Foundations of HDF5 and
Parallel I/0

July 27, 2022

S -

I R |
The HDF Group M. Scot Breitenfeld

Talk Outline rL/1

The HDF Group

 Foundations of HDF5

* Introduction to
 HDF5 data model, software, and architecture
« HDF5 programming model

» Overview of general best practices

* Overview of parallel HDF5
* Introduction to HDF5 parallel 1/O
» General best practices and methods which affect parallel performance
» Using Parallel I/O instrumentation for tuning

LIrJ=

Why HDF5? L/

The HDF Group

2 Have you ever asked yourself:
 How do | organize and share my data?
 How can | use visualization and other tools with my data?
* \What will happen to my data if | need to move my application to another system?
* How will | deal with one-file-per-processor in the exascale era”
* Do | need to be an "MPI I/O and Lustre, or Object Store, etc.” pro to do my research?

« HDFS5 is an answer to the questions above and can hide all complexity so you
can concentrate your research

What is HDF5?

LIrJ=

What iS HDF5? Thle-HIB{.(I;roup

* Hierarchical Data Format version 5 (HDF5)

1. An extensible data model
» Uses structures for data organization and specification

2. Open source software (I/O library and tools)
* Performs I/O on data organized according to the data model

» Works with POSIX and other types of backing store: Object Stores
(DAOS, AWS S3, AZURE, Ceph, etc.), memory hierarchies and
other storage devices

3. Open file format (POSIX storage only)

LIrJ=

HDF5 is like ... L/l

The HDF Group

random access;
subsetting

hierarchical;

CO";?;?;:’S of standard
. : exchange format;
information

heterogeneous
information

self-describing;
extensible types;
rich metadata

high-performance;
compact;
scalable

LIrJ=

HDF5 is designed for... L/

The HDF Group

* High volume and complex data
« HDF5 files of GBs sizes are common

* Every size and type of system (portable)
* Works on from embedded systems, desktops and laptops to exascale systems

 Flexible, efficient storage and I/O
* Works for a variety of backing storage

» Enabling applications to evolve in their use of HDF5 and to accommodate new

models
» Data can be added, removed and reorganized in the file

» Supporting long-term data preservation

» Petabytes of remote sensing data including data for long-term climate research in NASA
archives now

LIrJ=

HDF5 Ecosystem L

The HDF Group

+ National Science Foundation
' WHERE DISCOVERIES BEGIN

ECOSYSTEM

LIVE
HDFS

oolkit for LabVIEW™

B
B
. -nefCDF
diamond
W Atlassian

v e ok v et erdd

k|
o4

Everything vou
Connectyaty in ou ponw' m

A
g E‘ < Pylables
St B FOF oo oo) g_n% 1F TensorFlow

Supports

PRINTWVIdE

i

CAVS

I ParaVview

X
%

tecplot”

o
’L
|

| (OPeNDAP

Data Model
Documentation

HDF5 Data model

HDF5 File

The HDF Group

A | lon | temp

An HDF5 file is a
container that holds
data objects.

HDF5 Data Model g

N L71
The HDF Group

| Dataset —
Organize and contain data elements

l

= Dataspace —

“r Describes logical layout of the data elements

i 4

- | Attribute —
User-defined metadata .

HDF5 Obijects
= Datatype —

é . =1\ Describes individual data elements
{

File

Organize data objects

11

=

HDF5 Dataset L/

The HDF Group

Specifications for single data Multi-dimensional array of
element and array dimensions Identically typed data elements

 HDF5 datasets organize and contain data elements

* HDF5 datatype describes individual data elements

 HDF5 dataspace describes the logical layout of the data elements

12

HDFS5 Dataspace g

The HDF Group

Two roles:

(1) Spatial information for Datasets and Attributes
* Empty sets and scalar values
 Multidimensional arrays

* Rank and dimensions B

* A permanent part of object definition

Rank =2
Dimensions =4 x 6

(2) Partial 1/0O: Dataspace and selection describe the application’s data buffer and data
elements participating in 1/0

Rank =1

Dimension = 10

13

How to describe a subset in HDF5? L

The HDF Group

» Before writing and reading a subset of data, one must describe it
to the HDFS Library.

* The HDF5 APls and documentation refer to a subset as a
“selection,” for example “hyperslab selection.”

* |[f specified, HDF5 performs 1/O on a selection only and not on all
dataset elements.

14

LIrJ=

Describing elements for I/O: HDF5 Hyperslab L/

The HDF Group

« Everything is “measured ” in the number of elements; 0-based
 Example 1-dim:
» Start - starting location of a hyperslab (5)
* Block - block size (3)

* Example 2-dim:
» Start - starting location of a hyperslab (1,1)
« Stride - number of elements that separate each blocm
* Count - number of blocks (2,6)
» Block - block size (2,1) I

* All other selections are built using set operations

15

HDF5 Datatypes

 Describe individual data elements in an HDF5 dataset

* A wide range of datatypes is supported

 HDF5 library provides predefined symbols to describe atomic datatypes

16

Atomic types: integer, floats

User-defined (e.g., 12-bit integer, 16-bit float)

Enum

References to HDF5 objects and selected elements of datasets
Variable-length types (e.g., strings, vectors)

Compound (similar to C's structures or Fortran’s derived types)
Array (similar to matrix)

More complex types can be built from the types above

LIrJ=

/1
The HDF Group

HDF5 Dataset with Compound Datatype ==

The HDF Group

3

<<
<< ||
< < M

* F int32 2x3x2 array of float32
Compound / J /

Datatype:

Dataspace: Rank=2
Dimensions = 5 x 3

17

=

How are data elements stored? (1/2) 4 I
Buffer in memory Data in the file
Data elements stored
Contiguous physically adjacent
(d efault) - - to each other
. . . Better access time
Chunked ‘ for subsets;
. . . extendible
Chunked & Improves storage

efficiency,

Compressed transmission speed

18

Compression and filters in HDF5 L

The HDF Group

« GZIP and SZIP (free version is available from German Climate Computing
Center)

