
ALCF DEVELOPER SESSIONS

SOFTWARE DEPLOYMENT WITH SPACK

DR FRANK T WILLMORE

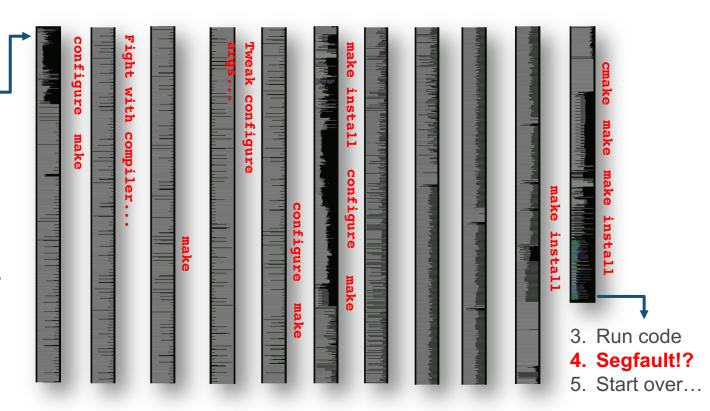
Software Integration Admin ALCF Operations willmore@anl.gov

HOW DO I INSTALL SOFTWARE ON MY LAPTOP?

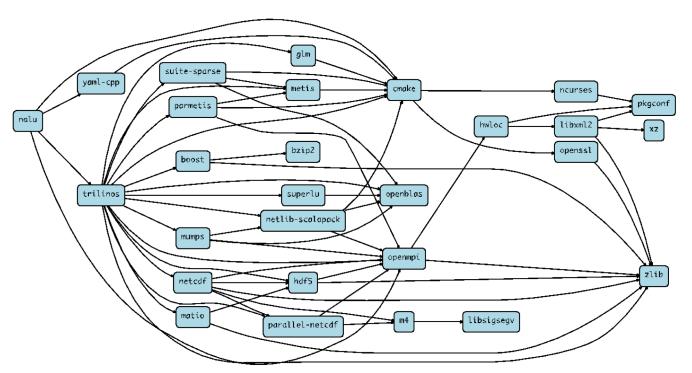
yum
rpm
apt
zypper
brew

configure make install

cmake make install

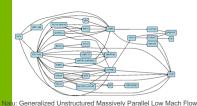


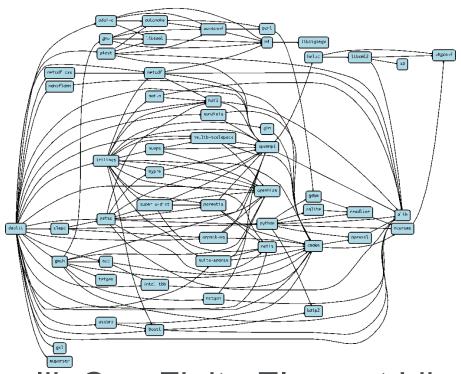
WE WANT TO INSTALL ON SUPERCOMPUTERS (IN ADDITION TO LAPTOPS)


HOW TO INSTALL SOFTWARE ON A SUPERCOMPUTER

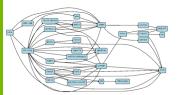
- 1. Download all 10 (100?) tarballs you need
- 2. Start building!
 - edit configuration files
 - edit some system files and hope it doesn't break something else
 - update something you don't want to update and hope it doesn't break something else
 - re-edit whatever settings you changed for your dependencies, if you can find your notes and remember what you did
 - pester a colleague
 - hope that software provider didn't change the software without bumping version.

SOFTWARE COMPLEXITY IN HPC IS GROWING

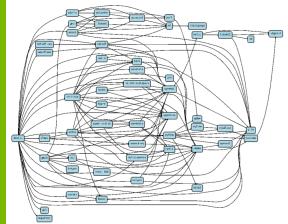


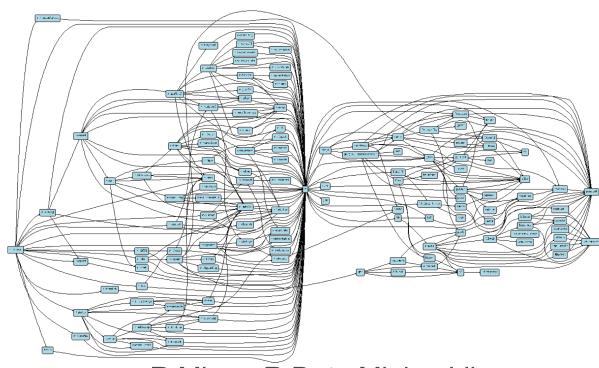

Nalu: Generalized Unstructured Massively Parallel Low Mach Flow

SOFTWARE COMPLEXITY IN HPC IS GROWING



dealii: C++ Finite Element Library




SOFTWARE COMPLEXITY IN HPC IS GROWING

dealii: C++ Finite Element Library

R Miner: R Data Mining Library

WHAT ABOUT MODULES?

