
CFDML – Data Analytics and 
ML for Exascale CFD

Riccardo Balin
Postdoctoral Appointee
ALCF
rbalin@anl.gov

ALCF 2022 Simulation, Data and 
Learning Workshop
10/04/2022



Argonne Leadership Computing Facility2

Overview
• Introduction and science goals
• Online ML with SmartSim
• Performance on Polaris and Theta
• Conclusions and future work



Argonne Leadership Computing Facility3

Overview
• Introduction and science goals
• Online ML with SmartSim
• Performance on Polaris and Theta
• Conclusions and future work



Argonne Leadership Computing Facility4

Introduction

Direct numerical simulation (DNS)
• Solve unsteady Navier-Stokes (NS) 

equations directly
• Resolve all spatial and temporal 

turbulent scales, no modeling
• Most accurate
• Most computational expense

Reynolds-averaged NS (RANS)
• Solve for the steady mean flow 

directly
• Model all spatial and temporal 

turbulent scales
• Inaccurate for complex flows
• Least computational expense

Large eddy simulation (LES)
• Solve unsteady filtered NS 

equations
• Resolve largest spatial scales and 

model smallest (sub-grid) scales
• Modest accuracy 
• Modest computational expense

• There are 4 main modeling approaches to computations of turbulent flow

Hybrid RANS/LES and Wall-Modeled LES (WMLES)
• Solve unsteady RANS and/or LES equations
• Model all turbulent scales of the near-wall flow

Developing closure models for LES using 
ML approaches 



Argonne Leadership Computing Facility5

Introduction
• Neural net (NN) closure models for RANS are trained on mean flow data

⏤Training data easily stored on disk, even when considering multiple flows
⏤Offline learning is sufficient and preferred
⏤Data production and training performed separately

• NN models for LES and WMLES closures must be trained on instantaneous flow data
⏤For petascale and exascale simulations, expensive multi-terabyte databases are needed to store training data
⏤Online (in situ) learning offers attractive solution to avoid I/O and storage bottleneck
⏤Data production and training performed concurrently

DNS of a Turbulent Boundary Layer Over a Bump at 𝑹𝒆 = 𝟐M

One snapshot of training data 
requires ~400GB



Argonne Leadership Computing Facility6

Science Goals
• Flows over bumps are insightful, but what are we really after?

⏤Full CFD simulations of complex aeronautical and aerospace systems
⏤NASA vision 2030: towards aircraft certification by simulation

Hybrid RANS/LES of Flow Around Aircraft Vertical Tail 
with Active Flow Control

Synthetic jet 
pulsating air in/out 
of surface



Argonne Leadership Computing Facility7

Science Goals

Turbulent Kinetic Energy Spectrum

K41: Kolmogorov 1941 theory
∘: Validation DNS on 2563 grid
---: NN model prediction on different grids

• NN model for the unclosed term in LES equations
• Goal is to predict local and instantaneous sub-grid stress (SGS) tensor, 𝜏"# = &𝑢"𝑢# − )𝑢" )𝑢#
• Model is predictive on homogeneous isotropic turbulence, but needs to be extended to wall-

bounded flows

Forced Homogeneous Isotropic Turbulence 

500x reduction in 
computational cost



Argonne Leadership Computing Facility8

Overview
• Introduction and science goals
• Online ML with SmartSim
• Performance on Polaris and Theta
• Conclusions and future work



Argonne Leadership Computing Facility9

Online ML with SmartSim
• We use SmartSim and SmartRedis to build workflows for online ML capabilities
• SmartSim/SmartRedis are open-source tools developed by HPE
• Learn more about SmartSim:

⏤ Integrating AI and Simulations session, Thursday 1:00 - 1:30 pm CST
⏤Tutorial and hands-on exercises on Polaris



