

Arm Forge

An interoperable toolkit for debugging and profiling

Commercially supported
by Arm

1

N B
Fully Scalable

° o
Very user-friendly

2 Confidential © 2020 Arm Limited

The de-facto standard for HPC development

- Most widely-used debugging and profiling suite in HPC
« Fully supported by Arm on Intel, AMD, Arm, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities
- Powerful and in-depth error detection mechanisms (including memory

debugging)
- Sampling-based profiler to identify and understand bottlenecks

- Available at any scale (from serial to petaflopic applications)

Easy to use by everyone

- Unique capabilities to simplify remote interactive sessions
- Innovative approach to present quintessential information to users

arm

HPC Development Solutions from Arm

Best in class commercially supported tools for Linux and high-performance computing

3

© 2021 Arm

Performance Engineering

for any architecture, at any scale

-

arm
FORGE

N

arm Debugger
DDT 99

A

N

arm Profiler
MAP

A

arm :
PERFORMANCE Reporting
REPORTS

J

arm

DDT Debugger Highlights

Ipulue | s ‘ for (3= @ ; | = BIZE_B; f+ ' hello.c 3

CLATTHT = &:
Tracepoinf Quiput HH M This file is newer than your program. Please recompile then restart yoi
T " i i = B i= SIZE M; i) else

for [j =4 E ; jred

76, anks = r STTH B A test=-1;
hone 1025 R3ET jeol 8 nod or (k=8 ; k < SIZE D; ka+f '
Vhore nuraan. | " ’PL o N m CILITIT += ALA]LK] * BIKITIT: }

60, ranks.

RIRBN B void func3()
a2, ranks

- {
vhore 8085 | oz, | ™R _.l sy H‘ Ll void* i = (void*) 1;
Frocess stopped st watchpaint "rank® in mam [wabchmatnx.c:451. N . . !
2, anks . — . A while(i++ || 1)
AIALRIFPDERY ol vakia: 0 free{(void=)il:

Hiw walug: 1074700400 . . - R =
3;9&!1’;‘:“3 o | e -_-*L WA o H 18 = hom th wincow fr wakchpbs A portabiilicy 'i'is of type 'void *'. When using void pointers in calculs

vhone 081 (58 s I =—— 1 kmax pez Lncrety 2 = Continue || Il Pavase | Pause Al |

vhene 081 ks —— 1 kmax Pz

vhene 081

vhone 085

Left click to add a breakpeint on line 50
NT2230

" (arge {
e anle For [+ = A: i & STPE M: i4al tuneThrea tect.

The scalable print Static analysis warnings
alternative on code errors

& !stremp(argv[i], "crash")) {

H
s", *(char **)argv[il);

11
= Program Stopped
' Processes 0-3:

Memory error detected in main (hello.c:118):

null pointer dereference or unaligned memory access

Note: the latter may sometimes occur spuriously if gqual
enabled

Tip: Use the stack list and the local variables to explore
current state and identify the source of the error.

E- Continue

Detect read/write @ Detect stale memory
beyond array bounds allocations

4 Confidential © 2020 Arm Limited a r' m

9 Step guide: optimizing high performance applications ~ ArM

Improving the efficiency of your parallel software holds the key to solving more complex research problems faster.
This pragmatic, 9 Step best practice guide will help you identify and focus on application readiness, bottlenecks
and optimizations one step at a time.

re-—======"="

Iolfo

+" Discover lines of code spending a long
time in 1/0.
+" Trace and debug slow access patterns.

r———=—===="=17 r———========7 L o— e — e ——— e e a
| @ Bugs L |
I +" Correct application. I I +" Measure all performance aspects. I
L o— — — —e—_e—_——e—_———a You can't fix what you can't see.
I «" Prefer real workloads over artificial tests. I

Fr———————

© Workload

+" Detect issues with balance.
+" Slow communication calls and processes. I
Dive into partitioning code.