- Most supercomputers deploy some form of environment modules
 - TCL modules (dates back to 1995) and Lmod (from TACC) are the most popular

```
$ gcc
- bash: gcc: command not found

$ module load gcc/7.0.1
$ gcc –dumpversion
7.0.1
```

- Modules don't handle installation!
 - They only modify your environment (things like PATH, LD_LIBRARY_PATH, etc.)
- Someone (likely a team of people) has already installed gcc for you!
 - Also, you can only `module load` the things they've installed

WHAT ABOUT CONTAINERS?

docker

- Containers provide a great way to reproduce and distribute an already-built software stack
 - Promises layer of abstraction at kernel level
 - OK, well, maybe higher up the stack, like above the MPI layer?
- Someone needs to build the container!
 - This isn't trivial
 - Containerized applications still have hundreds of dependencies
- Using the OS package manager inside a container is insufficient
 - Most binaries are built unoptimized
 - Generic binaries, not optimized for specific architectures (e.g. no AVX-512 vectorization)
- Developing with an OS software stack can be painful
 - Little freedom to choose versions
 - Little freedom to choose compiler options, build options, etc. for packages

WHAT IS SPACK?

Spack is a package manager that enables and automates the deployment of multiple versions of a software package to a single installation, including builds for different microprocessor architectures, different numbered versions, and builds with different options. Spack is developed as open-source software with support from the US Department of Energy and is adopted as the primary scientific software deployment tool in the Exascale Computing Project. It also has a rapidly growing base of users outside of the DOE, ranging from large HPC installations worldwide, vendor adopters, and a committed base of users needing newer versions of software than are provided with typical OS distributions.

SPACK IS A FLEXIBLE PACKAGE MANAGER FOR HPC

- How to install Spack:
- \$ git clone https://github.com/spack/spack
- \$. spack/share/spack/setup-env.sh
- How to install a package:
- \$ spack install hdf5
- HDF5 and its dependencies are installed within the Spack directory.
- Unlike typical package managers, Spack can also install many variants of the same build.
 - Different compilers
 - Different MPI implementations
 - Different build options

WHO CAN USE SPACK?

People who want to use or distribute software for HPC!

1. End Users of HPC Software

Install and run HPC applications and tools

2. HPC Application Teams

Manage third-party dependency libraries

3. Package Developers

- People who want to package their own software for distribution

4. User support teams at HPC Centers

People who deploy software for users at large HPC sites

SPACK PROVIDES A SPEC SYNTAX TO DESCRIBE CUSTOMIZED CONFIGURATIONS

```
$ spack install mpileaks unconstrained
$ spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
$ spack install mpileaks@3.3 cppflags="-O3 -g3" set compiler flags
$ spack install mpileaks@3.3 target=skylake set target microarchitecture
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3 ^ dependency information
```

- Each expression is a **spec** for a particular configuration
 - Each clause adds a constraint to the spec
 - Constraints are optional specify only what you need.
 - Customize install on the command line!
- Spec syntax is recursive
 - Full control over the combinatorial build space

SPACK LIST SHOWS WHAT PACKAGES ARE AVAILABLE

```
$ spack list
==> 303 packages.
activeharmony coal
                           fish
                                    gtkplus
                                              libgd
                                                        mesa
                                                                      openmpi
                                                                                    py-coverage
                                                                                                    py-pycparser
                                  harfbuzz
                                                                                                      py-pyelftools
                                                                                                                       gthreads texinfo
adept-utils
            cgm
                         flex
                                             libapa-error metis
                                                                      openspeedshop py-cython
                                                                                                                         the silver searcher
apex
            cityhash
                                         libipeq-turbo Mitos
                                                                   openssl
                                                                                 py-dateutil
                                                                                               py-pygments
            cleverleaf
                         flux
                                  hdf5
                                                                              py-epydoc
                                                                                             py-pylint
                                                                                                            ravel
                                                                                                                     thrift
arpack
                                            libjson-c
asciidoc
            cloog
                         fontconfia hwloc
                                              libmna
                                                         mpe2
                                                                       otf2
                                                                                  py-funcsigs
                                                                                                                 readline
                                                                                                 py-pypar
atk
          cmake
                                                        mpfr
                                                                     pango
                                                                                  py-genders
                                                                                                                            tmux
                                             libmonitor
                                                                                                 py-pyparsing
atlas
                                            IibNBC
           cmocka
                        gasnet
                                   icu
                                                        mpibash
                                                                      papi
                                                                                  py-gnuplot
                                                                                                 py-pyqt
                                                                                                                rsync
                                                                                                                         tmuxinator
aton
           coreutils
                        qcc
                                 icu4c
                                           libpciaccess mpich
                                                                     paraver
                                                                                  py-h5py
                                                                                                py-pyside
                                                                                                                ruby
                                                                                                                          trilinos
                                                                                                                          SAMRAI
autoconf
             cppcheck
                           gdb
                                     ImageMagick libpng
                                                                                                                                     uncrustify
                                                                                      py-libxml2
                                                                                                    py-python-daemon
automaded
               cram
                           gdk-pixbuf isl
                                              libsodium
                                                           mrnet
                                                                        parmetis
                                                                                                                         samtools
automake
              cscope
                           geos
                                     jdk
                                                       mumps
                                                                     parpack
                                                                                   py-lockfile
                                                                                                py-pytz
                                                                                                                          valgrind
bear
           cube
                       gflags
                                 jemalloc
                                            libtool
                                                       munge
                                                                     patchelf
                                                                                 py-mako
                                                                                                py-rpy2
                                                                                                                scorep
bib2xhtml
             curl
                                             libunwind
                                                         muster
                                                                       pcre
                                                                                                py-scientificpython scotch
                                                                                              py-scikit-learn
binutils
           czma
                                iudv
                                         libuuid
                                                    mvapich2
                                                                   pcre2
                                                                                py-mock
bison
           damselfly
                                  iulia
                                          libxcb
                                                     nasm
                                                                   pdt
                                                                              py-mpi4py
                                                                                             pv-scipv
                                                                                                            silo
                                                                                                                    wx
boost
                                 launchmon
                                             libxml2
                                                         ncdu
                                                                      petsc
                                                                                                py-setuptools
                                                                                                                           wxpropgrid
                                                                                                                 snappy
bowtie2
            docbook-xml
                           global
                                      Icms
                                                libxshmfence ncurses
                                                                                                                          sparsehash xcb-proto
                                                                            pidx
                                                                                        py-mysqldb1
                                                                                                       py-shiboken
boxlib
                                   leveldb
           doxygen
                                             libxslt
                                                       netcdf
                                                                    pixman
                                                                                 py-nose
                                                                                               py-sip
                                                                                                                        xerces-c
           dri2proto
bzip2
                                  libarchive
                                                       netgauge
                                                                      pkg-config
                                                                                                                           ΧZ
                                                                                                    py-six
                                                                                                                  spot
                                  libcerf
                                                      netlib-blas
                                                                    pmar collective pv-numpy
                                                                                                   py-sphinx
                                                                                                                   salite
cairo
           dtcmp
callpath
                                   libcircle
                                                        netlib-lapack
                                                                      postaresal
                                                                                                                     stat
            dvninst
                        gmsh
                                                                                                    py-sympy
                                                                                                                             zeroma
                                                       netlib-scalapack ppl
cblas
           eigen
                       gnuplot
                                  libdrm
                                                                                   py-pbr
                                                                                                py-tappy
                                                                                                                sundials
cbtf
          elfutils
                               libdwarf
                                                                protobuf
                                                                             py-periodictable py-twisted
                                                                                                              swia
                                                                                                                      zsh
cbtf-argonavis elpa
                                                                                                                 szip
cbtf-krell
           expat
                                                                                                 py-virtualenv
                                                       ompss
                                                                     py-basemap
cbtf-lanl
                                  libevent
                                                        ompt-openmp
                                                                         py-biopython py-pillow
                                                                                                      py-yapf
                                                                                                                      task
                                                                                                      python
                                                                                                                     taskd
cereal
cfitsio
                                                      openblas
                                                                     py-cffi
                                                                                 py-pychecker
                                                                                                               tau
```

