Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.
Notice revision #20110804

C_opyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Software

OVERVIEW OF ADVISOR AND VTUNE

Renzo Bustamante
Application Engineer

renzo.bustamante@intel.com

INTEL" ADVISOR

Vectorization and Static Analysis

https://www.alcf.anl.gov/user-guides/advisor-xc40

What is advisor and what can it do

Advisor is a performance estimation tool for CPU and GPUs that helps us
design and optimize high-performance code. It supports Fortan, C, C++, SYCL,

OpenMP, OpenCL and Python code to realize full performance potential on
modern computer architecture.

GPU Modeling GPU Analysis
Offload Modeling GPU Roofline Insights

CPU Analysis and Modeling

>899 s
odoe = o
Vectorization and Code Insights CPU [Memory Roofline Insights Threading

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Where to download

For stand-alone installation:

https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-
standalone-components.html#advisor

As Part of Intel’'s OneAPI:

https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.ht
ml#base-kit

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html#advisor
https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html#base-kit

What is Intel oneAPI?

oneAPl is an OP €N, cross-industry, standard-based, unified, multiarchitecture,
multi-vendor programming model that delivers a common developer
experience across accelerator architectures.

Compilers for:

C,C++, Fortran, Python
Supports the following
programming models:
SYCL(C,C++), DPCPP, (C++)
OpenMP (C,C++,Fortran)

And much more...

Works on Windows and Linux.

MIDDLEWARE & FRAMEWORKS

L
ot
Ll
i
Ll
L
e

OTHER ACCEL.

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel oneAPI

e o *e Lod
= = 1 .. Z
DPC++ oneDPL oneDNN oneCCL Level Zero
oneAPI Data oneAPI Data oneAPI| Deep Neural oneAPI Collective oneAPI
Parallel C++ Parallel C++ Library Network Library Communications Library Level Zero
& i~ N 3
333 333 (0 o “
oneDAL oneTBB oneVPL oneMKL Ray Tracing
oneAPI Data oneAPI Threading oneAPI Video oneAPI Math oneAPI
Analytics Library Building Blocks Processing Library Kernel Library Ray Tracing

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Advisor Capabilities

Vectorization and Code Insights — Allows us to find unvectorized and under-
vectorized loops and functions in our applications and get code-specific
recommendations for how improving application performance and
vectorization

CPU/Memory Roofline Insights — Produces Roofline chart for our application.

Offload Modeling. Allows us to identify where in our applications we could
benefit by offloading it to a GPU.

GPU Roofline Insight. Produces Roofline chart for our offloaded application
(OpenMP ,DPC++,0penCL)

Threading . Threading design options and project scaling on systems with
larger core counts

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Vectorization and code insights

With this tool we can analyze loops and functions that can benefit the most
from parallelism , locate un-vectorized and under-vectorized time-consuming
functions/loops and calculate estimated performance gain by vectorization.

Vectorization allows us to load more than one element of data in special vector
registers and execute instructions on all those registers at the same time.

+

+
+

+

cr3l CI2] C[1] CIo]

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Vectorization code

For this demo we will use an n-body simulation kernel based on the work of Dr.

Fabio Barufa

#ifndef _PARTICLE_HPP
#define _PARTICLE_HPP
#include <cmath>

#include "types.hpp” {

const double t0 = time.start();
(int s=1; s<=get_nsteps(); ++s)

ts0 += time.start();

=truct Particle

{ {

Particle() { initO;}
void init ()

{
pos[0] = 0.; pos[1l] = 0.; pos[2] = 0.;
vel[0] = 0.; vel[l] = 0.; wvel[2] = 0.
acc[0] = 0.; acc[l1l] = 0.; acc[2] = 0.
mass = 0.;

1

real_type pos[3];
real_type wvel[3];
real_type acc[3];
real_type mass;

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

= 0; 1 < n; i++)// update acceleration
(G =0; 7 <n; j+d)

real_type dx, dy, dz;

real_type distancesqr = 0.0;

real_type distanceInv = 0.0;

dx = particles[j].pos[0] - particles[i].pos[0]; //1fop

dy = particles[j].pos[1l] - particles[i].pos[1]; //1fop

dz = particles[j].pos[2] - particles[i].pos[2]; //1f1op
distancesqr = dx*dx + dy*dy + dz*dz + softeningSquared; //6T1

Vectorization and code insights
$git clone https://github.com/pvelesko/nbody-demo.git

