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Introduction

Direct numerical simulation (DNS)
• Solve unsteady Navier-Stokes (NS) 

equations directly
• Resolve all spatial and temporal 

turbulent scales, no modeling
• Most accurate
• Most computational expense

Reynolds-averaged NS (RANS)
• Solve for the steady mean flow 

directly
• Model all spatial and temporal 

turbulent scales
• Inaccurate for complex flows
• Least computational expense

Large eddy simulation (LES)
• Solve unsteady filtered NS 

equations
• Resolve largest spatial scales and 

model smallest (sub-grid) scales
• Modest accuracy 
• Modest computational expense

• There are 4 main modeling approaches to computations of turbulent flow

Hybrid RANS/LES and Wall-Modeled LES (WMLES)
• Solve unsteady RANS and/or LES equations
• Model all turbulent scales of the near-wall flow

Developing closure models for LES using 
ML approaches 
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Introduction
• Neural net (NN) closure models for RANS are trained on mean flow data

⏤Training data easily stored on disk, even when considering multiple flows
⏤Offline learning is sufficient and preferred
⏤Data production and training performed separately

• NN models for LES and WMLES closures must be trained on instantaneous flow data
⏤For petascale and exascale simulations, expensive multi-terabyte databases are needed to store training data
⏤Online (in situ) learning offers attractive solution to avoid I/O and storage bottleneck
⏤Data production and training performed concurrently

DNS of a Turbulent Boundary Layer Over a Bump at 𝑹𝒆 = 𝟐M

One snapshot of training data 
requires ~400GB
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Science Goals
• Flows over bumps are insightful, but what are we really after?

⏤Full CFD simulations of complex aeronautical and aerospace systems
⏤NASA vision 2030: towards aircraft certification by simulation

Hybrid RANS/LES of Flow Around Aircraft Vertical Tail 
with Active Flow Control

Synthetic jet 
pulsating air in/out 
of surface
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Science Goals

Turbulent Kinetic Energy Spectrum

K41: Kolmogorov 1941 theory
∘: Validation DNS on 2563 grid
---: NN model prediction on different grids

• NN model for the unclosed term in LES equations
• Goal is to predict local and instantaneous sub-grid stress (SGS) tensor, 𝜏"# = &𝑢"𝑢# − )𝑢" )𝑢#
• Model is predictive on homogeneous isotropic turbulence, but needs to be extended to wall-

bounded flows

Forced Homogeneous Isotropic Turbulence 

500x reduction in 
computational cost
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Online ML with SmartSim
• We use SmartSim and SmartRedis to build workflows for online ML capabilities
• SmartSim/SmartRedis are open-source tools developed by HPE
• Learn more about SmartSim:

⏤ Integrating AI and Simulations session, Thursday 1:00 - 1:30 pm CST
⏤Tutorial and hands-on exercises on Polaris
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Online ML with SmartSim

CFD Solver Distributed 
Training

SmartSim 
Database

SmartRedis 
Fortran Client

SmartRedis 
Python Client

CFD Solver

SmartSim 
Database

SmartRedis 
Fortran Client

Training

Inference

Inference 
performed 

within 
database

• We developed workflows for online training and inference
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SmartRedis 
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SmartRedis 
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CFD Solver

SmartSim 
Database

SmartRedis 
Fortran Client
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Inference

Inference 
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• We developed workflows for online training and inference
• Two implementations: clustered and co-located

runs on nodes 1 - n runs on nodes m+1 - p 

inter-node 
comm.

runs on nodes 
n+1 - m 

inter-node 
comm.

runs on nodes 1 - n 

inter-node 
comm.

runs on nodes 
n+1 - m 
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SmartRedis 
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• We developed workflows for online training and inference
• Two implementations: clustered and co-located

runs on nodes 1 - n 

intra-node 
comm.

intra-node 
comm.

intra-node 
comm.

runs on nodes 1 - n 



Argonne Leadership Computing Facility13

Online Training and Inference with SmartSim
Clustered Implementation
• Single database sharded across a cluster of nodes
• SmartSim Orchestrator, PHASTA and distributed training run on distinct set of nodes
• Pros: all data contained in single database visible by all applications, most flexibility of workflow
• Cons: reduced data transfer performance as PHASTA and distributed training scale out

Co-Located Implementation
• Distinct databases launched on each node
• SmartSim Orchestrator, PHASTA and distributed training share resources on each node
• Pros: most efficient data transfer performance at scale
• Cons: data distributed across many Orchestrators, accessing off-node data is non-trivial
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Online Training with SmartSim
Data Production for Online Training
• PHASTA flow solver (mostly Fortran) or other CFD code
• During training:

⏤We use domain decomposition, so each PHASTA rank works on a partition of entire domain
⏤Solution states processed online and in parallel to compute model inputs and outputs
⏤Each rank sends training data to database with unique key for its domain partition
⏤Database will contain (num. ranks x num. time steps) distinct tensors

• Computation and transfer of training data done at specified frequency (e.g., every 50-100 time steps)

PHASTA

Database

rank 0

rank 1

rank n

…

SmartRedis client 
on each rank

training data

training data

training data and 
metadata

tensor.0

tensor.1

tensor.n

…

tensor.0

• Training data computed by rank 0 
of PHASTA
• Rows: # of mesh vertices on rank 0 
• Columns: # of inputs and outputs 

of NN model
• E.g., 20,000 x 12 for CPU runs but 

will grow for GPU runs
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Online Training with SmartSim
Data Consumption for Online Training
• Distributed ML algorithm for training of turbulence model closures
• Runs at scale concurrently with PHASTA simulation
• During training:

⏤Each epoch, set of randomly chosen tensors is retrieved by each ML rank from database
⏤Each ML rank performs mini-batch stochastic gradient descent with synchronized optimizer steps
⏤When new data placed in database by PHASTA, training continues with latest training data
⏤Tensors in database can be overwritten (train on one snapshot at a time) or accumulated (train on multiple 

snapshots)

Data 
Parallel ML

Database

rank 0

rank 1

rank m

…

SmartRedis client 
on each rank

training data

training data

training data and 
metadatatensor.1

tensor.n

…

tensor.2
tensor.3

tensor.n-1

tensor.0
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Scaling Performance on Polaris
Online Inference
• Data transfer overhead with co-located and clustered approaches

average across all ranks and inference iterations average across all ranks and inference iterations
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Scaling Performance on Polaris
Online Inference
• Model evaluation overhead with co-located and clustered approaches
• Model ran on CPU

average across all ranks and 
inference iterations
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Scaling Performance on Polaris
Online Training
• Training data transfer overhead with co-located approach
• Sent from simulation to DB and received by ML training from DB

median across all ranks and iterations median across all ranks and epochs
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Performance on Theta
Online Inference with PHASTA
• Co-located approach for online inference using 110-220 nodes
• Significant speedup relative to SmartSim clustered implementation and initial PHASTA native 

implementation in Fortran

Note:
• Database can consume small fraction of CPU 

cores with small performance drop
• Total inference time with co-located database 

reduced to 1% of solver time step

initial Fortran 
implementation

50% cores to PHASTA
50% cores to DB

86% cores to PHASTA
14% cores to DB
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Conclusions
• Developed a software infrastructure to combine CFD with online (in situ) ML at scale
• Capable of performing online training and inference of NN models efficiently
• Co-located implementation shows close to constant data transfer cost with increasing scale
• Currently using software to develop turbulence closure models for large eddy simulation
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Ongoing and Future Work
• Incorporating GPU enabled PHASTA into workflow
• Expanding to other applications of ML for turbulence modeling
• Adding user interactivity to online workflow

⏤User-dedicated node to run scripts/notebooks evaluating model during training 
⏤Adding online visualization with Paraview

• Extending to other CFD solvers (Nek5000, NekRS, OpenFOAM)



Questions?
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Introduction and Science Goals
• Why do we need to train on the entire flow domain?

⏤A simple bump geometry introduces many physical disturbances that change the turbulence physics
⏤A predictive model must be accurate for all these physical effects

• Why do we need to train on multiple snapshots?
⏤Single snapshot likely does not contain all time-dependent phenomena that model should handle during 

inference
⏤Some flows of interest are not statistically stationary and evolve over time (e.g., internal combustion 

engines, active flow control applications, off-design conditions in turbine engines, etc.)

DNS of a Turbulent Boundary Layer Over a Bump

adverse pressure 
gradient (APG)

APG w/ concave 
curvature

strong favorable 
pressure gradient (FPG)

FPG w/ convex 
curvature

strong APG

flow separation 
and reversal

decaying free-shear layer
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Online Inference with SmartSim
• Evaluation of the NN closure model during simulation

⏤Each PHASTA rank sends inference data to database with unique key for its domain partition
⏤PHASTA uses SmartRedis API to evaluate model on inference data (using PyTorch jit traced model)
⏤Each rank retrieves predictions from database
⏤Predictions are used to close equations, build linear system, and advance integration to next time step

PHASTA

Database

rank 0

rank 1

rank n

…

SmartRedis client 
on each rank

inference data 
predicted data

inference.0

…

NN model

predicted.0

inference.1

predicted.1

inference.n

predicted.n

inference data 
predicted data

inference data 
predicted data

inference.0

• Inference data computed by rank 
0 of PHASTA
• Rows: # of mesh vertices on rank 0 
• Columns: # of inputs of NN model
• E.g., 20,000 x 6 for CPU runs but 

will grow for GPU runs