» Other compression methods registered with The HDF Group at

https://portal.hdfgroup.org/display/support/Contributions#Contributions-filters

« BZIP2, JPEG, LZF, BLOSC, MAFISC, LZ4, Bitshuffle, SZ and ZFP, etc.
* The listed above are available as dynamically loaded plugins

* Filters:
* Fletcher32 (checksum)
« Shuffle
o Scale+offset
* N-bit

19

https://www.mpg.de/dkrz_en
https://portal.hdfgroup.org/display/support/Contributions

How are data elements stored? (2/2) e 3R Groun

Buffer in memory Data in the file

Data elements stored
directly within
object’s metadata

Compact

Dataset
Object Header

Data elements stored

Ext | Dataset /E outside the HDFS5 file,
xemna - Object Header possibly in another
E file format
Data elements are
o -

stored in “source
datasets,” using
selections to map

20

HDF5 Attributes

» Attributes “decorate” HDF5 objects
» Contain user-defined metadata
» Similar to Key-Values:

* Have a unique name (for that object) and a value

* Analogous to a dataset

* “Value” is described by a datatype and a dataspace
* Do not support partial I/O operations; nor can they be compressed or extended

21

LIrJ=

/1
The HDF Group

L
HDF5 Groups and Links The HDF Group

onfiguration: Standard 3

HDFS5 groups and links Emm;m Every HDFS file

organize data objects. has a root group

A) Parameters

10:100:1000
Viz

Timestep
36,000

22

HDF5 software and architecture

HDFS5 Software P =

The HDF Group

HDF5 home page: http://hdfgroup.org/HDFS/
» Latest releases: HDF5 1.8.21,1.10.9, 1.12.2, 1.13.1 (precursor to 1.14.0)

HDF5 source code:
* Available on GitHub: https://github.com/HDFGroup/hdf5
* Written in C and includes optional C++, Fortran, Java APls, and High-Level APls
» Contains command-line utilities (h5dump, h5repack, hadiff, ..) and compile scripts

HDFS pre-built binaries:

* Include C, C++, Fortran, Java, and High-Level libraries when possible. Check
lib/libhdf5.settings file.

» Built with the SZIP and ZLIB external libraries
3" party software:
* h5py (Python)
» http://hScpp.orag/ (Contemporary C++ including support for MPI |/O)

24

http://hdfgroup.org/HDF5/
https://github.com/HDFGroup/hdf5
http://h5cpp.org/

Useful Tools For New Users /1

The HDF Group

hSdump
Tool to "dump” or display contents of HDF5 files

Scripts to compile applications:
hocc, hdc++, hSfc (hbpcce, hbpfc — parallel variants)

HDFView:
Java browser to view HDF5 file

https://portal.hdfgroup.org/display/HDFVIEW/HDFView

HDFS Examples (C, Fortran, Java, Python, Matlab, ...)
https://portal.hdfgroup.org/display/HDFS5/HDFS5+Examples

25

https://portal.hdfgroup.org/display/HDFVIEW/HDFView
https://portal.hdfgroup.org/display/HDF5/HDF5+Examples

HDF5 Library Architecture (1.12.0 +) L=

N L71
The HDF Group

HDFS APl and language bindings

Virtual Object Layer (VOL)
HDFS Core /
Library Pass-through VOL connectors (e.g., Async |10)
N7 S e N7 <
= VOL
_ % % ., | connectors
VFDs 0 I n O
0 o @) 0
O <C
N Y. i

AN

!

26

HDF5 Programming model and API

LIrJ=

The General HDF5 API L/

The HDF Group

 C, FORTRAN, Java, and C++

» C routines begin with the prefix: H5¢
corresponds to the type of object the function acts on

Example Functions:
H5D : Dataset interface e.g., H5Dread

HSF : File interface e.g., H5Fopen
HSS : dataSpace interface e.g., H5Sclose

* The language wrappers follow the same trend

 There are more than 300 APIs — but one can start with less than 50

28

General Programming Paradigm

29

* Properties of an object are optionally defined

» Creation properties (e.g., use chunking storage)
» Access properties (e.g., using MPI /O driver to access file)

* Object is opened or created

» Creation properties applied
* Access properties applied
» Supporting objects are defined (datatype, dataspace)

» Object is accessed possibly many times
* Access property can be changed

* Object is closed

LIrJ=

/1
The HDF Group

Standard HDF5 program “Skeleton”

30

HSFcreate (H5Fopen) create (open) File

H5Screate simple/H5Screate create dataSpace

H5Dcreate (H5Dopen) create (open) Dataset

H5Dread, H5Dwrite access Dataset
H5Dclose close Dataset
H5Sclose close dataSpace
HSFclose close File

=

N L71
The HDF Group

General best practices

LIrJ=

HDF5 Dataset I/0 /1

The HDF Group

* [ssue large I/O requests
» At least as large as the file system block size

- Avoid datatype conversion©
» Use the same data type in the file as in memory

- Avoid dataspace conversion?
* One dimensional buffer in memory to two-dimensional array in the file

© Can break collective operations; check what mode was used
HoPget _mpio_actual 10 _mode, and why
HS5Pget _mpio_no_collective _cause

32

https://support.hdfgroup.org/HDF5/doc/RM/RM_H5P.html
https://support.hdfgroup.org/HDF5/doc/RM/RM_H5P.html

LIrJ=

HDF5 Dataset - Storage -

The HDF Group

» Use contiguous storage if no data will be added and compression is not used
 HDF5 will not cache data

» Use compact storage when working with small data (<64K)
« Data becomes part of HDF5 internal metadata and is cached (metadata cache)

* |[f you have binary files that you would like to convert to HDF5, consider
external storage and use the h5repack tool

* Avoid data duplication to reduce file sizes

» Use links to point to datasets stored in the same or external HDF5 file
* Use VDS to point to data stored in other HDF5 datasets

33

L=

HDF5 Dataset — Chunked Storage L/l

The HDF Group

» Chunking is required when using extendibility and/or compression and other filters
* /O is always performed on a whole chunk

» Understand how chunking cache works
https://portal.hdfgroup.org/display/HDFS5/Chunking+in+HDFS and consider

* Do you access the same chunk often?
* What is the best chunk size (especially when using compression)?
* Do you need to adjust chunk cache size (1 MB default; can be set up per file or per dataset)?