On Theta:
$qgsub -1-n 1 -t 59 -q comp_perf workshop -A Comp_Perf Workshop

$module load advisor

$export PMI_NO _FORK=1

on /projects directory ,not /home
$cd var0 $make

$aprun -n 1 -N 1 advixe-cl --collect=survey --project-dir=resultsOVer --search-dir
srcir=/projects/intel/bustamante/nbody-demo/verQ/ -- ./nbody.x

$aprun -n 1 -N 1 advixe-cl --collect=tripcounts --flop --project-dir=resultsOVer --
search-dir src:r=/projects/intel/bustamante/nbody-demo/verQ/ -- ./nbody.x

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://github.com/pvelesko/nbody-demo.git

Vectorization and code insights

B) summary @, Survey & Roofline] Refinement Reports

& CPU /Memory Roofline Insights ~

CPU / Memory Roofline Insights perspective measures and visualizes the actual performance of CPU kermels against hardware-imposed performance ceilings and determines the main limiting factor.

Compilation flags used in vO:

v Program Metrics

Program Elapsed Time ~ 93.94s - GFLOPS 0.96
Vector Instruction Set ™ SSE2, SSE GFLOP Count 90.022 _g _Std =Cc++ 'I 'I _O 2
Number of CPU Threads 1 FP Arithmetic Intensity @) 1.869

+ GiTos 0.96 GFLOPS

v Performance Characteristics

CPU Time 93.03s

Time in 1 Vectorized Loop 92.96s
Time in scalar code 0.07s

v Vectorization Gain/Efficiency

Vectorized Loops Gain/Efficiency 1.80x [, — s— A

Program Approximate Gain 1.80x

> OP/S And Bandwidth

v Per Program Recommendations

Indicates that our host
architecture has hardware
. . — resources such as AVX-512
N v e oo that could be used to increase

tion::start at GSimulation.cpp:130 0.028s 92.986s 2000

O loop in GSimulat <0.001s 93.030s 500 p e rfo r m a n Ce

® Higher instruction set architecture (ISA) available
Consider recompiling your application using a higher ISA. Show more

v Top Time-Consuming Loops

Self Time Total Time

O loop in GSimu

GSimule

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Vectorization and code insights VerO

Summary % Survey & Roofline] Refinement Reports

wv A\ Higher instruction set architecture (ISA) available ® X
Consider recompiling your application using a higher ISA
kQ ely v | Cores: 1 ©. } [Y Default: FLOAT ~ %»‘1'! Compare ~ J l/ Guidance v =
100 4 & ‘
' _.--B =)
40 AH_AH;;;..'.A --------- f.'-'-'""""""‘""'""""""""""'.'»"'

ompute

our

0.04 FLOP/Byte (Arthmetic Intensity)

T o
0.007 001 0.04 007 01 04 07 1 4 7 10
Phvsical Cores: 64 @ Aop Threads: 1 @ Self Elansed Time: 92.958 s Total Elansed Time: 92.958 s

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Cache-Aware Roofline
Next Ste PS If Under the Vector Add Peak

If just above the

Scalar Add Peak

Check vectorization
efficiency in the Survey.

flagstoin FMA usage.
If under or near a FLOPS gs to induce usage Follow the
memory roof... A recommendations to

Check “Traits” in the Survey to see if FMAs are
used. If not, try altering your code or compiler

. Try a MAP analysis. LRI improve it if it's low.
Make any approprlate 4 ? V‘ctor Add Peak
cache optimizations. : I ‘
« If cache optimization 1 | Scalar Add Peak...
is impossible, try I : Check the Survey Report
reworking the : I to see if the loop
algorithm to have a | ‘ vectorized. If not, try to
higher Al. ‘ Scalar Add Peak get it to vectorize if
possible. This may involve
running Dependencies to
see if it's safe to force it.

>

Arithmetic Intensity

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Vectorization and code insights Ver2

Summary @ Survey & Roofline % Refinement Reports

<« CPU / Memory Roofline Insights ~

CPU / Memory Roofline Insights perspective measures and visualizes the actual performance of CPU kemels against hardware-imposed performance ceilings and determines the main limiting factor.

v Program Metrics Compilation ﬂags Used in VO:

Program Elapsed Time ~ 9.92s ~ GFLOPS 4.36

Vector Instruction Set AVX512, AVX2, AVX GFLOP Count 43.2i

Number of CPU Threads 1 FP Arithmetic Intensity 0.865 _g —Std = C+ + 1 1 _O 2 —XM IC_AVX5 1 2
» GINTOPS 0.08

v Performance Characteristics

Metrics Tota!

