
CUDA to SYCL Migration
Learn how to migrate CUDA source to C++ SYCL source using SYCLomatic Tool

rakshith.krishnappa@intel.com

2

Why Migrate to SYCL?

3

What is SYCL?

SYCL (pronounced ‘sickle’) is a royalty-free, cross-platform abstraction
layer that:

§ Enables code for heterogeneous and offload processors to be written
using modern ISO C++ (at least C++ 17).

§ Provides APIs and abstractions to find devices (e.g. CPUs, GPUs, FPGAs)
on which code can be executed, and to manage data resources and code
execution on those devices.

https://www.khronos.org/sycl/

https://www.khronos.org/sycl/

4

Accelerating Choice with SYCL
Khronos Group Standard

§ Open, standards-based
§ Multiarchitecture performance
§ Freedom from vendor lock-in

§ Comparable performance to native CUDA on Nvidia
GPUs

§ Extension of widely used C++ language
§ Speed code migration via open source SYCLomatic

or Intel® DPC++ Compatibility Tool

Architectures Intel | Nvidia | AMD CPU/GPU | RISC-V | ARM Mali | PowerVR | Xilinx

X

https://github.com/oneapi-src/SYCLomatic

5

Architecture Support – CUDA vs SYCL

Architectures Intel | Nvidia | AMD CPU/GPU | RISC-V | ARM Mali | PowerVR | Xilinx

CUDA

SYCL

6

CUDA to SYCL Migration Made Easy
Open Source SYCLomatic Tool Reduces Code Migration Time

Assists developers migrating code written in CUDA to
C++ with SYCL, generating human readable code
wherever possible

~90-95% of code typically migrates automatically1

Inline comments are provided to help developers finish
porting the application

Intel® DPC++/C++ Compatibility Tool is Intel’s
implementation, available in the Base Toolkit

1Intel estimates as of September 2021. Based on measurements on a set of 70 HPC benchmarks and
samples, with examples like Rodinia, SHOC, PENNANT. Results may vary.

7

oneAPI DPC++/C++ Compiler and Runtime

Productive and Performant
SYCL Compiler
Intel® oneAPI DPC++/C++ Compiler

Uncompromised parallel programming productivity and
performance across CPUs and accelerators
§ Allows code reuse across hardware targets, while permitting custom tuning for

a specific accelerator

§ Open, cross-industry alternative to single architecture proprietary language

Khronos SYCL Standard
§ Delivers C++ productivity benefits, using common and familiar C and C++

constructs

§ Created by Khronos Group to support data parallelism and heterogeneous
programming

Builds upon Intel’s decades of experience in
architecture and high-performance compilers

There will still be a need to tune for each architecture.

C++ with SYCL Source Code

Clang/LLVM

C++ SYCL Runtime

CPU GPU FPGA

Learn More & Download

https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html

8

Codeplay Compiler Plug-ins for Nvidia and AMD GPUs

Adding support for NVIDIA and AMD GPUs to the Intel® oneAPI Base Toolkit

• Sold by Intel and Codeplay and our channel
• Requires Intel Priority support for Intel DPC++

/C++ compiler
• Intel takes first call and Codeplay delivers

backend support
• Codeplay access to older versions of plugins

oneAPI for NVIDIA & AMD GPUs Priority Support

• Free Codeplay download of latest binary plugins
to the Intel DPC++/C++ compiler:
• Nvidia GPU
• AMD Beta GPU

• Availability at the same time as the Intel oneAPI
Base Toolkit

• Plug-ins updated quarterly in-sync with oneAPI

Nvidia GPU plug-in AMD GPU plug-in Codeplay blog Codeplay press release

http://developer.codeplay.com/products/oneapi/nvidia/
http://developer.codeplay.com/products/oneapi/amd/
https://codeplay.com/portal/blogs/2022/12/16/bringing-nvidia-and-amd-support-to-oneapi.html

9

Copy host to device

Kernel function

Device Memory Allocation

Header file

Submit Kernel Task

CUDA to SYCL Migrated Code Comparison

10

CUDA to SYCL Migration
CUDA SYCL

Header File #include <cuda_runtime.h> #include <sycl/sycl.hpp>

Create a CUDA stream cudaStream_t stream1; sycl::queue q;

Allocate memory on device cudaMalloc() sycl::malloc_device()

Memset on cudaMemsetAsync() q.memset()

Memcpy from host to device cudaMemcpyAsync() q.memcpy()

Submit kernel to device kernel_function<<<NUM_BLOCKS, N>>>(); q.parallel_for(sycl::nd_range<1>(N,
WG_SIZE) [=](sycl::nd_item<1> item){

kernel_function();
});

Free device allocation cudaFree() sycl::free()