Spack has over 3,900 packages now.

`SPACK FIND` SHOWS WHAT IS INSTALLED

```
$ spack find
==> 103 installed packages.
-- linux-rhel6-x86_64 / gcc@4.4.7 -----
ImageMagick@6.8.9-10 glib@2.42.1
                                   libtiff@4.0.3
                                                pango@1.36.8
                                                                 at@4.8.6
SAMRAI@3.9.1
                  graphlib@2.0.0 libtool@2.4.2 parmetis@4.0.3
                                                                 qt@5.4.0
                gtkplus@2.24.25 libxcb@1.11
adept-utils@1.0
                                               pixman@0.32.6
                                                                 ravel@1.0.0
                harfbuzz@0.9.37 libxml2@2.9.2
                                               py-dateutil@2.4.0
                                                                readline@6.3
atk@2.14.0
boost@1.55.0
                hdf5@1.8.13
                                Ilvm@3.0
                                             py-ipython@2.3.1
                                                               scotch@6.0.3
cairo@1.14.0
                icu@54.1
                              metis@5.1.0
                                            pv-nose@1.3.4
                                                              starpu@1.1.4
callpath@1.0.2
                ipeg@9a
                              mpich@3.0.4
                                             py-numpy@1.9.1
                                                                stat@2.1.0
dyninst@8.1.2
                libdwarf@20130729 ncurses@5.9
                                                 py-pytz@2014.10 xz@5.2.0
                libelf@0.8.13
                               ocr@2015-02-16
                                               py-setuptools@11.3.1 zlib@1.2.8
dyninst@8.1.2
fontconfig@2.11.1
                 libffi@3.1
                              openssl@1.0.1h py-six@1.9.0
freetype@2.5.3
                 libmng@2.0.2
                                otf@1.12.5salmon python@2.7.8
gdk-pixbuf@2.31.2
                  libpng@1.6.16
                                 otf2@1.4
                                               ahull@1.0
-- linux-rhel6-x86 64 / gcc@4.8.2 ------
adept-utils@1.0.1 boost@1.55.0 cmake@5.6-special libdwarf@20130729 mpich@3.0.4
adept-utils@1.0.1 cmake@5.6 dvninst@8.1.2
                                           libelf@0.8.13
                                                         openmpi@1.8.2
-- linux-rhel6-x86 64 / intel@14.0.2 -----
hwloc@1.9 mpich@3.0.4 starpu@1.1.4
-- linux-rhel6-x86 64 / intel@15.0.0 -----
adept-utils@1.0.1 boost@1.55.0 libdwarf@20130729 libelf@0.8.13 mpich@3.0.4
-- linux-rhel6-x86 64 / intel@15.0.1 ------
adept-utils@1.0.1 callpath@1.0.2 libdwarf@20130729 mpich@3.0.4
boost@1.55.0
               hwloc@1.9
                            libelf@0.8.13
                                          starpu@1.1.4
```

- All the versions coexist!
 - Multiple versions of same package are ok.
- Packages are installed to automatically find correct dependencies.
- Binaries work regardless of user's environment.
- Spack also generates module files.
 - Don't have to use them.