» H5Pset chunk cache sets raw data chunk cache parameters for a dataset
- H5Pset chunk _cache (dapl, ..);

 H5Pset cache sets raw data chunk cache parameters for all datasets in a file
- H5Pset _cache (fapl, ..);

* Investigate other parameters to control chunk cache
34

https://portal.hdfgroup.org/display/HDF5/Chunking+in+HDF5

LIrJ=

HDF5 Dataset — Chunked Storage (cont’d) L

The HDF Group

» Cache size is essential when doing partial 1/0 to avoid many |/O operations

* With the 1 MB cache size, a chunk will not fit into the cache
* All writes to the dataset must be immediately written to the disk

* With compression, the entire chunk must be read, and rewritten, every time a
part of the chunk is written to
« Data must also be decompressed and recompressed each time

* Without compression, the entire chunk must be written when it is first
written to the file.

* To write multiple chunks at once, increase the cache size to hold more
chunks

35

Effect of chunk cache size on read L/

The HDF Group

* With compression, HDF5 reads entire chunk once for each call to
H5Dread, cache size does not matter

» \WWithout compression, HDFS5's behavior depends on the cache size
relative to the chunk size.

 If the chunk fits in the cache, HDF5 reads the entire chunk once for each
call to H5Dread

* |f the chunk does not fit in cache, the library reads only the data that is
selected

» Cache must be large enough to hold all the chunks to perform well.

* The optimum cache size depends on the exact shape of the data, as
well as the hardware, as well as access pattern.

36

-V —
Start Will This Chunk ri/1

l Be Cached? The HDF Group

Does Dataset Using MPI-IO Chunk is not
have I/0 No > VFD with file Yes — | 2NN I':zdm
Filters? write access? cac

Yes No Yes
v Yes { Yes

No

Chunk fits in

Dataset’s
Chunk Cache?

Has Chunk

been Allocated
in File?

Is Partial
Chunk, at
Edge?

Does Dataset

allow Partial
Edge Chunks?

No +<{ Reading Data? No »

NO No
Yes
Chunk is Should Dataset
cached Yes Fill value be

written?

37

- - — =
Memory considerations Wl

The HDF Group

* Open Objects

* Open objects use up memory. The amount of memory used may be

substantial when many objects are left open. Application should:

* Delay opening of files and datasets as close to their actual use as is feasible.
* Close files and datasets as soon as their use is completed.

* |f writing to a portion of a dataset in a loop, close the dataspace with each iteration, as
this can cause a large temporary "memory leak.”

* There are APls to determine if objects are left open.
HS5Fget obj count will get the number of open objects in the file,
and H5Fget obj ids will return a list of the open object identifiers.

38

https://support.hdfgroup.org/HDF5/doc/RM/RM_H5F.html
https://support.hdfgroup.org/HDF5/doc/RM/RM_H5F.html

LIrJ=

Memory considerations (cont’d) L/

The HDF Group

« Metadata Cache

39

The metadata cache can also impact memory usage.

* Modify the metadata cache settings to minimize the size and growth of the cache as much as possible
without decreasing performance.

By default, the metadata cache is 2 MiB in size (maximum allowed 32 MiB per file).
* The metadata cache can be disabled or modified.
 Memory used for the cache is not released until the datasets or file is closed.

https://portal.ndfgroup.org/display/HDF5/Metadata+Caching+in+HDFS

See https://portal.hdfgroup.org/display/HDES/HS5P _GET MDC CONFIG get default MD cache
configurations and https://portal.hdfgroup.org/display/HDFES/HSP _SET MDC CONFIG to set
new configuration

To keep MD cache from growing, consider evicting objects on close
https://portal.ndfgroup.org/display/HDFS5/HS5P_SET EVICT ON_CLOSE

https://portal.hdfgroup.org/display/HDF5/Metadata+Caching+in+HDF5
https://portal.hdfgroup.org/display/HDF5/H5P_GET_MDC_CONFIG
https://portal.hdfgroup.org/display/HDF5/H5P_SET_MDC_CONFIG
https://portal.hdfgroup.org/display/HDF5/H5P_SET_EVICT_ON_CLOSE

Parallel I/0O with HDF5

)) [W e
PHDF5 implementation layers The HDF Group

APPLICATION

g 0 g0
COMPUTE NODE -« . COM?UTE I\%DE S , COﬁﬁﬁODE

vvvvvv

s aes
| HDF5 LIBRARY

S MPI 1/0 LiBRARY

. HDF5 FILE ON PARALLEL FILE SYSTEM

i
-
< . '
K
r ’ "
AR 3
g =y ‘_ K . — — — — — — — — — — — — — —

DISK ARCHITECTURE AND LAYOUT OF DATA ON DISK

o

41

Parallel File Systems — Lustre, GPFS, etc. T

The HDF Group

1sks

Disks

Disks

Disks

Compute Node

» Scalable, POSIX-compliant file systems designed for
large, distributed-memory systems

» Uses a client-server model with separate servers for file
metadata and file content

42

In a Parallel File System FLT

! !! ! !! ! !! !

The file is striped over multiple “disks” (e.g. Lustre OSTs)
depending on the stripe size and stripe count with which the file
was created.

43

Contiguous Storage FLT

The HDF Group

* Metadata header separate from dataset data
» Data stored in one contiguous block in HDF5 file

Vietagata cache

Dataset header
Datatype Dataset data
Dataspace

Attributes

Dataset data I

44

=

Chunked Storage L

The HDF Group

» Dataset data is divided into equally sized blocks (chunks).

» Each chunk is stored separately as a contiguous block in HDF5
file.

Vietagata cache

Dataset header

Datatype
Dataspace

45

In a Parallel File System

46

header

BEREEE
SED GED GED BN

The file is striped over multiple OSTs depending on the stripe size
and stripe count with which the file was created.

=

N L71
The HDF Group

Compact dataset rL/1

The HDF Group

Dataset header

Application memory

- Dataset header -

Raw data is written when object header is written

47

=

Types of Application I/O to Parallel File Systems o

The HDF Group

File-per-processor

48

Why Parallel HDF5?

