
A Brief Introduction to Parsl and funcX
Kyle Chard
chard@uchicago.edu



2



3

Parsl: a parallel programming library for Python

Apps define opportunities for parallelism
• Python apps call Python functions
• Bash apps call external applications

Apps return “futures”: a proxy for a result that might 
not yet be available

Apps run concurrently respecting data dependencies. 
Natural parallel programming!

Parsl scripts are independent of where they run. Write 
once run anywhere!

Parsl is an opensource community with 70+ 
contributors (https://parsl-project.org/parslfest.html)

pip install parsl

Try Parsl: https://parsl-project.org/binder

https://parsl-project.org/parslfest.html


4



5

funcX: Fire-and-forget remote computing 

How do we coordinate work over several resources?

- Where do you persistently host the Parsl process? how 
do you reliably connect to remote resources? how do 
you recover from remote failures? …..

funcX servicifies Parsl: 

- funcX endpoints (using Parsl) enable scalable 
execution of tasks on arbitrary resources

- funcX service provides robust fire-and-forget 
execution of tasks and asynchronous staging of results

funcX is developed by the Globus team and leverages 
the same security, deployment, operations model

You request a 
function be 

executed on 
endpoint A and B

A A

1

3

2

funcX manages the 
reliable and secure 
execution on those 

endpoints

funcX stores results 
in the cloud until 
requested by the 
user

Try funcX: https://funcx.org/binder



6

Transform laptops, clusters, clouds into function 

serving endpoints

▪ Python-based agent (pip or Conda) 
installable in user space

▪ Elastically provisions resources from 
local, cluster, kubernetes, or cloud 
system (using Parsl)

▪ Manages concurrent execution on 
provisioned resources

▪ Optionally manages execution in 
containers 

▪ Share endpoints with collaborators

$ pip install funcx-endpoint

$ funcx-endpoint configure myep

$ funcx-endpoint start myep



7

Execute tasks on any accessible endpoint

Choose a function, endpoint ID, and input 
arguments

Asynchronously retrieve results 

F(ep1,1)

F(ep1, 2)

F(ep1, 3)

F(ep1, 4)

F(ep1, 5)

F(ep1, 6)

F(ep2, 7)



8

Thank you funding agencies and project partners

Argonne LDRDs

▪ 2022-0230 Productive Exascale Analysis Workflows for Numerical Cosmology
▪ 2021-0152 Creating a Robust and Scalable Framework for On-demand Analysis and AI-based Experiment Steering
▪ 2019-0217 Establishing a Usable, Scalable, and Reproducible Computational Ecosystem for Dark Energy Science

LSST Dark Energy Science Collaboration (DESC)

DOE ECP PRJ1008564 ExaWorks project

DOE DE-NA0003963 Center for Exascale-enabled Scramjet Design (CEESD) 

Discovery Partners Institute (DPI): Airborne-Satellite-AI-HPC integrative framework (ASAI)

2209919 (UChicago)

2209920 (UIUC)

1550588 (UChicago/UIUC) 

1550476 (Notre Dame), 

1550475 (Colorado State) 

1550562 (Northern Arizona)

1550528 (College of New Jersey)

2004894 (UChicago)

2004932 (UIUC)



9

Tutorial

$ module load conda

$ conda create --prefix ~/conda-envs/polaris-funcx python=3.9 

$ conda activate polaris-funcx

Install and configure the funcX endpoint. 

$ pip-install funcx-endpoint

$ funcx-endpoint configure polaris-endpoint

Optional: configure endpoint for Polaris queues
– https://funcx.readthedocs.io/en/latest/endpoints.html

Run Jupyter notebook (on Binder or your laptop)
– https://funcx.org/binder

https://funcx.readthedocs.io/en/latest/endpoints.html
https://funcx.org/binder