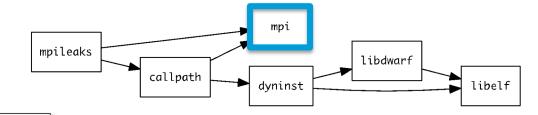
USERS CAN QUERY THE FULL DEPENDENCY CONFIGURATION OF INSTALLED PACKAGES.

```
$ spack find callpath
==> 2 installed packages.
-- linux-rhel6-x86_64 / clang@3.4 — -- linux-rhel6-x86_64 / gcc@4.9.2 ------
callpath@1.0.2 callpath@1.0.2
```

Expand dependencies with spack find -d

```
$ spack find -dl callpath
==> 2 installed packages.
-- linux-rhel6-x86 64 / clang@3.4 ---- - linux-rhel6-x86 64 / gcc@4.9.2 ----
xv2clz2
        callpath@1.0.2
                        udltshs
                                         callpath@1.0.2
ckiazss
          ^adept-utils@1.0.1 rfsu7fb
                                            ^adept-utils@1.0.1
3ws43m4
               ^boost@1.59.0
                                    vbet64v
                                                  ^boost@1.55.0
ft7znm6
             ^mpich@3.1.4
                                 aa4ar6i
                                              ^mpich@3.1.4
           ^dyninst@8.2.1
                            tmnnge5
                                             ^dyninst@8.2.1
ggnuet3
3ws43m4
               ^boost@1.59.0
                                    vbet64v
                                                  ^boost@1.55.0
             ^libdwarf@20130729
q65rdud
                                    q2mxrl2
                                                  ^libdwarf@20130729
ci5p5fk
              ^libelf@0.8.13
                                              ^libelf@0.8.13
                               ynpai3i
cj5p5fk
            ^libelf@0.8.13
                                            ^libelf@0.8.13
                               ynpai3j
q65rdud
           ^libdwarf@20130729
                                                ^libdwarf@20130729
                                    g2mxrl2
ci5p5fk
            ^libelf@0.8.13
                               ynpai3i
                                            ^libelf@0.8.13
ci5p5fk
          ^libelf@0.8.13
                               ynpai3j
                                          ^libelf@0.8.13
ft7znm6
           ^mpich@3.1.4
                                            ^mpich@3.1.4
                                 aa4ar6i
```

Architecture, compiler, versions, and variants may differ between builds.



SPACK PACKAGES ARE *TEMPLATES*THEY USE A SIMPLE PYTHON DSL TO DEFINE HOW TO BUILD

```
from spack import *
                                                                                                                                            Base package
class Kripke(CMakePackage):
                                                                                                                                            (CMake support)
  """Kripke is a simple, scalable, 3D Sn deterministic particle
   transport proxy/mini app.
                                                                                                                                            Metadata at the class level
  homepage = "https://computation.llnl.gov/projects/co-design/kripke"
       = "https://computation.llnl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"
  version('1,2,3', sha256='3f7f2eef0d1ba5825780d626741eb0b3f026a096048d7ec4794d2a7dfbe2b8a6')
                                                                                                                                            Versions
  version('1.2.2', sha256='eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2efa039a86e0976f3a3')
 version('1.1', sha256='232d74072fc7b848fa2adc8a1bc839ae8fb5f96d50224186601f55554a25f64a')
                                                                                                                                            Variants (build options)
 variant('mpi', default=True, description='Build with MPI.')
 variant('openmp', default=True, description='Build with OpenMP enabled,')
  depends on('mpi', when='+mpi')
                                                                                                                                           Dependencies
  depends on('cmake@3.0:', type='build')
                                                                                                                                           (same spec syntax)
  def cmake args(self):
    return [
      '-DENABLE OPENMP=%s' % ('+openmp' in self.spec),
      '-DENABLE MPI=%s' % ('+mpi' in self.spec),
                                                                                                                                            Install logic
                                                                                                                                            in instance methods
  def install(self, spec, prefix):
    # Kripke does not provide install target, so we have to copy
                                                                                                                                            Don't typically need install() for
    # things into place.
                                                                                                                                            CMakePackage, but we can work
    mkdirp(prefix.bin)
                                                                                                                                            around codes that don't have it.
    install('../spack-build/kripke', prefix.bin)
```

DEPEND ON INTERFACES (NOT IMPLEMENTATIONS) WITH VIRTUAL DEPENDENCIES

- mpi is a virtual dependency
- Install the same package built with two different MPI implementations:

\$ spack install mpileaks ^mvapich

\$ spack install mpileaks ^openmpi@1.4:

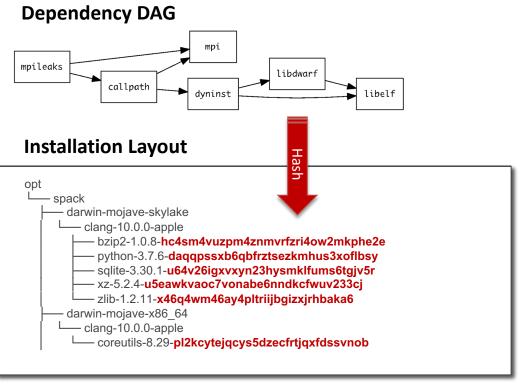
- Virtual deps are replaced with a valid implementation at resolution time.
 - If the user didn't pick something and there are multiple options, Spack picks.