» Take advantage of high-performance parallel I/O while reducing

complexity
* Use a well-defined high-level 1/O layer instead of POSIX or MPI-IO

» Use only a single or a few shared files
* “Friends don't let friends use file-per-process!” @

» Maintained code base, performance and data portability
* Rely on HDF5 to optimize for underlying storage system

49

LIrJ=

/1
The HDF Group

L =
What We’ll Cover Here e HDF Grous

» Parallel vs. Serial HDF5
* Implementation Layers
 HDFS files (= composites of data & metadata) in a parallel environment

» Parallel HDF5 (PHDFS) I/O modes: collective vs. independent
» Data and Metadata I/O

50

- S| W e
Terminology el

The HDF Group

 DATA — "problem-size” data, e.g., large arrays
« METADATA —Is an overloaded term

* In this presentation:
Metadata "=" HDF5 metadata

* For each piece of application metadata, there are many associated pieces of HDF5 metadata

* There are also other sources of HDF5 metadata
* Chunk indices, heaps to store group links and indices to look them up, object headers, etc.

51

Parallel HDF5 (PHDF5) vs. Serial HDF5

« PHDFS allows multiple MPI processes in an MPI application
to perform 1/O to a single HDFS file

 PHDF5 uses a standard parallel I/O interface (MPI-10)
* Portable to different platforms

 PHDF5 files ARE HDF5 files conforming to the HDFS file
format specification

* The PHDF5 API consists of:
e The standard HDF5 API

A few extra knobs and calls
* A parallel “schema”

52

LIrJ=

/1
The HDF Group

https://www.hdfgroup.org/HDF5/doc/H5.format.html

LIrJ=

General HDF5 Programming Parallel Model for raw The HDF Group

data 1/0

» Each process defines selections in memory and in file (aka HDF5 hyperslabs)
using H5Sselect hyperslab

* The hyperslab parameters define the portion of the dataset to write to

- Contiguous hyperslab

- Regularly spaced data (column or row)
- Pattern
- Blocks

HHHHHHHH

» Each process executes a write/read call using selections, which can be either
collective or independent

53

Lt
Example of a PHDF5 C Program The HOF Group

Starting with a simple serial HDFS program:

file id = HS5Fcreate(FNAME, .., H5P_DEFAULT);
space id = H5Screate simple(..);
dset _id = HS5Dcreate(file_id, DNAME, H5T NATIVE INT, space_id, ..);

status = H5Dwrite(dset id, H5T NATIVE INT, .., HS5P _DEFAULT);

54

LIrJ=

Example of a PHDF5 C Program o HDF &

The HDF Group

A parallel HDF5 program has a few extra calls:
MPI Init(&argc, &argv);

fapl id = H5Pcreate(H5P_FILE_ACCESS);

H5Pset fapl mpio(fapl id, comm, info);

file id = H5Fcreate(FNAME, .., fapl id);

space_id = H5Screate_simple(..);

dset _id = HS5Dcreate(file_id, DNAME, H5T_NATIVE INT, space_id, ..);
xf id = HS5Pcreate(H5P DATASET XFER);

H5Pset dxpl mpio(xf id, H5FD _MPIO COLLECTIVE);

status = H5Dwrite(dset id, H5T NATIVE INT, .., xf id);

MPI Finalize();

55

L =
Parallel HDF5 Schema e HDF Grous

* PHDFS opens a shared file with an MPI communicator

* Returns a file ID (as usual)
o All future access to the file via that file ID

 Different files can be opened via different communicators
#All processes must participate in collective PHDF5 APIs

£All HDF5 APls that modify the HDF5 namespace and structural metadata are

collective!

* File ops., group structure, dataset dimensions, object life-cycle, etc.
https://support.hdfgroup.org/HDFS/doc/RM/CollectiveCalls.html

 Raw data operations can either be collective or independent
* For collective, all processes must participate, but they don’t need to read/write data.

56

https://support.hdfgroup.org/HDF5/doc/RM/CollectiveCalls.html

Object Creation (Collective vs. Single Process) FLT

The HDF Group

8 | | | |
——e— Collective Object Creation

+—=a— One Processes Object Creation

| ! : ’) e

Time (seconds)
N

0 | | | | | | | | | | |
8 16 32 64 128 256 512 1024 2048 4096 8192 16384
Number of Processes

S7

LIrJ=

A CAUTION: Object Creation oea
(Collective vs. Single Process)

* In sequential mode, HDFS5 allocates chunks incrementally, i.e., when data is
written to a chunk for the first time.

* Chunk is also initialized with the default or user-provided fill value.

* In the parallel case, chunks are always allocated when the dataset is created
(not incrementally).

 The more ranks there are, the more chunks need to be allocated and
initialized/written, which manifests itself as a slowdown

58

A CAUTION: Object Creation ThUZ'Bf fp
(SEISM-IO, Blue Waters—NCSA)

& Set HDF5 to never fill chunks (H5Pset fill_time with H5D FILL TIME NEVER)

700

600

500

400

Runtime (s)

300

200

100

16384 8192 4096 2048 1024 512 256 128 64

59 | 'write_original WM open_original =-@==open_neverfill ==@==\yrite neverfill

Collective vs. Independent Operations -

The HDF Group

* MPI Collective Operations:
 All processes of the communicator must participate, in the right order.
E.g.,
Process Process?2
V call A(); call B();\ call A(); call B();\...CORRECT

call A(); call B();/ call B(); call A(); ...WRONG

e\ - /

» Collective /O attempts to combine multiple smaller independent |/O
ops into fewer larger ops; neither mode is preferable a priori

60

LIrJ=

Writing and Reading Hyperslabs L

The HDF Group

 Distributed memory model: data is split among processes
 PHDFS5 uses HDF5 hyperslab model
» Each process defines memory and file hyperslabs

H5Sselect hyperslab(space id, H5S SELECT SET,
offset, stride, count, block)

» Each process executes partial write/read call

» Collective calls
* Independent calls

61

Complex data patterns L

The HDF Group

HDF5 doesn’t have restrictions on data patterns and balance

Irregular hyperslabs created by union
operators
H5Sselect hyperslab(space id, op,

uuuuuuuu

- T T] stert, stride, count, block)

__
uuuuuuuu

62

Complex data patterns -- Selection L

The HDF Group

H5S_SELECT_SET

H5S_SELECT_OR

H5S_SELECT_AND

H5S_SELECT_XOR

HoS_SELECT_NOTB

H5S_SELECT_NOTA

63

- - =
Examples of irregular selection L

The HDF Group

- PO: MPI_Type_create_stuct

‘P1: MPI_Type_create_stuct

P2: MPI_Type_create_stuct

g

Internally...