——_—_1

| © Communication I

L——————————J

I +" Track communication performance. I
+" Discover which communication
I calls are slow and why. I

e — .l

L———————J

| e | r_o - - =—=—==1 r- .- = =

—
| © Cores | | | | @ Verification |

r———————1

| O Memory

I +" Discover synchonization I I +" Understand numerical intensity I % Validate corrections
I +" Reveal lines ufcode_boﬂlenecked I overhead and core utilization. and vectorization Ieyel. and optimal Performance.
by memory access times. I + Synchronization-heavy code and I I +" Hot loops, unvectorized code I I I
I +" Trace allocation and use of hot I implicit barriers are revealed. and GPU performance revealed.

data structures.

L———————J

LN
7

Key:
" ArmPERFORMANCE REPORTS
+ AQrMFORGE

Arm Performance Reports

face/home/HCEECO02/nnm 08/oxp09- Compute
nnm0B/CloverLeaf_OpenMPiclover_leaf

arm i i
PERFORMAMCE }2??;?5(95 phz;n:al. 96 logical cores per node)
REPORTS Per nece
1 process, OMP_NUM_THREADS was 8
arm2 L
Tue Aug 1 2017 14:55:32 (UTC+01) MPI 110
8 seconds

face/home/HCEECO0Z/nnm 08/oxp03-nnm0&/
CloverLeaf_OpenMP

Summary: clover leaf is Compute-bound in this configuration

Compute oo

MPI1 0.0%

I/O 0.0%

Time spent running application code. High values are usually
good.
This is wery high; check the CPU performance section for advice

Time spent in MPI calls. High values are usually bad.

This is very low; this code may benefit from a higher process
count

Time spent in filesystern /0. High values are usually bad.

This is negligible; there's no need to investigate I/O performance

This application run was Compute-bound. A breakdown of this time and advice for investigating further is in the CPU

Metrics section below.

As very little time is spent in MPI calls, this code may also benefit from running at larger scales.

MPI

A breakdown of the 0.0% MPI time:

Time in collective calls 0.0%
Time in point-to-point calls 0.0%
Effective process collective rate 0.00 bytes/s

Effective process point-to-point rate 0.00 bytes/s

IfO

A breakdown of the 0.0% I/O time:

Time in reads 0.0% |
Time in writes 0.0% |

Effective process read rate 0.00 bytes/s |
Effective process write rate 0.00 bytes/s |

No time is spent in MPl operations. There's nothing to No time is spent in /0 operations. There's nothing to

optimize here!

optimize here!

OpenMP Memory

A breakdown of the 29.7% time in OpenMP regions: Per-precess memory usage may alse affect scaling:
Computation g5.6% N Mean process memory usage 312 MiE [N
Synchronization 14.4% 1 Peak process memaory usage 314 MiE I
Physical core utilization 8.3% | Peak node memary usage 2.0% |

System load T.E% |

Physical core utilization is low and some cores may be

The peak node memory usage is very low. Larger problem
sets can be run before scaling to multiple nodes.

unused. Try increasing OMP_NUM_THREADS to improve

performance.

6 © 2019 Arm Limited

No source code needed

Less than 5% runtime overhead

Fully scalable

Run regularly — or in regression tests

Explicit and usable output

arm

MAP Source Code Profiler Highlights

pute 76 %. MPl 24 %. File
Find the peak memory
use

Hide Metrics...

Make sure OpenMP
regions make sense

7 Confidential © 2020 Arm Limited

38 ! late to the party
31 do j=1,28"nprocs; a
32 end if

33

34 = if {pe /= @) then

35 call MPI_SEND(a, si
36 else

37 = do from=1,nprocs-1

38 call MPI_RECV(hb,

EL] do j=1,38; b=sqrt
48 print *,"Answer f
41 end do

42 end if

43 end do

44 [call MPI BARRIER(MPI CO

AE

Improve memory access

Project Files | Main Thread Stacks | Functions
tacks

x ~ MPI Function(s) on line

CallActionsSeparatedConcerns [ir
Call [inlined]
=hemelb:net:IteratedAction::Ce
hemelb::extraction::Property?
=hemelb::extraction::Property
| hemelb:extraction:LocalPj
. 80. PMPI_File_write_at