Virtual dependencies can be versioned:

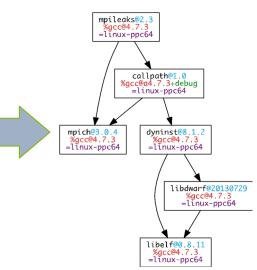
```
class Mpileaks(Package):
depends_on("mpi@2:")

dependent
```

```
class Mvapich(Package):
    provides("mpi@1" when="@:1.8")
    provides("mpi@2" when="@1.9:")
```


```
class Openmpi(Package):
provides("mpi@:2.2" when="@1.6.5:")

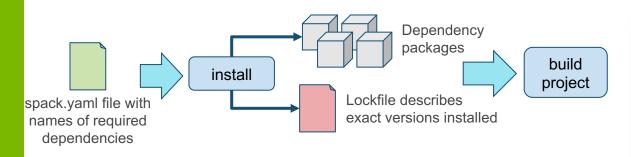
provider
```



Spack handles combinatorial software complexity

- Each unique dependency graph is a unique configuration.
- Each configuration in a unique directory.
 - Multiple configurations of the same package can coexist.
- Hash of entire directed acyclic graph (DAG) is appended to each prefix.
- Installed packages automatically find dependencies
 - Spack embeds RPATHs in binaries.
 - No need to use modules or set LD_LIBRARY_PATH at runtime
 - Things work the way you built them

CONCRETIZATION FILLS IN MISSING PARTS OF REQUESTED SPECS.

mpileaks ^callpath@1.0+debug ^libelf@0.8.11


Concrete spec is fully constrained and can be passed to install.

Workflow:

- 1. Users input only an *abstract* spec with some constraints
- 2. Spack makes choices according to policies (site/user/etc.)
- Spack installs concrete configurations of package + dependencies
- Dependency resolution is an NP-complete problem!
 - Different versions/configurations of packages require different versions/configurations of dependencies
 - Concretizer searches for a configuration that satisfies all the requirements
 - This is basically a SAT/SMT solve

Concretize

SPACK ENVIRONMENTS MAKE IT EASY TO MANAGE SETS OF DEPENDENCIES FOR MANY USE CASES

spack.yaml is full of abstract requirements

Concretize specs in spack.yaml to get spack.lock

Environments are just sets of regular specs, for:

- Creating a work environment for users
- Managing dependencies for developers

Similar to other dependency management models

Bundler, pipenv, cargo, npm, etc.

Simple spack.yaml file

```
spack:
    # include external configuration
    include:
        - ../special-config-directory/
        - ./config-file.yaml

# add package specs to the `specs` list
specs:
        - hdf5
        - libelf
        - openmpi
```

Concrete spack.lock file (generated)

SPACK 0.14.0 WAS RELEASED FEBRUARY 23, 2020

Lots of new features!

- Completely reworked GitLab pipeline generation
 - · spack ci command
- Generate container recipes from environments
 - spack containerize command
- Distributed/parallel builds
 - srun –N 8 spack install
 - Spack instances coordinate effectively via locks

Closely follows Spack 0.13 features (released around the time of SC19)

- Spack stacks: combinatorial environments for facility deployment
- Spack detects and builds for specific microarchitectures
- Chaining: use dependencies from external "upstream" Spack instances

EVER TRIED TO FIGURE OUT WHAT YOUR PROCESSOR IS?

You can get a lot of information from:

- /proc/cpuinfo ON linux
- sysctl tool on macs

But it's not exactly intuitive

Humans call this architecture "broadwell"

oh.

```
: GenuineIntel
vendor_id
cpu family
                : 6
model
model name
                : Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz
stepping
microcode
                : 0xb000038
                : 2101.000
cpu MHz
cache size
                : 46080 KB
physical id
                : 0
siblings
                : 18
                : 0
core id
                : 18
cpu cores
apicid
initial apicid
                : yes
fpu_exception
                : ves
cpuid level
                : 20
                : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge
 mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe sy
scall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good
 nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 m
onitor ds_cpl vmx smx est tm2 ssse3 sdbq fma cx16 xtpr pdcm pcid dca s
se4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c
 rdrand lahf_lm abm 3dnowprefetch epb cat_l3 cdp_l3 invpcid_single int
el_ppin intel_pt ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept
 vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm
 rdt_a rdseed adx smap xsaveopt cqm_llc cqm_occup_llc cqm_mbm_total cq
m_mbm_local dtherm ida arat pln pts md_clear spec_ctrl intel_stibp flu
bogomips
                : 4190.37
clflush size
cache_alianment : 64
                : 46 bits physical, 48 bits virtual
address sizes
power management:
```

SPACK NOW UNDERSTANDS SPECIFIC TARGET MICROARCHITECTURES ____

- · Spack knows what type of machine you're on
 - Detects based on /proc/cpuinfo (Linux), sysctl (Mac)
 - Allows comparisons for compatibility, e.g.:

```
skylake > broadwell
zen2 > x86_64
```

- Key features:
 - Know which compilers support which chips with which flags
 - Determine compatibility
 - Enable creation and reuse of optimized binary packages
 - Easily query available architecture features for portable build recipes


```
spack arch --known-targets
Generic architectures (families)
    aarch64 ppc64 ppc64le x86 x86_64
IBM - ppc64
   power7 power8 power9
IBM - ppc64le
    power8le power9le
AuthenticAMD - x86 64
    barcelona bulldozer piledriver steamroller excavator zen zen2
GenuineIntel - x86_64
                         haswell.
                                    mic knl
                                                   cascadelake
    nocona
            sandybridae
                         broadwell
                                    skvlake_avx512
                                                   icelake
    core2
   nehalem ivybridge
                         skylake
                                    cannonlake
GenuineIntel - x86
    i686 pentium2 pentium3 pentium4 prescott
```

```
class OpenBlas(Package):
    def configure_args(self, spec):
        args = []
        if 'avx512' in spec.target:
            args.append('--with-avx512')
        ...
    return args
```

```
$ spack install lbann target=cascadelake
$ spack install petsc target=zen2
```

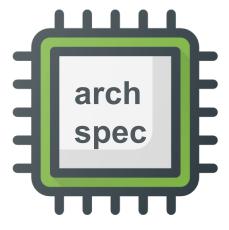

ARCHSPEC: A LIBRARY FOR REASONING ABOUT MICROARCHITECTURES

Standalone library, extracted from Spack

Use fine-grained, human-readable labels, e.g.:

- broadwell, haswell, skylake
- instead of x86_64, aarch64, ppc64 etc.

