

CFDML – Data Analytics and ML for Exascale CFD

Hewlett Packard

Enterpri

Riccardo Balin Postdoctoral Appointee ALCF rbalin@anl.gov

ALCF 2022 Simulation, Data and Learning Workshop 10/04/2022

Overview

- Introduction and science goals
- Online ML with SmartSim
- Performance on Polaris and Theta
- Conclusions and future work

Overview

- Introduction and science goals
-
-
-

Introduction

• There are 4 main modeling approaches to computations of turbulent flow

Direct numerical simulation (DNS)

- Solve unsteady Navier-Stokes (NS) equations directly
- Resolve all spatial and temporal turbulent scales, no modeling
- Most accurate
- Most computational expense

Reynolds-averaged NS (RANS)

- Solve for the steady mean flow directly
- Model all spatial and temporal turbulent scales
- Inaccurate for complex flows
- Least computational expense

Large eddy simulation (LES)

- Solve *unsteady* filtered NS equations
- Resolve largest spatial scales and model smallest (sub-grid) scales
- Modest accuracy
- Modest computational expense

Developing closure models for LES using ML approaches

4 Argonne Leadership Computing Facility

Hybrid RANS/LES and Wall-Modeled LES (WMLES)

- Solve *unsteady* RANS and/or LES equations
- Model all turbulent scales of the near-wall flow

Introduction

- Neural net (NN) closure models for RANS are trained on mean flow data
	- ⏤Training data easily stored on disk, even when considering multiple flows
	- ⏤Offline learning is sufficient and preferred
	- ⏤Data production and training performed separately
- NN models for LES and WMLES closures must be trained on instantaneous flow data
	- ⏤For petascale and exascale simulations, expensive multi-terabyte databases are needed to store training data
	- ⏤Online (in situ) learning offers attractive solution to avoid I/O and storage bottleneck
	- ⏤Data production and training performed concurrently

DNS of a Turbulent Boundary Layer Over a Bump at $Re = 2$ **M**

5 Argonne Leadership Computing Facility

Science Goals

- Flows over bumps are insightful, but what are we really after?
	- ⏤Full CFD simulations of complex aeronautical and aerospace systems
	- ⏤NASA vision 2030: towards aircraft certification by simulation

Hybrid RANS/LES of Flow Around Aircraft Vertical Tail with Active Flow Control

Science Goals

- NN model for the unclosed term in LES equations
- Goal is to predict local and instantaneous sub-grid stress (SGS) tensor, $\tau_{ij} = u_i \tilde{u}_j \tilde{u}_i \tilde{u}_j$
- Model is predictive on homogeneous isotropic turbulence, but needs to be extended to wallbounded flows

7 Argonne Leadership Computing Facility

Overview

-
- Online ML with SmartSim
-
-

- We use SmartSim and SmartRedis to build workflows for online ML capabilities
- SmartSim/SmartRedis are open-source tools developed by HPE
- Learn more about SmartSim:
	- Integrating AI and Simulations session, Thursday 1:00 1:30 pm CST
	- ⏤Tutorial and hands-on exercises on Polaris

• We developed workflows for online training and inference

- We developed workflows for online training and inference
- Two implementations: **clustered** and co-located

- We developed workflows for online training and inference
- Two implementations: clustered and **co-located**

Online Training and Inference with SmartSim

Clustered Implementation

- Single database sharded across a cluster of nodes
- SmartSim Orchestrator, PHASTA and distributed training run on distinct set of nodes
- Pros: all data contained in single database visible by all applications, most flexibility of workflow
- Cons: reduced data transfer performance as PHASTA and distributed training scale out

Co-Located Implementation

- Distinct databases launched on each node
- SmartSim Orchestrator, PHASTA and distributed training share resources on each node
- Pros: most efficient data transfer performance at scale
- Cons: data distributed across many Orchestrators, accessing off-node data is non-trivial

Online Training with SmartSim

Data Production for Online Training

- PHASTA flow solver (mostly Fortran) or other CFD code
- During training:
	- ⏤We use domain decomposition, so each PHASTA rank works on a partition of entire domain
	- ⏤Solution states processed online and in parallel to compute model inputs and outputs
	- ⏤Each rank sends training data to database with unique key for its domain partition
	- ⏤Database will contain (num. ranks x num. time steps) distinct tensors
- Computation and transfer of training data done at specified frequency (e.g., every 50-100 time steps)

Online Training with SmartSim

Data Consumption for Online Training

- Distributed ML algorithm for training of turbulence model closures
- Runs at scale concurrently with PHASTA simulation
- During training:
	- ⏤Each epoch, set of randomly chosen tensors is retrieved by each ML rank from database
	- ⏤Each ML rank performs mini-batch stochastic gradient descent with synchronized optimizer steps
	- ⏤When new data placed in database by PHASTA, training continues with latest training data
	- ⏤Tensors in database can be overwritten (train on one snapshot at a time) or accumulated (train on multiple snapshots)

Overview

-
-
- Performance on Polaris and Theta
-

Scaling Performance on Polaris

Online Inference

• Data transfer overhead with co-located and clustered approaches

Argonne €

17 Argonne Leadership Computing Facility

Scaling Performance on Polaris

Online Inference

- Model evaluation overhead with co-located and clustered approaches
- Model ran on CPU

Scaling Performance on Polaris

Online Training

- Training data transfer overhead with co-located approach
- Sent from simulation to DB and received by ML training from DB

Argonne -

¹⁹ Argonne Leadership Computing Facility

Performance on Theta

Online Inference with PHASTA

- Co-located approach for online inference using 110-220 nodes
- Significant speedup relative to SmartSim clustered implementation and initial PHASTA native implementation in Fortran

Note:

- Database can consume small fraction of CPU cores with small performance drop
- Total inference time with co-located database reduced to 1% of solver time step

Overview

-
-
-
- Conclusions and future work

Conclusions

- Developed a software infrastructure to combine CFD with online (in situ) ML at scale
- Capable of performing online training and inference of NN models efficiently
- Co-located implementation shows close to constant data transfer cost with increasing scale
- Currently using software to develop turbulence closure models for large eddy simulation

Ongoing and Future Work

- Incorporating GPU enabled PHASTA into workflow
- Expanding to other applications of ML for turbulence modeling
- Adding user interactivity to online workflow
	- ⏤User-dedicated node to run scripts/notebooks evaluating model during training
	- -Adding online visualization with Paraview
- Extending to other CFD solvers (Nek5000, NekRS, OpenFOAM)

Questions?

Introduction and Science Goals

- Why do we need to train on the entire flow domain?
	- $-A$ simple bump geometry introduces many physical disturbances that change the turbulence physics
	- A predictive model must be accurate for all these physical effects
- Why do we need to train on multiple snapshots?
	- ⏤Single snapshot likely does not contain all time-dependent phenomena that model should handle during inference
	- ⏤Some flows of interest are not statistically stationary and evolve over time (e.g., internal combustion engines, active flow control applications, off-design conditions in turbine engines, etc.)

DNS of a Turbulent Boundary Layer Over a Bump

Online Inference with SmartSim

- Evaluation of the NN closure model during simulation
	- ⏤Each PHASTA rank sends inference data to database with unique key for its domain partition
	- ⏤PHASTA uses SmartRedis API to evaluate model on inference data (using PyTorch jit traced model)
	- ⏤Each rank retrieves predictions from database
	- ⏤Predictions are used to close equations, build linear system, and advance integration to next time step