1. The HDFS5 library creates an MPI| datatype for each
lower dimension in the selection

2. It then combines those types into one large structured
MPI datatype

64

Example 1: Writing dataset by rows FOT
Memory - File

PO

Pl

65

Example 1: Writing dataset by rows FT
The HDF Group
Memory File
Process P1 offset[1]
count[1l]

offset[0]

count [0] N —

count[0] = dimsf[0]/mpi size
count[l] = dimsf[1l];

offset[0] = mpi rank * count[0]; /*
offset[1l] = O;

66

Example 1: Writing dataset by rows =

The HDF Group

71 /*
72 * Each process defines dataset in memory and
* writes 1t to the hyperslab

73 * in the file.

74 */

75 count|[o]
76 count|[1]
77 offset|[09]
78 offset[1]
79 memspace

dimsf[@]/mpli _size;
d1msf[1],
mp1 rank * count|[0];

HSScreate_simple(RANK,count,NULL);

80

81 /*

82 * Select hyperslab in the file.
83 */

84 filespace = H5Dget_space(dset_id);
85 H5Sselect hyperslab(filespace,
H5S SELECT_SET,offset,NULL,count,NULL);

6/

C Example: Collective write and read

* Create property list for collective dataset write.

= H5Pcreate(H5P_DATASET XFER);

H5Pset_dxpl mpio(plist_id, HSFD MPIO COLLECTIVE);

H5Dwrite(dset _id, H5T_NATIVE_INT,
memspace, filespace, plist id, data);

* Collective dataset read.

95 [/*

96

97 * /

98 plist id
->99

100

101 status =

102

103 /*

104

105 */

106
->107 status =

108

109
68

H5Dread(dset_id, HS5T_NATIVE_INT,
memspace, filespace, plist id, data);

LIrJ=

/1
The HDF Group

Writing by rows: Output of h5dump N —
The HDF Group
HDF5 "SDS row.hb" ({
GROUP "/" {
DATASET "IntArray" ({
DATATYPE HST STD I32BE
DATASPACE SIMPLE { (8, 5) / (8, 5) }
DATA ({
i0, 10, 10, 10, 10,
i0, 10, 10, 10, 10,
11, 11, 11, 11, 11,
11, 11, 11, 11, 11,
12, 12, 12, 12, 12,
12, 12, 12, 12, 12,
13, 13, 13, 13, 13,
13, 13, 13, 13, 13

69 }

General HDF5 Best Practices and Case Studies for
Parallel Performance

LIrJ=

PHDF5 Fundamentals — A Simple Problem /1

The HDF Group

* Writing multiple 2D array variables over time:

ACROSS P processes arranged in a R x C process grid
FOREACH step1.. S
FOREACH count1. A
CREATE a double ARRAY of size [X,Y] | [R*X,C*Y] (Strong | Weak)
(WRITE | READ) the ARRAY (to | from) an HDF5 file

71

Fundamentals — Missing Information

* How are the array variables represented in HDF5?

o 2D, 3D, 4D datasets

* Are the extents known a priori?

« How are the dimensions ordered?
* Groups?

* What order is the data written, and is the data read the same way?

* What's the storage layout?

 How many physical files?
» Contiguous or chunked, etc.
 |s the data compressible?

* What's the file system or data store?
» Collective vs. independent MPI-IO

/2

LIrJ=

/1
The HDF Group

/3

One Kind of Performance Hurdle

 HDF5 has a complex-looking interface
» Complexity does not necessarily mean difficult to use
* Users may require such complexity to achieve their goals
» Goal: Self-describing share-friendly data layout
» Tuning performance and efficiency with the
constraint of using a standardized file format
(netCDF, CGNS, etc.)
* Goal: Fastest I/O possible
* Tuning for check-points by minimizing metadata,
large write blocks.
* The complexity of the HDF5 workflow and underlying
hardware may make the HDF5 tasks unavoidably
complex.

LIrJ=

N L71
The HDF Group

Other Sources of Performance Variability ol

The HDF Group

. Hardware
. System configuration and activity of other users

=0 . Sy T
A)l T =~ \:.\Q*
B L%

g g ‘
- : N .j"v.;" ‘ . “ bl -__,.f ot -
. HDFS property lists T T e e >
TR c’!ﬁi';:.x,. - 2 EER i
L/ M *.\ o Ry L7

Bt P T [—,_:e- /-g,&

AR

Nearly 180 APls V7 e e Ty
A = g LRI TERE

Controls storage properties for HDF5 objects o T
Controls in-flight HDF5 behavior
About 100 H5Pset * functions

<pq* ... " P1gp COMbinations!

How many are tested?
What does H5P DEFAULT mean?

