C++ with SYCL, generating human readable code
wherever possible

~90-95% of code typically migrates automatically1

Inline comments are provided to help developers finish
porting the application

Intel® DPC++/C++ Compatibility Tool is Intel’s
implementation, available in the Base Toolkit

1Intel estimates as of September 2021. Based on measurements on a set of 70 HPC benchmarks and
samples, with examples like Rodinia, SHOC, PENNANT. Results may vary.

11

oneAPI DPC++/C++ Compiler and Runtime

Productive and Performant
SYCL Compiler
Intel® oneAPI DPC++/C++ Compiler

Uncompromised parallel programming productivity and
performance across CPUs and accelerators
§ Allows code reuse across hardware targets, while permitting custom tuning for

a specific accelerator

§ Open, cross-industry alternative to single architecture proprietary language

Khronos SYCL Standard
§ Delivers C++ productivity benefits, using common and familiar C and C++

constructs

§ Created by Khronos Group to support data parallelism and heterogeneous
programming

Builds upon Intel’s decades of experience in
architecture and high-performance compilers

There will still be a need to tune for each architecture.

C++ with SYCL Source Code

Clang/LLVM

C++ SYCL Runtime

CPU GPU FPGA

Learn More & Download

https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html

12

Codeplay Compiler Plug-ins for Nvidia and AMD GPUs

Adding support for NVIDIA and AMD GPUs to the Intel® oneAPI Base Toolkit

• Sold by Intel and Codeplay and our channel
• Requires Intel Priority support for Intel DPC++

/C++ compiler
• Intel takes first call and Codeplay delivers

backend support
• Codeplay access to older versions of plugins

oneAPI for NVIDIA & AMD GPUs Priority Support

• Free Codeplay download of latest binary plugins
to the Intel DPC++/C++ compiler:
• Nvidia GPU
• AMD Beta GPU

• Availability at the same time as the Intel oneAPI
Base Toolkit

• Plug-ins updated quarterly in-sync with oneAPI

Nvidia GPU plug-in AMD GPU plug-in Codeplay blog Codeplay press release

http://developer.codeplay.com/products/oneapi/nvidia/
http://developer.codeplay.com/products/oneapi/amd/
https://codeplay.com/portal/blogs/2022/12/16/bringing-nvidia-and-amd-support-to-oneapi.html

13

Copy host to device

Kernel function

Device Memory Allocation

Header file

Submit Kernel Task

Vector Addition from CUDA to SYCL - Code Sample

14

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.
Your costs and results may vary.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of
Intel Corporation or its subsidiaries. Other names and brands may be claimed as the
property of others.

15

Reference Material

16

CUDA Development Machine – Sanity Check

§ Check CUDA headers in install path
• Default installation path: ls /usr/local/cuda/include

• If CUDA is installed in non-default path, make a note of path, you will need it later

§ Check that you are able to compile a simple CUDA code
• nvcc test.cu

§ Run nvidia-smi in terminal
• nvidia-smi

• check that driver version is displayed, Nvidia
card is detected and CUDA version is displayed

17

Install SYCLomatic Tool

§ Go to https://github.com/oneapi-src/SYCLomatic/releases
• Under Assets

• Copy web link to linux_release.tgz

§ On you CUDA Development machine:
• In home directory or anywhere: mkdir syclomatic; cd syclomatic

• wget <link to linux_release.tgz>

• tar –xvf linux_release.tgz

• export PATH=“/home/$USER/syclomatic/bin:$PATH”

• c2s --version

https://github.com/oneapi-src/SYCLomatic/releases

18

SYCLomatic Tool Usage (c2s --help)

§ Migrate a single CUDA source file:
• c2s test.cu

§ Migrate a single CUDA source file and copy all syclomatic helper header files:
• c2s test.cu --use-custom-helper=all/file/api

§ Migrate a single CUDA source to a specific directory name
• c2s test.cu --out-root sycl_code

§ Migrate a single CUDA source with source root tree
• c2s test.cu --in-root ../

§ Migrate a single CUDA source with custom CUDA installation
• c2s test.cu --cuda-include-path /tmp/cuda/include

§ Migrate a CUDA project with makefile:
• intercept-build make

• c2s -p compile_command.json
test.cu

https://pastebin.com/raw/QFsnX4yB

19

Compiling SYCL code for Intel and Nvidia targets

§ Install oneAPI C++/DPC++ Compiler or Intel oneAPI Base Toolkit
§ Install CUDA Plugin for oneAPI from CodePlay
§ Link to Installation Instructions

§ Compile SYCL for Intel CPUs/GPUs
• icpx –fsycl test.cpp

§ Compile SYCL for Nvidia GPUs
• clang++ -fsycl -fsycl-targets=nvptx64-nvidia-cuda test.cpp

https://developer.codeplay.com/products/oneapi/nvidia/2023.0.0/guides/get-started-guide-nvidia

20

Accessing Training Content on Intel DevCloud

§ Login to Intel DevCloud: devcloud.intel.com/oneapi
• Click “Get Started”, scroll down and click on “Launch JupyterLab”

§ Copy latest CUDA_To_SYCL_Migration training content:
• In JupyterLab, File menu -> New -> Terminal
• cp -r /data/oneapi_workshop/CUDA_To_SYCL_Migration/ .

§ Access the training content:
• In Jupyter, on left panel, open CUDA_To_SYCL_Migration
• Open Welcome.ipynb

https://devcloud.intel.com/oneapi

21

Learn Basics of SYCL Programming

§ SYCL 2020 Specification

§ Data Parallel C++ Book

§ SYCL Academy from CodePlay

§ Guided learning path with code samples (Jupyter Notebooks):
• SYCL Essentials

• SYCL Performance Portability

§ C++ SYCL code samples

https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://link.springer.com/book/10.1007/978-1-4842-5574-2
https://github.com/codeplaysoftware/syclacademy
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/Jupyter/oneapi-essentials-training
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/Jupyter/sycl-performance-portability-training
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL

22

Optimizing SYCL code for Intel GPUs

§ Refer to Intel GPU Optimization Guide
• Detailed guide explaining how to optimize SYCL code:
• Thread Mapping and GPU Occupancy Calculation.

• Memory allocation and transfer optimization when using Buffers or Unified Shared memory.

• Kernel code optimization – Local memory, Sub-Groups, Atomics, Reduction and more.

• Using libraries for offload

• Debugging and Profiling

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top.html

23

CUDA to SYCL Migration Portal

§ One Stop Portal for CUDA to SYCL Migration
• Industry Examples of CUDA Migration to SYCL

• Learn How to Migrate Your Code

• Guided flow of migrating from CUDA to SYCL

• Get all the tools and resources necessary for migrating from CUDA to SYCL

https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/migrate-from-cuda-to-cpp-with-sycl.html