Query capabilities

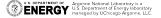

"Does haswell support AVX-512?" "no."

Query compiler flags

— "How do I compile for broadwell with icc?"

Python package for now, but we want more bindings!

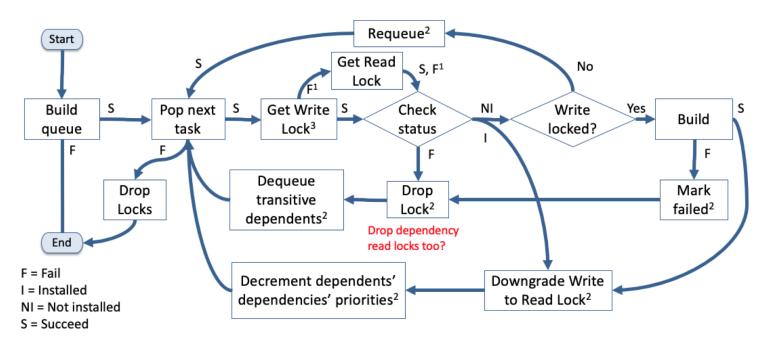
Actual data is in a common JSON file w/schema



ReadTheDocs: archspec.rtfd.io

License: Apache 2.0 OR MIT

pip3 install archspec


```
drwxrwsr-x. 4 willmore software 4096 Mar 11 19:41
熊俊傑@jlselogin2:/soft/spack/opt/spack$ 11 linux-rhe17-haswell/
drwxrwsr-x. 18 willmore software 4096 Mar 11 17:48
熊俊傑@jlselogin2:/soft/spack/opt/spack$ 11 linux-rhel7-haswell/gcc-4.8.5/
drwxrwsr-x. 5 willmore software 4096 Mar 11 17:47
drwxrwsr-x. 5 willmore software 4096 Mar 11 17:47
drwxrwsr-x. 9 willmore software 4096 Mar 11 18:02
drwxrwsr-x. 7 willmore software 4096 Mar 11 17:45
drwxrwsr-x. 6 willmore software 4096 Mar 11 17:48
drwxrwsr-x. 5 willmore software 4096 Mar 11 17:48
drwxrwsr-x. 5 willmore software 4096 Mar 11 17:44
drwxrwsr-x. 7 willmore software 4096 Mar 11 17:45
drwxrwsr-x. 5 willmore software 4096 Mar 11 17:44
drwxrwsr-x. 6 willmore software 4096 Mar 11 17:48
drwxrwsr-x. 6 willmore software 4096 Mar 11 17:48
drwxrwsr-x. 7 willmore software 4096 Mar 11 17:45
drwxrwsr-x. 6 willmore software 4096 Mar 11 17:47
drwxrwsr-x. 7 willmore software 4096 Mar 11 17:44
drwxrwsr-x. 7 willmore software 4096 Mar 11 17:45
drwxrwsr-x. 6 willmore software 4096 Mar 11 17:44
熊俊傑@jlselogin2:/soft/spack/opt/spack$ 11
drwxrwsr-x. 3 willmore software 4096 Mar 11 17:44 linux-rhel7-hasw
drwxrwsr-x. 4 willmore software 4096 Mar 11 19:41
態俊傑@jlselogin2:/soft/spack/opt/spack$ 11 linux-rhel7-skylake avx512
drwxrwsr-x. 19 willmore software 4096 Mar 11 18:58
drwxrwsr-x. 28 willmore software 4096 Mar 20 21:22
```

熊俊傑@jlselogin2:/soft/spack/opt/spack\$ 11

drwxrwsr-x. 3 willmore software 4096 Mar 11 17:44

different architectures can be supported simultaneously in same spack instance

NEW DISTRIBUTED LOCKING ALGORITHM ENABLES (MIMD) PARALLEL BUILDS (0.14)

- Spack instances can coordinate with each other using only filesystem locks (no MPI required)
 - Independently run instances on login nodes, or
 - srun –N 8 –n 32 spack install -j 16 <package>