What is the effect of using H5P_DEFAULT?
https://portal.ndtgroup.org/display/HDF5/Property+Lists

4

https://portal.hdfgroup.org/display/HDF5/Property+Lists

Back to earlier example — Application Model

« Good or bad news:

There are several different ways to handle the data in HDF5, for example:

O

« Many 2D datasets or attributes
= Afew 3D datasets

« AA4D dataset

O

There are many ways to use HDF5 properties
« Chunking
- Data alignment
. Metadata block size

- Collective/Independent I/O

O

|deally, performance would be more or less the same

HDF5 I/0" test explores the HDF5 parameter space

O

1 https://github.com/HDFGroup/hdf5-iotest

79

¢

l read configuration '

| set internal parameters '

' create HDF5 file '

' [create group] '

[create dataset(s)]

write 2D tile 1 write 2D tile P

{last 2D array?\rno
yes

Y
{ last time step?‘\'no
yes
.r'éad back the data
details not shown

| report timings '

last combination?\no
yes

=

N L71
The HDF Group

https://github.com/HDFGroup/hdf5-iotest

Dataset Rank LN
1=
The HDF Group

HDF5 Parameter Space

juspuadapul
9A1}99||09
independent
independent

earliest

1s9je|

Slowest Dimension

9LZLLLO)

ent
'mdepe“d
)
u

ndependent

—_
independent lm
[E= St L t
lateSt collective o ra g e ay o u
— -]

collective o independent
_ earliest
independent m
independent

/ i"depende,,t

indepe, dors

ende? e

=~ __ Initialization with Fill Values

indeP

\X
nt
‘“\de"‘e“de

91ZLLL9}

independent
independent

indepengen

9AI309]|0D
juepuadapul

76

|O Pattern Model

Step based IO Pattern

[&4

Stepl

Step2

-

r

% Varl(3,4)
#Var2(3.4)
TVar3(3,4)
" Var4(3.4)
HVar 53.,4)
HVarl(3.4)
B Var2(3.4)
TVar3(3,4)
 Vard(3,4)
HVar53.4)

3

+

1 Step2(5,3,4) 1

LT

"Array(2,5,3,4)

LIrJ=

/1
The HDF Group

/8

|O Pattern Model

Array based IO Pattern

Varl 7l Step1(3,4)

= [Step2(3.4)
Var? I:"' ' Step1(3,4)

- ' Step2(3.4)
Var3 | 7 Step1(3,4) ™

- i Step2(3.4)
Var4 | it Step1(3,4)

- i Step2(3.4)
Var5 [| Step1(3,4)

- it Step2(3.4)

Var1(2,3,4)
'Var2(2,3,4)
#iVar3(2,3.4)
'Vard(2,3,4)
'Var5(2,3,4)

- Array(3,2, 3,4)

LIrJ=

/1
The HDF Group

Performance as a function of HDF5 parameter space

79

I earliest
latest
I metadata
def. metadata

~
A
~
Q
E
-—
—
<
1S
-
P
X))
as)
—
=
<

LN
/1
The HDF Group

e Summit, weak

scaling (42
* Best had:

to 2688)

» four rank array

(layout)
 chunked
* no fill val
e default a

UeS

ignment

* independent I/O

/9

Use Case CGNS

Performance tuning

LIrJ=

=1
The HDF Group
cfd data standard

 CGNS = Computational Fluid Dynamics (CFD) General Notation System

* An effort to standardize CFD input and output data including:
» Grid (both structured and unstructured), flow solution
» Connectivity, boundary conditions, auxiliary information.

* Two parts:
» A standard format for recording the data
o Software that reads, writes, and modifies data in that format.

« An American Institute of Aeronautics and Astronautics Recommended
Practice

ATAA

Shaping the Future of Aerospace

31

Performance issue: Slow opening of an HDF5 N
File ... The HDF Group

* Opening an existing file
 CGNS reads the entire HDF5 file structure, loading a lot of (HDF5) metadata
* Reads occur independently on ALL ranks competing for the same metadata

"Read Storm” 1000 ———— T
| sgg 85:3588 MSBE %& %%‘Q&EA’E z - IMPRACTICAL
100} 5 ? 5 ' ' _

IEFCRE COLLE\TIVE [l
~ 10} |\/|ETADATA N R
g T i
TSI == S g COLLECTIVE -
I A D R |\/|ETADATA o

0.01

1 2 4 8 16 32 64 128 256 512 1024 2048 4006 8192 16384
82 Number of Processes

Metadata Read Storm Problem (l) T

The HDF Group

» All metadata “write” operations are required to be collective:

.4

if (0 == rank) /* A1l ranks have to call */
HoDcreate (“datasetl”) ; H5Dcreate (“datasetl”) ;
else 1f(l == rank) H5Dcreate (“dataset2”) ;

H5Dcreate ("dataset2”) ;

* Metadata read operations are not required to be collective:

1f (0 == rank) v /* All ranks have to call */ y

HS5Dopen (“datasetl”) ; HS5Dopen (“datasetl”) ;
else 1f(1 == rank) H5Dopen (“dataset2”) ;
H5Dopen (Y“dataset2”) ;

33

HDF5 Metadata Read Storm Problem (li)

 HDF5 metadata read operations are treated by the library as
Independent read operations.

» Consider a very large MPI job size where all processes want

to open a dataset that already exists in the file.
* All processes
» Call H5Dopen(“/G1/G2/D1”);

* Read the same metadata to get to the dataset and the metadata of the
dataset itself
* |F metadata not in cache, THEN read it from disk.

» Might issue read requests to the file system for the same small metadata.

§ Read Storm

34

LIrJ=

N L71
The HDF Group

39

Avoiding a Read Storm LT

The HDF Group

¢ Hint that metadata access is done collectively
« H5Pset_coll_metadata_write, H5Pset_all_coll_metadata_ops

* A property on an access property list

* |f set on the file access property list, then all metadata read operations
will be required to be collective

» Can be set on individual object property list

 When set, MPI rank O will issue the read for a metadata entry to the file
system and broadcast to all other ranks

L4 v . -

Improve the performance of reading/writing L

H5S_all selected datasets The HDF Group
(1) New in HDF5 1.10.5 o
o |f: | |
 All the processes are padd // :
reading/writing the same data ol -
» And the dataset is less than 2GB 3 : .4
2 ool
* Then g LE “u,ﬂ"';_v_f ALL READ, NPROCS=768 B i
» The lowest process id in the = w® AT READ NPROCE1S36 -

: : 01 L 5 get® - o -+ READ-PROCO-BCAST, NPROCS=1536 |
communicator will read and o et 4 eV ALLREADNPROCS3072
broadcast the data or will write the oL e ¥ — ALLREADNPROCS6144 "
data. R +—+— ALL READ, NPROCS=12288 :

- <-4 READ-PROCO0-BCAST, NPROCS=12288
(2) Use of compact storage, or ooy -
_ 1 10 100 1000 10000 100000
* For compact storage, this same Read Size (MiB)

algorithm gets used.