Synchronize host and device cudaStreamSynchronize(stream) q.wait()

11

CUDA to SYCL Migration
CUDA SYCL

Shared Local memory __shared float local_data[N] sycl::local_accessor<float, 1>
local_data(N, h)

Memory synchronization / fence cg::sync(cta); sycl::group_barrier(group)

Atomic Add atomicAdd() auto a = sycl::atomic_ref()
a.fetch_add()

Thread Block / Work-Group cg::thread_block cta =
cg::this_thread_block();

auto group = item.get_group();

Tile / warp / Sub-Group cg::thread_block_tile<32> tile =
cg::tiled_partition<32>(cta);

sycl::sub_group tile =
item.get_sub_group();

Warp/Group Shuffle tile.shfl_down() sycl::shift_group_left()

Block Thread Index /Work-Group
Local ID

threadIdx.x item.get_local_id()

gem Library cublasSgemm oneapi::mkl::blas::column_major::gemm

12

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.
Your costs and results may vary.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of
Intel Corporation or its subsidiaries. Other names and brands may be claimed as the
property of others.

13

CUDA to SYCL Migration Process

14

Pre-requisites

§ CUDA development machine: Have system ready with CUDA SDK
installed, you should be able to compile/run a simple CUDA sample code.

§ Sign up for Intel Developer Cloud account at devcloud.intel.com/oneapi

https://devcloud.intel.com/oneapi

15

CUDA to SYCL Migration Process

STEP 1

CUDA Development Machine
§ Copy/Clone the CUDA source

§ Install SYCLomatic

§ Use SYCLomatic Tool to migrate CUDA source to SYCL
source

Optional:

§ Install oneAPI Base Toolkit + NVIDIA Plugin for oneAPI

§ Compile SYCL Source for NVIDIA GPU

STEP 2

Intel Developer Cloud
§ Login to Intel Developer Cloud

§ Transfer the migrated SYCL source from CUDA
Development machine to Intel Developer Cloud

§ Compile SYCL source

§ Fix any errors

§ Compile & Execute SYCL application on Intel GPUs and
CPUs, verify functional correctness.

§ Optimize SYCL source for performance

16

CUDA to SYCL Migration Training Material

17

CUDA to SYCL Migration - Workshop Examples
CUDA Code CUDA to SYCL Migration Details

VectorAdd Shows migrating a simple single source CUDA code

• Device Memory allocation and copy, kernel submission

SortingNetworks Shows migrating a CUDA project with multiple CUDA source files

• Device Memory allocation and copy, kernel submission

Jacobi Iterative Algorithm Shows migrating a CUDA project that uses CUDA APIs in kernel function to access GPU
low-level hardware

• Device Memory allocation and copy, kernel submission
• Local Memory access, Atomic operation, CUDA Cooperative groups/warps to SYCL

Sub-Groups, CUDA warp primitives to SYCL group algorithms

cuBlas Matrix Multiplication Shows migrating a CUDA project that uses a CUDA library for computation on GPU

• Device Memory allocation and copy
• CUDA library migration (cuBlas to oneMKL blas)

18

Accessing Training Content on GitHub

§ Github link to the training: CUDA to SYCL Migration
• Multiple modules in folders

• Each Module folder has a Jupyter Notebook file (*.ipynb) which can be viewed in
Github to follow instructions

• The module folder has sub-folder with SYCL code:
• dpct_output – SYCLomatic output (may or may not compile)

• sycl_migrated – SYCL code that gets functional correctness

• sycl_migrated_optimized – SYCL code that is optimized for performance

https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/Jupyter/cuda-to-sycl-migration-training

19

Accessing Training Content on Intel DevCloud

§ Login to Intel DevCloud: devcloud.intel.com/oneapi
• Click “Get Started”, scroll down and click on “Launch JupyterLab”

§ Copy latest CUDA_To_SYCL_Migration training content:
• In JupyterLab, File menu -> New -> Terminal
• cp -r /data/oneapi_workshop/CUDA_To_SYCL_Migration/ .

§ Access the training content:
• In Jupyter, on left panel, open CUDA_To_SYCL_Migration
• Open Welcome.ipynb, access the different modules and follow the steps

https://devcloud.intel.com/oneapi

20

Reference Material

21

CUDA Development Machine – Sanity Check

§ Check CUDA headers in install path
• Default installation path: ls /usr/local/cuda/include

• If CUDA is installed in non-default path, make a note of path, you will need it later

§ Check that you are able to compile a simple CUDA code
• nvcc test.cu

§ Run nvidia-smi in terminal
• nvidia-smi

• check that driver version is displayed, Nvidia
card is detected and CUDA version is displayed