Argonne Leadership Computing Facility10

Online ML with SmartSim

CFD Solver Distributed 
Training

SmartSim 
Database

SmartRedis 
Fortran Client

SmartRedis 
Python Client

CFD Solver

SmartSim 
Database

SmartRedis 
Fortran Client

Training

Inference

Inference 
performed 

within 
database

• We developed workflows for online training and inference



Argonne Leadership Computing Facility11

Online ML with SmartSim

CFD Solver Distributed 
Training

SmartSim 
Database

SmartRedis 
Fortran Client

SmartRedis 
Python Client

CFD Solver

SmartSim 
Database

SmartRedis 
Fortran Client

Training

Inference

Inference 
performed 

within 
database

• We developed workflows for online training and inference
• Two implementations: clustered and co-located

runs on nodes 1 - n runs on nodes m+1 - p 

inter-node 
comm.

runs on nodes 
n+1 - m 

inter-node 
comm.

runs on nodes 1 - n 

inter-node 
comm.

runs on nodes 
n+1 - m 



Argonne Leadership Computing Facility12

Online ML with SmartSim

CFD Solver Distributed 
Training

SmartSim 
Database

SmartRedis 
Fortran Client

SmartRedis 
Python Client

CFD Solver

SmartSim 
Database

SmartRedis 
Fortran Client

Training

Inference

Inference 
performed 

within 
database

• We developed workflows for online training and inference
• Two implementations: clustered and co-located

runs on nodes 1 - n 

intra-node 
comm.

intra-node 
comm.

intra-node 
comm.

runs on nodes 1 - n 



Argonne Leadership Computing Facility13

Online Training and Inference with SmartSim
Clustered Implementation
• Single database sharded across a cluster of nodes
• SmartSim Orchestrator, PHASTA and distributed training run on distinct set of nodes
• Pros: all data contained in single database visible by all applications, most flexibility of workflow
• Cons: reduced data transfer performance as PHASTA and distributed training scale out

Co-Located Implementation
• Distinct databases launched on each node
• SmartSim Orchestrator, PHASTA and distributed training share resources on each node
• Pros: most efficient data transfer performance at scale
• Cons: data distributed across many Orchestrators, accessing off-node data is non-trivial



Argonne Leadership Computing Facility14

Online Training with SmartSim
Data Production for Online Training
• PHASTA flow solver (mostly Fortran) or other CFD code
• During training:

⏤We use domain decomposition, so each PHASTA rank works on a partition of entire domain
⏤Solution states processed online and in parallel to compute model inputs and outputs
⏤Each rank sends training data to database with unique key for its domain partition
⏤Database will contain (num. ranks x num. time steps) distinct tensors

• Computation and transfer of training data done at specified frequency (e.g., every 50-100 time steps)

PHASTA

Database

rank 0

rank 1

rank n

…

SmartRedis client 
on each rank

training data

training data

training data and 
metadata

tensor.0

tensor.1

tensor.n

…

tensor.0

• Training data computed by rank 0 
of PHASTA
• Rows: # of mesh vertices on rank 0 
• Columns: # of inputs and outputs 

of NN model
• E.g., 20,000 x 12 for CPU runs but 

will grow for GPU runs



Argonne Leadership Computing Facility15

Online Training with SmartSim
Data Consumption for Online Training
• Distributed ML algorithm for training of turbulence model closures
• Runs at scale concurrently with PHASTA simulation
• During training:

⏤Each epoch, set of randomly chosen tensors is retrieved by each ML rank from database
⏤Each ML rank performs mini-batch stochastic gradient descent with synchronized optimizer steps
⏤When new data placed in database by PHASTA, training continues with latest training data
⏤Tensors in database can be overwritten (train on one snapshot at a time) or accumulated (train on multiple 

snapshots)

Data 
Parallel ML

Database

rank 0

rank 1

rank m

…

SmartRedis client 
on each rank

training data

training data

training data and 
metadatatensor.1

tensor.n

…

tensor.2
tensor.3

tensor.n-1

tensor.0



Argonne Leadership Computing Facility16

Overview
• Introduction and science goals
• Online ML with SmartSim
• Performance on Polaris and Theta
• Conclusions and future work