36

SCALING OPTIMIZATIONS T

100000

10000

1000

N
D
w
©
7P S 10
N O
o
CD 2
£
— S
. — c
— 5
§ 0.1
S
0.01
0.001

The HDF Group

ORIGINAL
—4—Baseline Chart Area /
—8—Add MetaData BCast
—&-Improved N->1
+AFAile-pir-Pr(<)>cessor (fpp) for - READ-PROCO-AND-BCAST
—+—MPI_BCast G=
—+—Serial Reference ~ WITHIN APPLICATION

/ﬂ’"__..--\ COMPACT STORAGE

11— ... Second F”_E PER- PROCESS
= — MP| Bcast
MPI Ranks
64 128 256 514 1,024 2,048 4,096 8,192 16,384 32,768

Greg Sjaardema, Sandia National Labs CG N s

87

Effects of influencing object’s in the file layout -

The HDF Group

» H5Pset alignment — controls alignment of file objects on addresses.

500 T | . 0.05
I 19,Q2 -- independant (no H5Pset_alignment)
. 19,Q2 -- collective —
=3 19,Q3 -- independant (no H5Pset_alignment) s
=3 19,Q3 -- collective 0.045
1 20,Q2 -- independant (no H5Pset_alignment) gn
== 20,Q2 -- collective .
400 - =/ 20,Q2 -- independant (H5Pset_alignment) ‘ﬁ 0.04
*J
7
% 0.035
EE =
% 300 L *; 003 - v o o _
-~ =
o =
=)
N
= @
=200 - B Y.
= =
= ”
g 0015
<P
P
£
100 - = 0.01
S
3(3005
=¥
| | | | : l l l
0 1764 3528 7056 14112 28224

1764 3528 7056 14112 28224 56448

Number of Processes
Number of processes

VPIC, Summit, ORNL
38

LIrJ=

How to pass hints to MPI from HDF5 -

The HDF Group

* To set hints for MPI using HDF5, see: H5Pset fapl mpio

» Use the 'info' parameter to pass these kinds of low-level MPI-IO tuning tweaks.

» C Example — Controls the number of aggregators on GPFS:
MPI Info info;

MPI Info create(&info); /* MPI hints: the key and value are strings */
MPI_Info_set(info, "bg_nodes_pset", "1");

H5Pset fapl mpio(plist id, MPI_COMM_WORLD, info);

/* Pass plist_id to HS5Fopen or HS5Fcreate */

file id = H5Fcreate(H5FILE NAME, H5F ACC TRUNC, HS5P DEFAULT, plist id);

39

Diagnostics and Instrumentation Tools

I/0 monitoring and profiling tools L/

The HDF Group

* Two kinds of tools:
* |/O benchmarks for measuring a system’s |/O capabilities
* |/O profilers for characterizing applications’ /O behavior

* Profilers have to compromise between
* Alot of detail =» large trace files and overhead
» Aggregation = loss of detail, but low overhead

* Examples of I/O benchmarks:
* hbperf (in the HDF5 source code distro and binaries)
* |OR https://github.com/hpc/ior

« Examples of profilers
 Darshan https://www.mcs.anl.gov/research/projects/darshan/

* Recorder https://github.com/uiuc-hpc/Recorder

* TAU built with HDF5
https://github.com/UO-OACISS/tau2/wiki/Configuring-TAU- to-measure-lO-libraries

91

https://github.com/hpc/ior
https://www.mcs.anl.gov/research/projects/darshan/
https://github.com/uiuc-hpc/Recorder
https://github.com/UO-OACISS/tau2/wiki/Configuring-TAU-to-measure-IO-libraries

“Poor Man’s Debugging” FLT

The HDF Group
 Build a version of PHDF5withm

B ./configure --enable-build-mode=debug @1e—pa@

Bl setenv H5FD mpio Debug “rw”

 This allows the tracing of MPIO I/O calls in the HDFS5 library such as
MPI File read xxand MPI File write xx

* You'll get something like this...

92

“Poor Man’s Debugging”(cont’d) L/l

The HDF Group

Example - Chunked by Column

% setenv HS5FD mpio Debug °’rw’

% mpirun -np 4 ./a.out 1000 # Indep., Chunked by column.

in HS5FD mpio write mpi off=0 size 1=96

in HS5FD mpio write mpi off=0 size 1=96

in HS5FD mpio write mpi off=0 size 1=96 ADFS metadata

in HS5FD mpio write mpi off=0 size 1=96

in H5FD mpio write mpi off=3688 size i=8000 |

in HS5FD mpio write mpi off=11688 size 1=8000

in HS5FD mpio write mpi off=27688 size 1=8000 Dataset elements

in HS5FD mpio write mpi off=19688 size 1=8000 -

in HS5FD mpio write mpi off=96 size 1=40 -

in HS5FD mpio write mpi off=136 size 1=544
in HS5FD mpio write mpl off=680 size 1=120
in HS5FD mpio write mpli off=800 size 1=272

HDF5 metadata

93

“Poor Man’s Debugging” (cont’d) L

Debugging Co"ective Operations The HDF Group

B setenv H5 COLL API SANITY CHECK 1

 HDF5 library will perform an MPI1_Barrier() call inside each metadata operation
that modifies the HDF5 namespace.

» Helps to find which rank is hanging in the MPI barrier

94

Use Case

Tuning PSDNS with Darshan

Darshan (ECP DataLib team)

* Design goals:
* Transparent integration with user environment
* Negligible impact on application performance

* Provides aggregate figures for:
- Operation counts (POSIX, MPI-I0, HDF5?2 PnetCDF)
» Datatypes and hint usage
* Access patterns: alignments, sequentially, access size
» Cumulative I/O time, intervals of I/O activity

* An excellent starting point

@ New feature in Darshan 3.2.0+

96

LIrJ=

/1
The HDF Group

LIrJ=

Darshan Use-Case (Blue Waters, NCSA) i/

The HDF Group

 PSDNS code solves the incompressible Navier-Stokes equations in a periodic
domain using pseudo-spectral methods.

