
Alexey Kukanov
Principal Engineer, Intel Corporation

Intel® oneAPI DPC++ Library (oneDPL)

Intel ConfidentialDepartment or Event Name 2Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 2

Parallel Algorithms API

Overview

Support for Data Parallel C++ (DPC++)

C++ Standard APIs for Device Programming

Custom Iterators

Outlook: Experimental Features

Ranges API

Async API

Summary

3

▪ Choose the best accelerated technology; the software doesn’t
decide for you

▪ Performance across CPU, GPUs, FPGAs, and other accelerators

▪ Open industry standards provide a safe, clear path to the future

▪ Compatible with existing languages and programming models
including C++, Python*, SYCL*, OpenMP*, Fortran, and MPI

4

Open to promote community and
industry collaboration

Enables code reuse across
architectures and vendors

oneAPI Industry Specification

The productive, smart path to freedom for accelerated
computing from the economic and technical burdens
of proprietary programming models

Visit oneapi.com for more details

...

A cross-architecture
language based on C++

and SYCL standards

Set of libraries minimizes
programming efforts

across different devices
and domains

Low-level hardware
abstraction layer

oneapi.com

Intel ConfidentialDepartment or Event Name 5Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 5

High productivity and portable performance for heterogeneous

computing – CPUs, GPUs, and FPGAs

APIs based on standards and familiar extensions – C++ STL, SYCL,

Boost.Compute

Optimized C++ standard algorithms implemented on top of SYCL,

OpenMP, oneTBB

Interoperable with DPC++ and other oneAPI libraries

Integrated with Intel® DPC++ Compatibility Tool to simplify migration of

CUDA* applications using Thrust* API to DPC++ code

Intel ConfidentialDepartment or Event Name 6Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 6

Spec: oneDPL section covers:

Parallelized C++ algorithms

Tested C++ standard APIs that work

in DPC++ kernels

Execution Policies

Custom Utilities and Algorithms

Available as part of the Intel®

oneAPI Base Toolkit

Supports multiple backends:

oneTBB, OpenMP, DPC++

Header-only library (relies on

runtime libraries of the

respective backends)

oneDPL implementation

Source
Code

https://spec.oneapi.io/versions/latest/elements/oneDPL/source/index.html#onedpl-section https://github.com/oneapi-src/oneDPL

https://spec.oneapi.com/versions/latest/elements/oneDPL/source/index.html
https://github.com/oneapi-src/oneDPL

Intel ConfidentialDepartment or Event Name 7Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 7

C++17 is the minimal supported version of the C++ standard

Header names start with oneapi/dpl:

#include <oneapi/dpl/algorithm>

All functionality is provided in namespace oneapi::dpl

short alias: namespace dpl = oneapi::dpl;

Intel ConfidentialDepartment or Event Name 8Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 8

Intel ConfidentialDepartment or Event Name 9Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 9

C++ parallel algorithms

Execution policies define how to run an algorithm

Intel ConfidentialDepartment or Event Name 10Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 10

/* a serial range-based for loop */

for(auto &i : v) {i++;}

#include <algorithm>

/* a serial for-each algorithm w/o execution policy */

std::for_each(v.begin(), v.end(), [](auto &i){i++;});

#include <algorithm>

#include <execution>

/* a for-each algorithm with parallel execution policy */

std::for_each(std::execution::par, v.begin(), v.end(), [](auto &i){i++;});

Intel ConfidentialDepartment or Event Name 11Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 11

standard sequential sort

std::sort(v.begin(), v.end());

explicitly sequential sort

std::sort(std::execution::seq, v.begin(), v.end());

permitting parallel execution

std::sort(std::execution::par, v.begin(), v.end());

permitting vectorization only (no parallel execution)

std::sort(std::execution::unseq, v.begin(), v.end());

permitting parallel execution and vectorization

std::sort(std::execution::par_unseq, v.begin(), v.end());

multilane highway analogy from
ProTBB book, M. Voss et al.