Remove I/O bottleneck

size, nproc, mat a

A[li*size+k]*B[k*s

nalize():
wfgize. mat ¢, Tile

Restructure for
vectorization

arm

Profiled: clover leaf on 32 processes, 4 nedes, 32 cores (1 per process) Sampled from: Tue Nov & 2016 07:59:11 (UTC) for 408.1s

MAP Capabilities N

CPV floating-point aus

319 %

Memory usage
149 MB

* MAP is a sampling based scalable profiler |

07:59:11-08:05:59 (408.109s): Main thread compute 2.0 %. OpenMP 60.7 %. MPI 19.1 %, File 1O 8.6 %. Synchrenisation

- Built on same framework as DDT e

%, OpenMP overheg

- Parallel support for MPI, OpenMP, CUDA - — B i
- Designed for C/C++/Fortran SN SR v

Input/Output | Project Files | OpenMP Stacks | OpenMP Regions | Functions |
OpenMP Stacks

* Designed for ‘hot-spot” analysis s ime e ——
- Stack traces 25.% smsn s

= hydre CALL hydr
6.8% <0.1% advection_module::advection CALL advec
LR R ——
7.0% _ 0.7% [+ pdv_module:pdv CALL PdV(.TRUE.)

n{
b =<0.1% [+ timestep_module::timestep CALL timestep()

- Augmented with performance metrics 7 AU o T SR
31% L & Cycles per instruction il i et ot St
Py ———— B g 0.83

Showing data from 32,000 samples taken over 32 processes (]

.] T— CPU Cycles
* Adaptive sampling rate s ﬂ

Instructions

- Throws data away — 1,000 samples per process 615G s S
- Low overhead, scalable and small file size L2 Cacho Accesses i o

L2 Cache Misses

125 M /s

8 © 2019 Arm Limited a r m

Python Profiling

: Profiled: python3.5 on 2 processes, 1 node, 2 cores (1 per process) Sampled from: Wed Jan 30 2019 18:49:21 (UTC) for 45.1s Hide Metrics...
° d d f h ' Main thread activity
19.0 adds support for Python
| CPU floating-point L0
Call stacks s i :
| 0 = = === 2 tEs— = = ===== = —~ ==~ = == = ===t = ffE=s =
o . . . 102
Time in Interpreter | FOST 0w e
| 11.0 kB/s
0
Memory usage 8.8
78.1 MB
| 0
. . . 176 T
* Works with MPI4PY e T |
O r S WI 3.77 k calls/s . _i'f',‘!-'}gﬁ.?s".‘-,,i«‘“‘",_ i : A i -'?5‘".1’ o J"*"f“'m*‘f'{' N I'.ﬁ_‘.!"iiiiﬁ"!. -,&1‘Fnl"\"*.":-‘?i“'-;"'-i‘"ﬁ; -'l“iu‘f:'fﬁ' iJ"""'Lf" i
U S u a I M A P m et rics | 18:49:21-18:50:06 (45.068s): Main thread compute 42.5 %, MPI 48.4 %, File 1/O 3.8 %, Python interpreter 5.4 % Zoom Ao_I :=)
7 diffusion-fv-2d.py X Time spent on line 74 ®
- «| ' Breakdown of the 38.3% time
0.2% | Eg i1 spent on this line:
. S -0 S . .
Y S d St ! o Executing instructions 0.0%
Ou rce CO e VIeW 72 Calling other functions ~ 91.2%
e i e ik 21 y/ || Executing Python code 2.2%]
. 3837 i kil el it 74 —t[l h1h0—21— n[xl hihi—mxtdfdnftd dx])
Mlxed Ianguage Support |1 ";ln I T A I T :Z :D;;?Dbézcgzzéx}; . T = = L
o it e etbien el n o et :' halo(u, xlow, xhigh, nx, ny, comm, rank, size)
-g- loc_sum =
0 loc_min =
1 loc_max = .max H P1:-
82 glo_min = comm. a_'_:ed 1ce (loc_min, Dp—I-P .MIN) L
3 glo_max = comm.allreduce(loc_max, op=MPI.MAX) hd

[Input/Output] Project Files | Main Thread Stacks | Functions]

