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AI FOR SCIENCE
Why

© CERN

© LIGO

© Rubin Observatory

© SKA

© JWST



SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS
What

Challenges 

High velocity datasets

High dimensional parameter 
space



SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS
What

Challenges 

Signal processing tools are 
compute-intensive and 

poorly scalable 

Need to go beyond 
dedicated supercomputing 

clusters 



SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS
How

Grand challenge: identify 
weak signals embedded 

in large backgrounds, 
experimental noise is 

non-Gaussian and non-
stationary
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© Gravity Spy Project



SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS
How

Break down key challenges, and 
be relentless in addressing them 

thoroughly

What are the limitations and 
strengths of state-of-practice 

algorithms? 

Awareness: similar challenges in other 
disciplines? what can we learn and 

translate into new domains? 



SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS
How

30 December 2016

Novel approach 
learn from simulated data, bypass the use of large banks of modeled waveforms; 

search for signals with a single GPU or mobile phone faster than real-time



SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS
How

8 November 2017

Novel approach 
learn from real data, bypass the use of large banks of modeled waveforms; 
search for signals with a single GPU or mobile phone faster than real-time



SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS
Size the problem

Proof of concept 

2D (masses of objects) 

Training set: 40k signals

Resources: 1 GPU, 3 hrs of training 

Enhanced approach

4D (masses and spins of objects) 

Training set: 30M signals

Resources: 1 GPU, 1 month of 
training 



SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS
Disrupt again

Convergence of AI and supercomputing

Introduce domain knowledge in AI models, 
harness high performance computing, reduce 

time-to-insight from months to hours!

© ORNL



SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS
Disrupt again

Convergence of AI and supercomputing

4D signal manifold 

Processes real data faster than 
real time with 4 NVIDIA V100 

GPUs

1 misclassification for every 2.7 
days of searched data!



SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS
Production scale approach

Convergence of AI and supercomputing

Harness open 
source LIGO data 

and train AI models 
in Summit using up 

to 1024 nodes

DLHub

Optimize AI ensemble for 
inference, containerize and 

deploy on 
Data and Learning Hub for 

Science (DLHub)

© ORNL



SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS
Production scale approach

Convergence of AI and supercomputing

Leverage ALCF/JLSE PetrelKube
for model containerization and 

workflow management

funcX



SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS
Production scale approach

Convergence of AI and supercomputing
a

b

Outcome:
one month’s worth of advanced

LIGO data processed in 7 
minutes

all binary black holes detected 
with zero misclassifications



SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS
Production scale approach

Convergence of AI and supercomputing
a

b

Outcome:
one month’s worth of advanced

LIGO data processed in 7 
minutes

all binary black holes detected 
with zero misclassifications

These models have 
been invoked over 
100k times since 

July 2021!



IMPACT



Go the extra mile

SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS



AI-inference for 
gravitational waves 53,000X 

faster than real-time

Using a synthetically 
enhanced 5 yr-long 

advanced LIGO dataset, AI 
ensemble identified known 

gravitational wave 
sources and reported one 

misclassification for every 
month of searched data

SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS
Go the extra mile



GRAVITATIONAL WAVE REGRESSION
High dimensional signal manifolds



GRAVITATIONAL WAVE REGRESSION
High dimensional signal manifolds



GRAVITATIONAL WAVE REGRESSION

AI posterior distributions (in black), 
PyCBC Inference results (in green), 
and ground truth values (in blue) 

for an equal mass-ratio binary black 
hole 

AI histograms show the distribution
of 100, 000 samples drawn from 

the posterior.



GRAVITATIONAL WAVE REGRESSION

AI posterior distributions (in black), 
PyCBC Inference results (in green), 
and ground truth values (in blue) 

for an equal mass-ratio binary black 
hole 

AI histograms show the distribution
of 100, 000 samples drawn from 

the posterior.



SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS
Multimessenger sources

Let’s turn our 
attention to 

compact binary 
mergers that may 
emit gravitational, 
electromagnetic 

and astro-particle 
counterparts



SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS
Learn physics, forecast non-linear 
dynamics and dive deep into interpretable AI
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SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS
Learn physics, forecast non-linear 
dynamics and dive deep into interpretable AI

https://khanx169.github.io/gw_forecasting/interactive_results.html



SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS
AI surrogates

Why

Physical processes 
can be naturally 
described using 

partial differential 
equations (PDEs)

Numerical solvers 
have been developed 

to solve complex 
PDEs with 

supercomputing 
platforms

Multi-scale and multi-
physics phenomena 

challenge this 
paradigm



SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS
AI surrogates

Shawn Rosofsky



SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS
AI surrogates 
Physics informed neural operators

Shawn Rosofsky



SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS
Physics informed neural operators



SAMPLE CASE: GRAVITATIONAL WAVE 
ASTROPHYSICS
Physics informed neural operators



DYNAMIC AI

Reduce time-to-insight 
with HPC platforms

Deploy dynamic AI 
models in DLHub

DLHub+funcX: 
reproducible, scalable 
and accelerated AI-

discovery at the edge

Summit 
ThetaGPU, AURORA 

…

Edge Distributed 
Computing

TensorRT …
Active/Transfer/Reinforcement

Burst 
training

Major upgrade of 
AI models



REFERENCES

Gravitational Wave Data Analysis | Machine Learning 

https://iphysresearch.github.io/Survey4GWML/



AI-ready datasets Innovative computing

FAIR, interpretable, physics-inspired, accelerated  AI models 

Data fusion & new modes of data-driven discovery & smart cyberinfrastructure
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