Intel ConfidentialDepartment or Event Name 12Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 12

C++ parallel algorithms

oneDPL extension algorithms

Segmented reduction & scan, binary

search of multiple values

Execution policies define how/where to

run an algorithm

CPU: oneTBB or OpenMP for threading

(par), OpenMP for SIMD (unseq)

GPU & accelerators: DPC++ supported

devices

oneDPL

C++20
parallelism

seq

threaded SIMD

par

par_unseq

unseq

heterogeneous

device_policy<…>

C++17
parallelism

Intel ConfidentialDepartment or Event Name 13Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 13

Intel ConfidentialDepartment or Event Name 14Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 14

oneapi::dpl::execution::device_policy<…> class template

The policy type selects the SYCL-based implementation of an algorithm

A policy object encapsulates a SYCL queue that defines the device to run on

Implicitly convertible to sycl::queue for better interoperability

Policy usage:

Construct a policy object using a SYCL queue, device, device selector, or an existing

policy object

Pass the created policy object to a oneDPL algorithm

oneapi::dpl::execution::dpcpp_default

Predefined object of the device_policy class, uses the default SYCL queue

Intel ConfidentialDepartment or Event Name 15Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 15

First simple example (to be continued …)

#include <oneapi/dpl/execution>

#include <oneapi/dpl/algorithm>

int main()

{

std::vector<int> vec(1000);

dpl::fill(dpl::execution::dpcpp_default,

vec.begin(), vec.end(), 42);

return 0;

}

// To build: dpcpp <example_name>.cpp –o test

Intel ConfidentialDepartment or Event Name 16Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 16

oneapi::dpl::begin and oneapi::dpl::end are helper functions for

passing SYCL buffers to oneDPL algorithms

Applied to a SYCL buffer, these functions return an object of an unspecified

type with some properties of a random access iterator:

Can be copy-constructed and copy-assigned

Can be compared for equality (== and !=)

Can be used in expressions a + n, a – n, a – b, where a and b are objects of the type and n

is an integer value

But most importantly, it can be passed to oneDPL algorithms

Intel ConfidentialDepartment or Event Name 17Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 17

#include <oneapi/dpl/execution>

#include <oneapi/dpl/algorithm>

#include <oneapi/dpl/iterator>

#include <sycl/sycl.hpp> // or <CL/sycl.hpp>

int main()

{

sycl::buffer<int> buf{ 1000 };

dpl::fill(dpl::execution::dpcpp_default, dpl::begin(buf),

dpl::end(buf), 42);

auto result = dpl::find(dpl::execution::dpcpp_default,

dpl::begin(buf), dpl::end(buf), 42);

return 0;

}

Keeping data on the device with consecutive usage

Intel ConfidentialDepartment or Event Name 18Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 18

Passing access modes to the backend

auto buf_begin = dpl::begin(buf);

dpl::fill(my_policy, buf_begin, buf_begin + 1000, 42);

Intel Confidential

auto buf_begin = dpl::begin(buf, sycl::write_only, sycl::noinit);

dpl::fill(my_policy, buf_begin, buf_begin + 1000, 42);

Intel ConfidentialDepartment or Event Name 19Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 19

#include <oneapi/dpl/execution>
#include <oneapi/dpl/algorithm>
#include <sycl/sycl.hpp>
int main()
{

using oneapi::dpl::execution::make_device_policy;
sycl::queue q;
const int n = 1000;
int* data = sycl::malloc_shared<int>(n, q);

auto pol = make_device_policy<class Fill>(q);
dpl::fill(pol, data, data + n, 42);
auto result = dpl::find(make_device_policy<class Find>(q),

data, data + n, 42);
// q.wait();

sycl::free(data, q);
return 0;

}

Directly pass USM pointers to parallel algorithms

Intel ConfidentialDepartment or Event Name 20Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 20

Intel ConfidentialDepartment or Event Name 21Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 21

Host

Code running on the host CPU can use everything

Device

Some std classes/functions cannot work in device kernel code due to

SYCL/DPC++ restrictions

Functions/methods that use exception

Dynamic memory allocation

Virtual functions

Intel ConfidentialDepartment or Event Name 22Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 22

120 standard C++ APIs have been tested

Usage in DPC++ kernels

Data transfer between host and device (only for specific C++ types)

Across 3 major implementations:

libstdc++(GNU): deployed in most Linux* distributions

libc++(LLVM): macOS* and FreeBSD*

Microsoft STL*: Windows*; shipped with Microsoft Visual Studio*

Available in both namespace std and namespace oneapi::dpl

Visit Intel® oneAPI DPC++ Library Guide for a detailed list

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-library-guide/top/tested-standard-c-apis.html

Intel ConfidentialDepartment or Event Name 23Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 23

#include <oneapi/dpl/execution>

#include <oneapi/dpl/algorithm>

#include <oneapi/dpl/iterator>

#include <sycl/sycl.hpp>

#include <complex>

int main() {

const size_t n = 100;

sycl::buffer<std::complex<double>> c_buf{n};

auto idx = dpl::counting_iterator<int>(0);

dpl::transform(dpl::execution::dpcpp_default, idx, idx+n, dpl::begin(c_buf),

[=](auto i) {

const double v = fabs(static_cast<double>(n)/2.0 - static_cast<double>(i));

return std::complex<double>{v, v};