Argonne Leadership Computing Facility17

Scaling Performance on Polaris
Online Inference
• Data transfer overhead with co-located and clustered approaches

average across all ranks and inference iterations average across all ranks and inference iterations



Argonne Leadership Computing Facility18

Scaling Performance on Polaris
Online Inference
• Model evaluation overhead with co-located and clustered approaches
• Model ran on CPU

average across all ranks and 
inference iterations



Argonne Leadership Computing Facility19

Scaling Performance on Polaris
Online Training
• Training data transfer overhead with co-located approach
• Sent from simulation to DB and received by ML training from DB

median across all ranks and iterations median across all ranks and epochs



Argonne Leadership Computing Facility20

Performance on Theta
Online Inference with PHASTA
• Co-located approach for online inference using 110-220 nodes
• Significant speedup relative to SmartSim clustered implementation and initial PHASTA native 

implementation in Fortran

Note:
• Database can consume small fraction of CPU 

cores with small performance drop
• Total inference time with co-located database 

reduced to 1% of solver time step

initial Fortran 
implementation

50% cores to PHASTA
50% cores to DB

86% cores to PHASTA
14% cores to DB



Argonne Leadership Computing Facility21

Overview
• Introduction and science goals
• Online ML with SmartSim
• Performance on Polaris and Theta
• Conclusions and future work



Argonne Leadership Computing Facility22

Conclusions
• Developed a software infrastructure to combine CFD with online (in situ) ML at scale
• Capable of performing online training and inference of NN models efficiently
• Co-located implementation shows close to constant data transfer cost with increasing scale
• Currently using software to develop turbulence closure models for large eddy simulation



Argonne Leadership Computing Facility23

Ongoing and Future Work
• Incorporating GPU enabled PHASTA into workflow
• Expanding to other applications of ML for turbulence modeling
• Adding user interactivity to online workflow

⏤User-dedicated node to run scripts/notebooks evaluating model during training 
⏤Adding online visualization with Paraview

• Extending to other CFD solvers (Nek5000, NekRS, OpenFOAM)



Questions?



Argonne Leadership Computing Facility25

Introduction and Science Goals
• Why do we need to train on the entire flow domain?

⏤A simple bump geometry introduces many physical disturbances that change the turbulence physics
⏤A predictive model must be accurate for all these physical effects

• Why do we need to train on multiple snapshots?
⏤Single snapshot likely does not contain all time-dependent phenomena that model should handle during 

inference
⏤Some flows of interest are not statistically stationary and evolve over time (e.g., internal combustion 

engines, active flow control applications, off-design conditions in turbine engines, etc.)

DNS of a Turbulent Boundary Layer Over a Bump

adverse pressure 
gradient (APG)

APG w/ concave 
curvature

strong favorable 
pressure gradient (FPG)

FPG w/ convex 
curvature

strong APG

flow separation 
and reversal

decaying free-shear layer



Argonne Leadership Computing Facility26

Online Inference with SmartSim
• Evaluation of the NN closure model during simulation

⏤Each PHASTA rank sends inference data to database with unique key for its domain partition
⏤PHASTA uses SmartRedis API to evaluate model on inference data (using PyTorch jit traced model)
⏤Each rank retrieves predictions from database
⏤Predictions are used to close equations, build linear system, and advance integration to next time step

PHASTA

Database

rank 0

rank 1

rank n

…

SmartRedis client 
on each rank

inference data 
predicted data

inference.0

…

NN model

predicted.0

inference.1

predicted.1

inference.n

predicted.n

inference data 
predicted data

inference data 
predicted data

inference.0

• Inference data computed by rank 
0 of PHASTA
• Rows: # of mesh vertices on rank 0 
• Columns: # of inputs of NN model
• E.g., 20,000 x 6 for CPU runs but 

will grow for GPU runs