» Uses custom sub-filing by collapsing the 3D in-memory layout into a 2D
arrangement of HDF5 files

e Uses virtual dataset which combines the datasets distributed over several
HDF5 files into a single logical dataset

@ Slow read times.

Ran experiments on 32,768 processes with Darshan 3.1.3 to create an |/O profile.

97

LIrJ=

Darshan Use-Case (Blue Waters, NCSA) i/

The HDF Group

total POSIX SIZE READ 0 100: 196608
total POSIX SIZE READ 100 1K: 393216
total POSIX SIZE READ 1K 10K: 617472
total POSIX SIZE READ 10K 100K: 32768
total POSIX SIZE READ 100K 1M: 2097152
total POSIX SIZE READ 1M 4M: 0

total POSIX SIZE READ 4M 10M: 0

total POSIX SIZE READ 10M 100M: 0

total POSIX SIZE READ 100M 1G: 0

total POSIX SIZE READ 1G PLUS: 0

A Large numbers of reads of only small amounts of data.

@ Multiple MPI ranks independently read data from a small restart file which
contains a virtual dataset.

98

LIrJ=

Darshan Use-Case (Blue Waters, NCSA) i/

The HDF Group

v “Broadcast” the restart file:
1. Rank O: read the restart file as a byte stream into a memory buffer.
2. Rank O: broadcasts the buffer.

3. All MPI ranks open the buffer as an HDF5 file image, and proceed as if they were
performing reads against an HDF5 file stored in a file system.

Eliminates the “read storm”,

total POSIX_SIZE READ 0 100: 6

total POSIX SIZE READ 100 1K: O

total POSIX SIZE READ 1K 10K: 0

total POSIX_SIZE READ 10K 100K: 2

total POSIX SIZE READ 100K 1M: O

total POSIX SIZE READ 1M 4M: 0

total POSIX SIZE READ 4M_10M: O

total POSIX_SIZE READ 10M_100M: 0
total POSIX_SIZE READ 100M 1G: 32768
total POSIX SIZE READ 1G PLUS: 0

99

Use Case

Tuning HACC (Hardware/Hybrid Accelerated Cosmology Code)
with Recorder

. . L =
Write Pattern Effects — Data location e HDF Group

In the file

Pattern 1 — HDFS5 pattern
Variable 1 (v1) Variable 2 (v2) Variable N (vN
. " "’

'._ - - ""._ - -
i A
A e et e e et e et o

-

o v,
e
e e

e
o
R ittt gt
A
ot
e

e

-
o
-

-
nnnnnnnn
T,

aaaaaa
nnnnnnnnnnn
A ™.

S
’Lssfg% ‘
20000
B0

- e
nnnnnnnnnnnnnnnnn

Variables are contiguously stored in the file

Pattern 2 — MPI-10 pattern (or HDF5 compound datatype)

V2 V2

101 Variables are interleaved in the file

LIrJ=

o e
The HDF Group

Case Study — Data Layout Effects

Indegendent Generic 10

16000 trIPe Count:'32 Slze:ZZM)

Benchmark: — :
" ' | — hdf ®
» 9 1-D variables with the same 14000 >0
number of elements (~1e9). 12000
» Total file size is about 40GB. 2 10000
» Can switch between writing with £ 00| /.
MPI-10 or HDF5. : .| ')
 Used independent 10 for write. = —
P 4000 | ///////;
2000 °
0 614 916 1552 3é4 768 15136

Number of Process

102

. L
HDF5 Pattern 2 Implementation The HDF Group

» Use HDF5 compound datatype, then one big HDF5 write for each process

Independent GIO Write at Cori
(Stripe Count:12 Size:16M File Size: 40GB)

NN
o

— mpi-io
| — hdf51104

W
wu

w
o
T

N
(&)
T

-
(9
T

-
o
T

|0 time for the average process(Seconds)
N
o

wn
T

.

32 64 128 256 512 1024 2048 4096 8192 16384
Number of Process

o

103

L =
Recorder L

The HDF Group

* Multi-level /O tracing library that captures function calls from HDF5, MPI and
POSIX.

* |t keeps every function and its parameters. Useful to exam access patterns.
 Built-in visualizations for access patterns, function counters, 1/O sizes, etc.

* Also reports I/O conflicts such as write-after-write, write-after-read, etc. Useful
for consistency semantics check (File systems with weaker consistency
semantics).

Wang, Chen, Jinghan Sun, Marc Snir, Kathryn Mohror, and Elsa Gonsiorowski. "Recorder 2.0: Efficient Parallel |1/O
Tracing and Analysis." In IEEE International Workshop on High-Performance Storage (HPS), 2020.

https://github.com/uiuc-hpc/Recorder
104

https://github.com/uiuc-hpc/Recorder

LIrJ=

HACC-10: MPI vs HDF5 — Analysis FLT

The HDF Group
Example of access patterns with 8 ranks writing 9GB.

data.mpi data.h5

1.000e+10 + 1.000e+10 <

i = read
8.000e+9 —+ -

8.000e+9 4 = WTite

65.000e+9 4 ' l 6.000e+9 4

Offset
Offset

4.000e+9 1 l 4.000e+9 4

! I 2.000e+9 1 =
2.000e+9 4 I e -

0.000e+0 4 =

0.000e+0 4 I

T rrr [rrrr [rrrr [rrrr[rrrr|rrrrj
0 1 2 3 B! o 0

Rank Rank

For a full presentation and related paper [1], covering an analysis of

* The effects of access patterns (independent and collective)

« Example of the analysis needed to match the performance of pure MPI 10
 Metadata considerations

[1] https://www.hdfgroup.org/2020/08/a-study-of-hacc-io-benchmarks/

105

https://www.hdfgroup.org/2020/08/a-study-of-hacc-io-benchmarks/

Need Help?

HDF-FORUM —
HDF Helpdesk —

Call the Doctor — Weekly HDF Clinic
https://zoom.us/meeting/register/tJwvf--gpjsqEtVONSexRspnONUjcNhZFmFb

https://forum.hdfgroup.org/
mailto:help@hdfgroup.org

THANK YOU!

Questions & Comments?