22

Install SYCLomatic Tool

§ Go to https://github.com/oneapi-src/SYCLomatic/releases
• Under Assets

• Right-click and copy web link to linux_release.tgz

§ On you CUDA Development machine:
• In home directory or anywhere: mkdir syclomatic; cd syclomatic

• wget <link to linux_release.tgz>

• tar –xvf linux_release.tgz

• export PATH=“/home/$USER/syclomatic/bin:$PATH”

• c2s --version

https://github.com/oneapi-src/SYCLomatic/releases

23

SYCLomatic Tool Usage (c2s --help)

§ Migrate a single CUDA source file:
• c2s test.cu

§ Migrate a single CUDA source file and copy all syclomatic helper header files:
• c2s test.cu --use-custom-helper=all/file/api

§ Migrate a single CUDA source to a specific directory name
• c2s test.cu --out-root sycl_code

§ Migrate a single CUDA source with source root tree
• c2s test.cu --in-root ../

§ Migrate a single CUDA source with custom CUDA installation
• c2s test.cu --cuda-include-path /tmp/cuda/include

§ Migrate a CUDA project with makefile:
• intercept-build make

• c2s -p compile_command.json
test.cu

https://pastebin.com/raw/QFsnX4yB

24

Compiling SYCL code for Intel and Nvidia targets

§ Install oneAPI C++/DPC++ Compiler or Intel oneAPI Base Toolkit

§ Install CUDA Plugin for oneAPI from CodePlay
§ Link to Installation Instructions

§ Set environment variable for using the Compiler
• source /opt/intel/oneapi/setvars.sh --include-intel-llvm

§ Compile SYCL for Intel CPUs/GPUs
• icpx –fsycl test.cpp

§ Compile SYCL for Nvidia GPUs
• clang++ -fsycl -fsycl-targets=nvptx64-nvidia-cuda test.cpp

https://developer.codeplay.com/products/oneapi/nvidia/2023.0.0/guides/get-started-guide-nvidia

25

Learn Basics of SYCL Programming

§ SYCL 2020 Specification

§ Data Parallel C++ Book

§ SYCL Academy from CodePlay

§ Guided learning path with code samples (Jupyter Notebooks):
• SYCL Essentials

• SYCL Performance Portability

§ C++ SYCL code samples

https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://link.springer.com/book/10.1007/978-1-4842-5574-2
https://github.com/codeplaysoftware/syclacademy
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/Jupyter/oneapi-essentials-training
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/Jupyter/sycl-performance-portability-training
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL

26

Optimizing SYCL code for Intel GPUs

§ Refer to Intel GPU Optimization Guide
• Detailed guide explaining how to optimize SYCL code:
• Thread Mapping and GPU Occupancy Calculation.

• Memory allocation and transfer optimization when using Buffers or Unified Shared memory.

• Kernel code optimization – Local memory, Sub-Groups, Atomics, Reduction and more.

• Using libraries for offload

• Debugging and Profiling

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top.html

27

CUDA to SYCL Migration Portal

§ One Stop Portal for CUDA to SYCL Migration
• Industry Examples of CUDA Migration to SYCL

• Learn How to Migrate Your Code

• Guided flow of migrating from CUDA to SYCL

• Get all the tools and resources necessary for migrating from CUDA to SYCL

https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/migrate-from-cuda-to-cpp-with-sycl.html

28

CUDA to SYCL Migration – Lab Exercise

29

Migrate histogram from CUDA Samples to SYCL

§ CUDA source
• https://github.com/NVIDIA/cuda-samples/Samples/2_Concepts_and_Techniques/histogram

1. Install SYCLomatic

2. Migrate CUDA source to SYCL source using SYCLomatic tool

3. Compile and Run the migrated SYCL source

4. Run SYCL code on CPUs and GPUs

https://github.com/NVIDIA/cuda-samples/Samples/2_Concepts_and_Techniques/histogram

30

CUDA to SYCL Migration

STEP 1 - CUDA Development Machine

§ Clone the CUDA source
• git clone https://github.com/NVIDIA/cuda-samples.git

• cd cuda-samples/Samples/2_Concepts_and_Techniques/histogram

§ Install SYCLomatic

§ Use SYCLomatic Tool to migrate CUDA source to SYCL source
• make clean

• intercept-build make

• c2s -p compile_commands.json --in-root ../../.. --use-custom-helper=all

31

CUDA to SYCL Migration

STEP 2 - Intel Developer Cloud

§ Copy dpct_output directory from CUDA Machine to Intel DevCloud

§ Compile and Run SYCL source
• icpx -fsycl -I ../../../Common -I ../../../include *.cpp

• ./a.out

§ Access GPUs on Intel DevCloud
• qsub -I -l nodes=1:gen9:ppn=2

• qsub -I -l nodes=1:gen11:ppn=2