});

return 0;

}

use of std components on the device

Intel ConfidentialDepartment or Event Name 24Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 24

Intel ConfidentialDepartment or Event Name 25Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 25

Custom Iterators:

counting_iterator

zip_iterator

transform_iterator

permutation_iterator

discard_iterator

Counting Iterator

Represents a linear, increasing

sequence of integer values

Commonly used as an index:
[](auto i){a[i] = b[i];}

Advantage: Not in memory

0 1 2 3[0,4)

Intel ConfidentialDepartment or Event Name 26Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 26

Combines multiple iterators into a

single iteration space

Combinations of custom iterators are

possible (permutation, counting, …)

Make function accepts an argument

pack

Zip Iterator

0 1 2 3

1 1 2 2

Transform Iterator

Applies transformation to
dereferenced values of another
iterator

Example: Square numbers
Input iterator

Here: counting iterator

Unary function

Here: [](auto& x){return x*x;}

0 1 2 3 0 1 4 9
f(x) 0 1 2 3

1 1 2 2

Intel ConfidentialDepartment or Event Name 27Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 27

TriAdd example with oneDPL

/* ... */

double *d_A = sycl::malloc_device<double>(length, q);

double *d_B = sycl::malloc_device<double>(length, q);

double *d_C = sycl::malloc_device<double>(length, q);
/* ... */

double scalar(3);

{

for (int iter = 0; iter <= iterations; iter++) {

auto begin = dpl::make_zip_iterator(d_A, d_B, d_C);

dpl::transform(dpl::execution::make_device_policy<class TriAdd>(q),

begin, begin + length, d_A, [=](const auto &t) {

auto [a, b, c] = t;

return a + b + scalar * c;

});

}

}

/* ... */

https://github.com/ParRes/Kernels/blob/default/Cxx11/nstream-onedpl.cc

Adding two vectors B and C
multiplied by a scalar s

to vector A:
A + = B + s * C

Intel ConfidentialDepartment or Event Name 28Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 28

int main() {

sycl::queue q(sycl::gpu_selector{});

auto my_policy = dpl::execution::make_device_policy(q);

auto sum = dpl::transform_reduce(my_policy, dpl::counting_iterator<int>(0),

dpl::counting_iterator<int>(N), 0, std::plus<float>{},

[=](auto n){

float local_sum = 0.0f;

// Get random coords

dpl::minstd_rand engine(SEED, 2*n*LOCAL_N);

dpl::uniform_real_distribution<float> distr(-1.0f,1.0f);

for(int i = 0; i < LOCAL_N; ++i) {

float x = distr(engine), y = distr(engine);

if (x*x + y*y <= 1.0)

local_sum += 1.0;

}

return local_sum / (float)LOCAL_N;

});

estimated_pi = 4.0*(float)sum / N;

return 0;

}

Making full use of oneDPL

Intel ConfidentialDepartment or Event Name 29Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 29

Intel ConfidentialDepartment or Event Name 30Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 30

C++20 adds Ranges into the C++ standard library

Very powerful and expressive functional API

But does not yet support execution policies

oneDPL provides Range support as an experimental feature

A subset (~40) of the standard algorithms with execution policies

A dozen custom range views

Not fully standard-compliant (not based on concepts, no projections, …)

Only for DPC++ execution policies

sycl::buffer can be passed to algorithms as a range

Available since Intel® oneAPI DPC++ Library (oneDPL) version 2021.1

As of today: not a part of oneAPI spec

Intel ConfidentialDepartment or Event Name 31Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 31

#include <oneapi/dpl/execution>
#include <oneapi/dpl/algorithm>

#include <oneapi/dpl/ranges>

#include <sycl/sycl.hpp>
int main()
{

using namespace oneapi::dpl;
sycl::buffer<int> buf{ 1000 };

experimental::ranges::for_each(execution::dpcpp_default,
buf, [](auto& i){ i=42; });

auto result = experimental::ranges::find(execution::dpcpp_default,
buf, 42);

return 0;
}

Pass a buffer to a parallel algorithm

Intel ConfidentialDepartment or Event Name 32Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 32

A pipeline of 3 algorithms (each using a DPC++ kernel)
using namespace oneapi::dpl;

reverse(policy, begin(data), end(data));

transform(policy, begin(data), end(data), begin(result), [](auto i){ return i*i; });

auto res = find_if(policy, begin(result), end(result), pred);

With custom iterators (only 1 kernel)
using namespace oneapi::dpl;

auto iter =

make_transform_iterator(make_reverse_iterator(end(data)), [](auto i){return i*i;});

auto res = find_if(policy, iter, iter + data.size(), pred);

