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Targeted Adaptive Design: Introduction

Targeted Adaptive Design (TAD) is a new data-driven model that aims at
efficiently and autonomously locating control parameters that would
yield a target output design within specified tolerance.

Motivation: Experimental design for advanced manufacturing

Example: Flame Spray Pyrolysis (FSP) optimization (Paulson et al,, 2020) with 6 control

parameters that "result in desirable particle size distributions and simultaneously provide an
understanding of the process itself

The upper and lower bounds for each processing variable are provided. Independent var-
iables are green.

lower upper
TEOS concentration (wt%) 0.05 5
liquid flow rate (mL/min) 4 10
atomization O, flow rate (L/min) 6 12
pilot CH, flow rate (L/min) 2 R
pilot O, flow rate (L/min) 3 6
sheath O, flow rate (L/min) 15 2

Paulson et al., Materials and Design 196 (2020) 108972 6

Argonne’s FSP facility



Atomic Layer Deposition

* Advanced technique used for depositing thin films on a surface one
atomic layer at a time

Each cycle is composed of four sequences:
- A dose period t; during which the substrate is
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- A purge period t, during which there is no

ALD CYCLE precursor exposure,
- A dose period t; during which the substrate is
exposed to precursor 2,
o e 0 - Afinal purge period t, during which there is no
m precursor exposure.
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Atomic Layer Deposition (cont.)

e GOAL: Optimal Atomic Layer Deposition (ALD) film growth with minimal precursor consumption.
Several parameters can be controlled: Artificially
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(Paulson et al., ACS Appl. Mater. Interfaces 2021, 13, 17022-17033).

» Temperature (T), site area (A), pressures (p;, p,), Molecular masses (M,, M,), the sticking probabilities

(B1, B2) and the characteristic times for precursor evacuation (¢, , t, ) and the mass changes (d;,, dp, ).



Problem set-up

E points on
the Growth
Per Cycle
(GPC)

Unknown response function f
accessible only through noisy

measurements
gk =) + g, k=1,...,N

Find x* Knowing fr



TAD: (simplified) algorithm

* Place a Gaussian Process (GP is a probability distribution over possible functions)

prior on the unknown response functionf (GP model is dynamically validated using
chi—squared statistics)

* Obscrved Data
w— Mean

Caonfidence

. . f~GP(ug,Ky), 6 hyperparameters

e Optimize an acquisition function to decide where to sample next,

* Acquire the points found at the previous step and update the GP model accordingly,

* Repeat until stopping criterion is met: (Success = found design within tolerance,
Failure = Expected Shannon Information gain < ¢)



TAD

* TAD is a batch iterative algorithm.
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TAD at scale

e Gaussian processes involve the factorization of ENXEN (N = data
size, E = # of design objectives) covariance matrices which scales like
E3 N3 if using Cholesky for example,

 Solution: Gpytorch (a highly efficient and modular implementation of
GP implemented in Pytorch and which allows to train GPs with
millions of data points.)

* On the scalability of TAD on SambaNova (ANL LDRD): We are applying
TAD to ALD and evaluating its performance on GPU (ThetaGPU) and
on SambaNova.



Test case: 50 points on the GPC, 4 control
parameters

TargetGPC: t; =t, = t; =t, = 0.25s
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Initial sample size: 20, # of new points per iteration: 10+1, tolerance: 10%
Convergence after 2 iterations (42 points total sampled, matrix size: 50x42)
GP fitting time: 4.3s, TAD optimization time: 15.8s
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Conclusions and outlook

* TAD is a new, efficient and scalable algorithm specifically well-suited
for design problems,

* It incorporates a new acquisition function that balances well the
exploration/exploitation tradeoff, and a dynamical model validation.

* Ongoing/future work:
- TADXALD at scale (LDRD, joint work with N. Paulson (DSL/AMD))

- TADxconcrete_mixing (collaboration with C. Tavares & K. Skillen,
Texas A&M)



THANK YOU! ANY QUESTIONS?