GENERATE CONTAINER IMAGES FROM ENVIRONMENTS (0.14)

```
spack:
   specs:
   gromacs+mpi
   - mpich
                                                       # Build stage with Spack pre-installed and ready to be used
                                                       FROM spack/centos7:latest as builder
   container:
     # Select the format of the recip
                                                      # What we want to install and how we want to install it
                                                       # is specified in a manifest file (spack.vaml)
     # singularity or anything else t
      format: docker
      # Select from a valid list of im #
                                                                                                                                               docker
                                                           echo " concretization: together" \
      base:
                                                           echo " config:" \
        image: "centos:7"
                                                           echo " install tree: /opt/software" \
        spack: develop
                                                          echo " view: /opt/view") > /opt/spack-environment/spack.vaml
                                                       # Install the software, remove unecessary deps
      # Whether or not to strip binari
                                                      RUN cd /opt/spack-environment && spack install && spack gc -y
      strip: true
                                                       RUN find -L /opt/view/* -type f -exec readlink -f '{}' \; | \
      # Additional system packages tha
      os_packages:
                                                           grep 'charset=binary' | '
                                                           grep 'x-executable\|x-archive\|x-sharedlib' | \

    libgomp

                                                           awk -F: '{print $1}' | xargs strip -s
                                                       # Modifications to the environment that are necessary to run
      # Extra instructions
                                                       RUN cd /opt/spack-environment && \
      extra instructions:
                                                           spack env activate --sh -d . >> /etc/profile.d/z10 spack environment.sh
        final: |
RUN echo 'export PS1="\[$(tput bold)
                                                      # Bare OS image to run the installed executables
      # Labels for the image
                                                       COPY -- from = builder /opt/spack-environment /opt/spack-environment
      labels:
                                                       COPY -- from=builder /opt/software /opt/software
         app: "gromacs"
                                                       COPY -- from=builder /opt/view /opt/view
                                                             -from=builder /etc/profile.d/z10_spack_environment.sh /etc/profile.d/z10_spack_e
         mpi: "mpich"
                                                               update -y && yum install -y epel-release && yum update -y
                                                               install -v libgomp \
                                                              -rf /var/cache/yum && yum clean all
                                                       RUN echo 'export PS1="\[(tput bold)\]\[(tput setaf 1)\][gromacs]\[$(tput setaf 2)\]\u\[$(tput setaf 2)\]
```

- Any Spack environment can be bundled into a container image
 - Optional container section allows finer-grained customization
- Generated Dockerfile uses multi-stage builds to minimize size of final image
 - Strips binaries
 - Removes unneeded build deps with spack gc
- Can also generate Singularity recipes

spack containerize

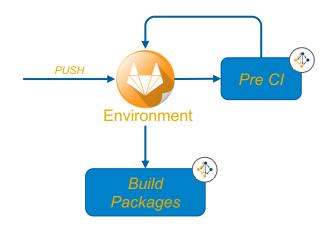
SPACK STACKS: COMBINATORIAL ENVIRONMENTS FOR ENTIRE FACILITY DEPLOYMENTS

```
spack:
    definitions:
        compilers:
            [%qcc@5.4.0, %clang@3.8, %intel@18.0.0]
        mpis:
            [^mvapich2@2.2, ^mvapich2@2.3, ^openmpi@3.1.3]
        packages:
            - nalu
            - hdf5
            hvpre
            - trilinos
            petsc
    specs:
        # cartesian product of the lists above
        matrix:
            - [$packages]
            - [$compilers]

    [$mpis]

    modules:
        lmod:
            core_compilers: [gcc@5.4.0]
            hierarchy:
                             [mpi, lapack]
            hash_length:
```

- Allow users to easily express a huge cartesian product of specs
 - All the packages needed for a facility
 - Generate modules tailored to the site
 - Generate a directory layout to browse the packages
- Build on the environments workflow
 - Manifest + lockfile
 - Lockfile enables reproducibility
- Relocatable binaries allow the same binary to be used in a stack, regular install, or container build.
 - Difference is how the user interacts with the stack
 - Single-PATH stack vs. modules.

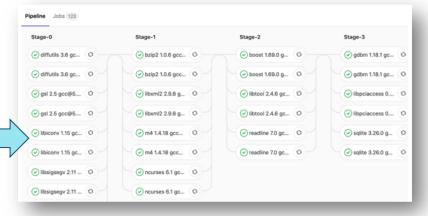


WHAT'S NEW WITH SPACK PIPELINES

New workflow is centered around users' environment repository.

- Now:
 - Easy to control how Spack is cloned.
 - Clone a fork instead of Github
 - Clone a particular branch or ref
 - Or don't clone Spack at all. Can also just use a Spack that is preinstalled in your runners' environments.


```
spack:
 definitions:
 - pkgs:
    - readline@7.0
 - compilers:
    - '%qcc@5.5.0'
 - oses:
    os=ubuntu18.04
   - os=centos7
  specs:
  - matrix:


    [$pkqs]

   - [$compilers]
   [$oses]
  mirrors:
    cloud_gitlab: https://mirror.spack.io
 gitlab-ci:
    mappings:
      - spack-cloud-ubuntu:
        match:
          - os=ubuntu18.04
        runner-attributes:
          tags:
            - spack-k8s
         image: spack/spack_builder_ubuntu_18.04
      - spack-cloud-centos:
        match:
          os=centos7
        runner-attributes:
          tags:
            - spack-k8s
          image: spack/spack_builder_centos_7
  cdash:
   build-group: Release Testing
   url: https://cdash.spack.io
    project: Spack
    site: Spack AWS Gitlab Instance
```

SPACK CAN NOW GENERATE CI PIPELINES FROM ENVIRONMENTS (ENHANCED IN 0.14)

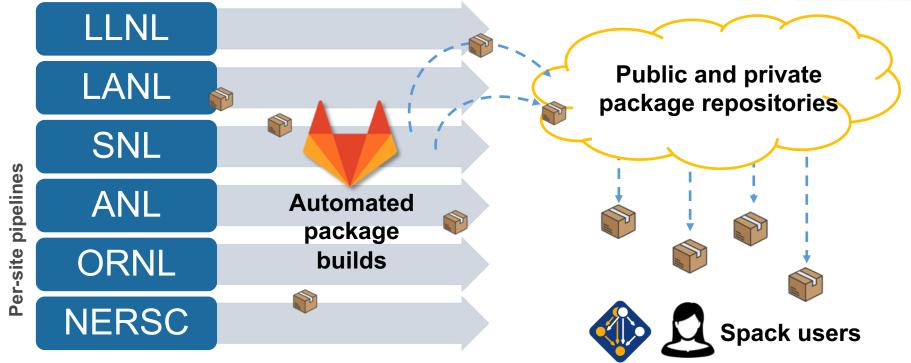
- User adds a gitlab-ci section to environment
 - Spack maps builds to GitLab runners
 - Generate gitlab-ci.yml with spack ci command
- Can run in a container cluster or bare metal at an HPC site
 - Sends progress to CDash

spack ci

Auto-generated commit testing master (23dc9915)

(specs) tcl/t3gp7...