With ranges (only 1 kernel)
using namespace oneapi::dpl::experimental::ranges;

auto res = find_if(policy, views::all(data) | views::reverse |

views::transform([](auto i){return i*i;}), pred);

Intel ConfidentialDepartment or Event Name 33Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 33

Intel ConfidentialDepartment or Event Name 34Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 34

oneDPL algorithms with DPC++ execution policies are blocking

C++ standard compliant: return when execution completes (on the

device)

In some cases, may transfer data back to the host

Experimental explicitly asynchronous API

Algorithms never wait, instead returning a future-like object

Simultaneous use of multiple devices

Exploits DPC++ asynchronous capabilities (hiding latencies, etc.)

Composing oneDPL algorithms into static data flow graphs

Intel ConfidentialDepartment or Event Name 35Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 35

#include <oneapi/dpl/execution>

#include <oneapi/dpl/iterator>

#include <oneapi/dpl/async>

#include <sycl/sycl.hpp>

int main() {

sycl::buffer<int> buf { 1000 };

auto policy = dpl::execution::dpcpp_default;

auto first = dpl::begin(buf);

auto last = dpl::end(buf);

// returns a future-like object encapsulating a SYCL event

auto future_1 = dpl::experimental::fill_async(policy, first, last, 42);

auto future_2 = dpl::experimental::transform_async(

policy, first, last, first, [](int x){ return x + 1; }, future_1);

auto reduced_value = dpl::experimental::reduce_async(policy, first, last, future_2).get();

// .get() method blocks and returns a value

return 0;

}

Avoids blocking between chained algorithms

Intel ConfidentialDepartment or Event Name 36Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 36

And materials for further learning

Intel ConfidentialDepartment or Event Name 37Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 37

oneDPL is a productivity library for heterogeneous computing

Use C++ standard API in kernels

Express higher-level parallel patterns with Parallel API

Target compute devices with custom policies

Improve expressiveness with custom iterators

Combine programmability and optimizations with Ranges API

Control non-blocking behavior with Async API

Intel ConfidentialDepartment or Event Name 38Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 38

oneDPL specification

https://spec.oneapi.io/versions/latest/elements/oneDPL/source/index.html

oneDPL Library Guide

https://docs.oneapi.io/versions/latest/onedpl/index.html

oneDPL source code

https://github.com/oneapi-src/oneDPL

Build & optimize your code in the Intel® DevCloud for oneAPI

Intel® oneAPI preinstalled and ready to go: https://devcloud.intel.com/oneapi/

https://spec.oneapi.io/versions/latest/elements/oneDPL/source/index.html
https://docs.oneapi.io/versions/latest/onedpl/index.html
https://github.com/oneapi-src/oneDPL
https://devcloud.intel.com/oneapi/

Intel ConfidentialDepartment or Event Name 39Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 39

▪ software.intel.com/oneapi

▪ Training

▪ Documentation

▪ Code Samples

▪ oneAPI.com

▪ oneAPI Industry Specification

▪ Open Source Implementations

▪ Community Forums

▪ Academic Program

▪ Intel® DevMesh Innovator Projects

https://software.intel.com/en-us/oneapi/training
https://software.intel.com/en-us/oneapi/training
https://software.intel.com/en-us/oneapi/documentation
https://github.com/oneapi-src/oneAPI-samples
oneapi.com
https://spec.oneapi.com/versions/latest/index.html
https://www.oneapi.com/open-source/
https://community.intel.com/t5/Intel-oneAPI-Toolkits/ct-p/oneapi
https://community.intel.com/t5/Intel-oneAPI-Toolkits/ct-p/oneapi
https://devmesh.intel.com/projects?sort=best&query=oneAPI

40

A development sandbox to develop,
test and run workloads across a range
of Intel CPUs, GPUs, and FPGAs using
Intel’s oneAPI software.

software.intel.com/devcloud/oneapi

https://software.intel.com/en-us/devcloud/oneapi

Intel ConfidentialDepartment or Event Name 41Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 41

Intel ConfidentialDepartment or Event Name 42Reduce Cross-platform Programming Efforts & Write Performant Parallel Code with oneDPL 42

Intel technologies may require enabled hardware, software or service activation. Learn more at intel.com or from the OEM or retailer.

Your costs and results may vary.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel

microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality,
or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with

Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User
and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision #20110804. https://software.intel.com/en-

us/articles/optimization-notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change

to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products. See backup for configuration details. For more complete information about

performance and benchmark results, visit www.intel.com/benchmarks.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details.

No product or component can be absolutely secure.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-
infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the

property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