Note: Green as operation is on humpy Main Thread Stacks o®

| Total core time ~ MPI Function(s) on line Source Position [+]
5 & python3.5 [program]
array’ SO baCked by C rOUtIne’ = l'p);ciffusion—f\izdspy #!/usr/bin/env python diffusion-fv-2d.py:1
£l main i s.argv(l:]) diffusion-fv-2d.py:169
1 1 bt d array_subtract, array_multiply, array... - (un[xlow:xxhigh,0:-2] - un[xlow:xxhigh,1:-1]) * (dy/dx)) / (dy*dx)) diffusion-fv-2d.py:74 I
nOt Pytho n (Wh ICh WO u Id be pl n k) 28. 5%“““_ 27.2% '-halo halo({u, xlow, xhigh, nx, ny, comm, rank, size) duIUS?OI"I-fV-ZC!.py:?? v

Showing data from 2,000 samples taken over 2 processes (1000 per process) Arm Forge 19.0.2 2 Main Thread View

ap --profile jsrun -n 2 python3 Jdiﬁcusmn_fv_Zd'pyGrm

9 © 2019 Arm lelted

‘WFH Technology’, ... Remote Connect

arm
FORGE
mydesktop mycluster-login ot program
a rm Load a profile data file from a previous run
DDT gemons
S

arm

“ MAP
|

e o ~ Remote Launch Settings

Connection Name: | Ascent

k
Host Name: n5{@Iogin1.ascent.olcl.oml.gov l:
How do | connect via a gateway (multi-hop)? Add
Remote | Dil y ge/19.1.2 E
Edit
Remote Script Optiona! .
Aways look for source files locally poale
Compute Nodes et Pcka: (3 =
Interval: 30 seconds - I[:oUp 7
£ Proxy through login node E
ove Down
Test Remote Launch
L
Heb . o P

https://developer.arm.com/docs/101136/latest/arm-forge/connecting-to-a-remote-system

10 © 2019 Arm Limited a rm

https://developer.arm.com/docs/101136/latest/arm-forge/connecting-to-a-remote-system

‘WFH Technology’, ... Offline Debugging

11

https://community.arm.com/developer/tools-software/hpc/b/hpc-blog/posts/debugging-while-you-sleep

https://community.arm.com/developer/tools-software/hpc/b/hpc-blog/posts/more-debugging-while-you-sleep-with-ddt

© 2019 Arm Limited

cstartmpi logbook - Mozilla Firefox

cstartmpi logbook

c @

@ file:///home/beapai01/demo/ddt/cstartmpi/cstartmpi.exe_4p_1n_2019-11-13_13-18.html e w [\

cstartmpi logbook

Debugging /home/beapai0l/demo/ddt/cstartmpi/cstartmpi.exe

Messages Tracepoints Memory Leak Report Output

Messages

[+] Expand All [-] Collapse All

|Type| Time |Processes Message

1 g) 0:00.000|0-3 Launching program /home/beapai0l/demo/ddt/cstartmpi/cstartmpi.exe
at Wed Nov 13 13:17:18 2019
Executable modified on Wed Jul 24 10:14:07 2019

2 é) 0:11.902|0-3 Startup complete.

3 0:11.903 |n/a Select process group All

4 j 0:11.904|0-3 Add breakpoint for cstartmpi.c:175

5 j 0:11.906|0-3 Add breakpoint for cstartmpi.c:101

6] 0:11.908|0-3 Add tracepoint for cstartmpi.c:117
Vars: x, ¥

7 0:11.910(0 Add watchpoint for beingWatched

8] 0:11.912(0-3 Add breakpoint for cstartmpi.c:137

9 Additional Information
arm
‘Processes Threads: Function Source Variables
‘-3 4 ‘main (cstartmpi.c:93) » MPI Comm rank(MPI COMM WORLD, &my rank); » Rank 0, thread 1°

https://community.arm.com/developer/tools-software/hpc/b/hpc-blog/posts/debugging-while-you-sleep
https://community.arm.com/developer/tools-software/hpc/b/hpc-blog/posts/more-debugging-while-you-sleep-with-ddt