⊙ 36 jobs for multi-ci-master (qu	eued for 5 seconds)						
P latest							
-o- 07c48513 ••• Го							
Pipeline Jobs 36 Failed Jobs 1							
	01		0		01 0		01 4
Stage-0	Stage-1	•	Stage-2	•	Stage-3	•	Stage-4
(specs) libbsd/w 0	(specs) diffutils/	v	(specs) bzip2/g2	2	(specs) gdbm/s		(specs) lua-luar
(specs) libiconv/ (3)	(specs) expat/m	1	(specs) libidn2/e	j	(specs) gettext/		(specs) perl/m4
(specs) libsigseg O	(specs) libunistr	I	(specs) libtool/4		(specs) lua/dakr		
(specs) pcre2/ik (3)	(specs) libxml2/	f	(specs) readline	/			
(specs) pkgconf/ 0	(specs) m4/ut6-	4					
(specs) unzip/fxlf 0	(specs) nourses	/					
(specs) xz/ur2jff 0	(specs) tar/iyu6i	n					
(specs) zlib/d6et (3)	(specs) tcl/nstko						


(specs) zlib/hmvj... (3

(specs) zlib/o2vi...

AUTOMATED BUILDS USING GITLAB CI WILL ENABLE A ROBUST, WIDELY AVAILABLE HPC SOFTWARE ECOSYSTEM.

With pipeline efforts at E6 labs, users will no longer need to build their own software for high performance.

THE SPACK COMMUNITY

- Spack simplifies HPC software for:
 - Users
 - Developers
 - Cluster installations
 - The largest HPC facilities
- Spack is central to ECP's software strategy
 - Enable software reuse for developers and users
 - Allow the facilities to consume the entire ECP stack
- Spack has a thriving open source community
 - Contributing your package allows others to easily use and build on them
 - Very active Slack channel and GitHub site provide help
 - Spack community is very open to new features and ideas!

Visit:
spack.io
github.com/spack/spack

CURRENT ALCF THETA SOFTWARE CONFIGURATION

- The 'image' read-only filesystem on every compute node
- '/soft' LUSTRE mount containing may builds
- '/theta-archive' GPFS containing deprecated versions
- Module system User interface to manipulate software environment
- Python software ecosystem managed via conda or similar
- Spack (LUSTRE) increasingly relevant deployment tool

CURRENT ECP SPACK EFFORTS AT ALCF (Q3/4 FY2020)

- Spack pipelines
- Vendor Stack Integration
- Onboarding of CI
- Container Integration
- Ongoing deployment efforts

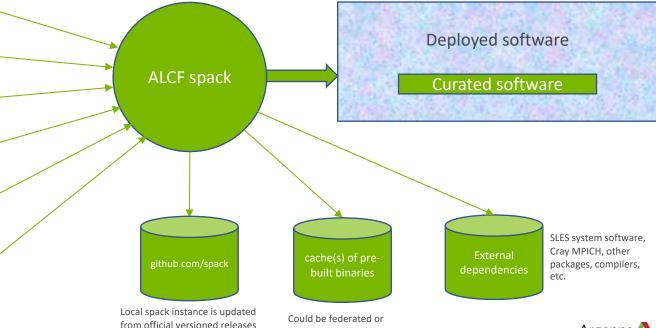
ALCF MULTI-USER SPACK VISION:

- Built on top of Linux user/group/owner permission model
- Owned by 'spack' service user
- Allows for incorporation of optional upstream spack installations and repositories of built packages
- Curation managed via symbolic link according to local policy
- Curated versions available via environment modules
- tests

Those using spack to build:

All users, either directly or as upstream spack repo

Software packagers


ALCF site spack 'stack' build pipeline

software group (can deploy via group privileges)

Spack service user (owns spack and specifies external packages)

CI service users

Those using spack-built software:

local

of spack

MULTI-USER SPACK: CHALLENGES

- Spack learning curve and inherent complexity
- Incompatible builds (not every combination works and package.py may not be aware of bad combination)
- Packages whose build systems do not support cross-compilation
- Missing and/or out-of-date package.py files (spack's chicken and egg problem)
- Questionable choices by concretizer based on what's already built/available
- Some builds require disruptive updates to external/system packages (e.g. openssl)
 - o These are often low-level dependencies which affect the entire DAG
- Conversely, vendor updates require re-working the settings for external dependencies
 - Philosophical differences between vendors, sysadmins, packagers, other stakeholders on how software should be deployed
 - o Updates to vendor-provided packages may break compatibility of a previously working build
- Conflicting/confusing settings (six levels of configuration scope plus stacks, environments, etc...)
- Dependency on an unreleased software version (xSDK depends on non-existent <u>adol-c@2.64</u>)
 - <soapbox> version number is a control variable </soapbox>
- Bugs which manifest in multi-user version, e.g. overwriting internal settings with different ownership and without group write permissions.
- Other Minor issues
 - Non-ECP sponsored dependencies
 - Non-semantic or unusual versioning
- Users/packagers ended up cloning their own version of spack anyway...