CPU Time 9.82s
Time in 2 Vectorized Loops 9.72s 99
Time in scalar code 0.10s I

v Vectorization Gain/Efficiency

Vectorized Loops Gain/Efficiency 9.79x &%] 4 . 3 6
Program Approximate Gain 9.70x G F L O PS

> OP/S And Bandwidth

v Per Program Recommendations
A No Data Avallable

v Top Time-Consuming Loops

f Self Time tal Time T nts Vector Efficiency

loop in GSimulation::start at GSimulation.cpp:132 9.711s 9.711s 125 e)

O loop in GSimulation::start at GSimulation.cpp:130 0.097s 9.808s 2000
loop in GSimulation::start at GSimulation.cpp:153 0.012s 0.012s 125 5 1 —
O loop in GSimulation::start at GSimulation.cpp:127 <0.001s 9.820s 500

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Vectorization and code insights

Summary ?&, Survey & Roofline W Refinement Reports

ely v Cores: 1 @

|Y Default: FLOAT « | | I} Compare |/‘" Guidance —
7

Scalar Add Peak: 2 22 GFLOPS

r

Compute boung

0.007 001 0.04 0.07 01
Physical Cores: 64 @ App Threads: 1 @ Self Elapsed Time: 9.711s Total Elapsed Time: 9.711 s

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

If using mpi

$mpirun —n 1 advisor --collect=survey —project-dir=results --search-dir
src:r=/source --./exe

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

INTEL" VTUNE™ AMPLIFIER

Core-level hardware metrics

https://www.alcf.anl.gov/user-guides/vtune-xc40

What is Vtune

Intel® VTune™ Profiler optimizes application performance, system performance, and
system configuration for HPC, cloud, 10T, media, storage, and more.

*CPU, GPU, and FPGA: Tune the entire application’s performance—not just the
accelerated portion.

Multilingual: Profile SYCL, C, C++, C#, Fortran, OpenCL™ code, Python*, Google Go*
programming language, Java®, .NET, Assembly, or any combination of languages.

*System or Application: Get coarse-grained system data for an extended period or
detailed results mapped to source code.

*Power: Optimize performance while avoiding power- and thermal-related throttling.

Optimization Notice

Copyright © 2022, Intel C
*Other names and brands

Predefined Collections

Many available analysis types:

= uarch-exploration General microarchitecture exploration
» hpc-performance HPC Performance Characterization

" memory-access Memory Access

= disk-io Disk Input and Output

= concurrency Concurrency

= gpu-hotspots GPU Hotspots

= gpu-profiling GPU In-kernel Profiling

= hotspots Basic Hotspots

= locksandwaits Locks and Waits Python Support
= memory-consumption Memory Consumption

= system-overview System Overview

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Command line

$vtune -collect hotspots -r resultsvO ./nbody.x

Copy the folder file to our local machine for further analysis.

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Vtune GUI . Version O, not threaded

results\Vo <
Hotspots @ 2
Analysis Configuration

Welcome
INTEL VTUNE PROFILER

Collection Log Summary ~ Bottom-up Caller/Callee Top-down Tree Flame Graph Platform

Hotspots Insights

Elapsed Time : 11.582s

CPU Time 11.570s
Total Thread Count: 1
Paused Time ©: Os

Top Hotspots

This section lists the most active functions in your application. Qptimizing these hotspot functions typically results in
improving overall application performance

% of CPU Time
100.0%

Function Module CPU Time

GSimulation::start nbody.x 11.570s

*N/A is applied to non-summable met

Effective CPU Utilization Histogram

If you see significant hotspots in the Top Hotspots list, switch to the Bottom-
up view for in-depth analysis per function. Otherwise, use the Caller/Callee
or the Flame Graph view to track critical paths for these hotspots.

Explore Additional Insights

Parallelism J09%K
Use = Threading to explore more opportunities to increase parallelism
in your application.

Microarchitecture Usage 42.9% K
Use @Microarchitecture Exploration to explore how efficiently your
application runs on the used hardware

Vectorization 99.9% M
Use < HPC Performance Characterization to learn more on
wvectorization efficiency of your application. Using the latest vector
instruction set can improve parallelism for this code. Consider either
recompiling the code with the latest instruction set or using Intel Advisor
to get vectorization help.

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Qverhead time adds to the Idle CPU utilization value

- 5!
o =l
105 @
i s =
g3 51
- = 5
"1 & 2
=
® =)
-
T |
>
= 0 !
@ |
S I
25—] |
1 |
0=— T T T T T T T T T T —
L] 10 20 i @0 50 80 o 20 a0 100 110
Id Poor

Simultaneously Utilized Logical GPUs

(0] ation Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Not threaded,
underutilizing Hardware
resources

Vtune GUI. Version 7 , Threaded

Welcome resufts\Vo resultsV7 =

Hotspots @ 12

Analysis Configuration ~ Collection Log Summary Bottom-up Caller/Callee Top-down Tree Flame Graph

Elapsed Time :1.765s

CPU Time 18.920s
Total Thread Count: 16
Paused Time 0s

Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in
improving overall application performance

Function Module CPU Time % of CPU Time
GSimulation::startomp3parallel@141 nbody.x 17.528s 92.6%
__kmp_fork_barrier libiomp5.50 11275k 6.0% R
GSimulation:stariSomp3parallel @179 nbody.x 0.120s 0.6%
__kmp_fork_call liblomp5 50 0.044s 0.2%
__kmp_get_global_thread_id_reg libiomp5.so 0.030s 0.2%

N4 is applied to non-summabie me

Effective CPU Utilization Histogram

INTEL VTUNE PROFILEI

Platform

Heotspots Insights
If you see significant hotspots in the Top Hotspots list, switch to the Bottom-
up view for in-depth analysis per function. Othenwise, use the Caller/Callee
or the Flame Graph view to track critical paths for these hotspots.

Explore Additional Insights
Parallelism 89%K
Use < Threading to explore more opportunities to increase paralielism
in your application.

Microarchitecture Usage 50%K
Use B Microarchitecture Exploration to explore how efficiently your
application runs on the used hardware

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU utilization value

s
00ms s

Elapsed Time

a00ms

£00ms

200ms

Arerage Effectire CPU Ut

ld Poor

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

T
100

Vtune GUI Version 7. Threaded

p . + - (0= 0.2s O.4s 0.8 0.8s 15 125 145 1.65 |Thread v|
- OMP Primary Thread #0 (TI... I Running
@
| OMP Worker Thread #4 (TI... s CPU Time

s Spin and Overhead. ..
[@ CPU Sample

CPU Utilization
i CPU Time
s Spin and Overhead. ..

OMP Worker Thread #12 (TI...
OMP Worker Thread #15 (TI...
OMP Worker Thread #11 (T,
OMP Worker Thread #14 (TI...
OMP Worker Thread #7 (TI...
OMP Worker Thread #1 (TI...
OMP Worker Thread #6 (TI...
OMP Worker Thread #9 (TI...

OMP Warker Thread #2 (Tl
CPU Utilization

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

TIPS AND TRICKS

Managing overheads

Advisor Dependencies and MAP analyses can have huge overheads

If able, run on reduced problem size. Advisor just needs to figure out the
execution flow.

Only analyze loops/functions of interest:

https://software.intel.com/en-us/advisor-user-guide-mark-up-loops

Optimization Notice

Copyright © 2022, Intel C
*Other names and brands

https://software.intel.com/en-us/advisor-user-guide-mark-up-loops

When do | use Vtune vs Advisor?

Vtune

What's my cache hit ratio?

Which loop/function is consuming
most time overall? (bottom-up)

Am | stalling often? IPC?
Am | keeping all the threads busy?
Am | hitting remote NUMA?

When do | maximize my BW?

Optimization Notice

Copyright © 2022, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Advisor

Which vector ISA am | using?

Flow of execution (callstacks)

What is my vectorization efficiency?
Can | safely force vectorization?
Inlining? Data type conversions?

Roofline

BACKUP

VTune Cheat Sheet

Compile with —g —-dynamic

amplxe-cl —-c hpc-performance -flags -- ./executable
* -—-result-dir=./vtune output dir
e --search-dir src:=../src --search-dir bin:=./

* -knob enable-stack-collection=true —-knob collect-memory-
bandwidth=false

* -knob analyze-openmp=true

* —finalization-mode=deferred i1if finalization 1is taking too long on KNL
* -data-limit=125 < in mb

* -—trace-mpi for MPI metrics on Theta

* amplxe-cl —-help collect survey

https://software.intel.com/en-us/vtune-amplifier-help-

Copyright © 2022, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others. amplxe_d_command_Syntax

Advisor Cheat Sheet

Compile with —-g -dynamic

advixe-cl -c¢ roofline/depencies/map —-flags -- ./executable
* --project-dir=./advixe output dir
e —--search-dir src:=../src —--search-dir bin:=./

* —-no-auto-finalize 1f finalization is taking too long on
KNL

* ——-interval 1 (sample at 1lms interval, helps for profiling
short runs)

e —data-limit=125 € in mb

* advixe-cl -help

https://software.intel.com/en-us/advisor-help-lin-

Copyright © 2022, Intel Corporation. All rights reserved.

*Qther names and brands may be claimed as the property of others. command-line-interface-reference

Software

