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Directive-based parallel programming in OpenMP and 
OpenACC
• Shared-memory multi-core programming and heterogenous computing
• Industry standards
• C/C++/Fortran
• OpenMP (v5.1)

• Not linked to a particular vendor, nor accelerator type
• At runtime, all accelerators of the same kind

• Multiple vendors and open-source platforms are coming
• Shared multi-processors initially and supporting accelerators since 2013

• OpenACC (v3.1)
• Works on NVIDIA GPUs
• Adopted by many HPC users for heterogenous computing
• Accelerator-centric since 2011 and adding multi-core support since 2018

• Interoperability between OpenACC and OpenMP?
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OpenACC 2 OpenMP migration tool

• A prototype for a source-2-source tool for translating OpenACC
into OpenMP
• Initially planned for Fortran, later extended to C/C++
• Python-based

• processing OpenACC pragmas / statements
• not using AST generators currently

• Assumes syntactically and functionally correct input
• Resulting code can be compiled w/ either OpenACC or OpenMP 

compilers
• Compilers can apply their own heuristics & optimizations
• Easy to adopt forthcoming specification extensions

• User can (has to) visually inspect for the translation correctness
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Alternative OpenACC migration tools

• ACC2OMP by N. Romero [https://github.com/naromero77/ACC2OMP]
• Fortran only
• Did not succeed translating some mini-applications

• CLACC [FLACC?] by ORNL [https://csmd.ornl.gov/project/clacc]
• Traditional compilation translates OpenACC source to an executable (using 

OpenMP runtime), and
• Source-to-source mode translated OpenACC source to OpenMP source
• What is the status of FLACC?

• GPUFORT by AMD [https://github.com/ROCmSoftwarePlatform/gpufort]
• Fortran + OpenACC and CUDA fortranFortran + OpenMP 4.5+
• Requires additional OpenACC runtime component based on GCC LIBGOMP 

and HIP++
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Migration process

file.f.original

file.f.report

file.f.translatedfile.f openacc2openmp.py

same as input file

translated file

annotations for the 
translated file
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Migration tool knobs
$ ./openacc2openmp.py -help
Expected parameters: <Options> file

Where options:
-h // -help                  : Shows this help screen
-[no-]conditional-define     : If enabled, wraps translated code with #ifdef OPENACC2OPENMP_TRANSLATION. (enabled)
-conditional-define=DEF      : If enabled, wraps translated code with #ifdef DEF.
-[no-]force-backup           : If enabled, enforce writing a backup of the original file.                (disabled)
-[no-]generate-report        : Enables/Disables report generation about the translation.                 (enabled)
-[no-]generate-multidimensional-alternate-code :                                                         (enabled)

Provides implementation suggestions for ACC ENTER/EXIT DATA constructs to be employed
if the multi-dimensional data is non-contiguous

-loop=<ignore,collapse,keep> : Specifies how to treat ACC LOOP constructs.                               (ignore)
- collapse refers to turn ACC LOOP into COLLAPSED clauses (experimental).
- keep refers to translate ACC LOOP into OMP LOOP constructs (requires OpenMP 5.1+ compiler).

-present=<alloc,tofrom,keep,hasdeviceaddr> : Specifies how to treat ACC LOOP constructs.                 (alloc)
- alloc refers to mimic PRESENT clauses with MAP(ALLOC:)
- tofrom refers to mimic PRESENT clauses with MAP(TOFROM:)
- keep refers to use OMP PRESENT clauses (requires OpenMP 5.1+ compiler).
- hasdeviceaddr refers to use OMP HAS_DEVICE_ADDR clauses (requires OpenMP 5.1+ compiler).

-async=<ignore,nowait>       : Specifies how to treat ACC ASYNC clauses.                                 (nowait)
- ignore refers to not translate the ASYNC clauses.
- nowait translates ACC ASYNC clauses into nowait.

-[no-]supress-openacc : Enables/Disables supression of OpenACC translated statements in result.   (disabled)
-[no-]overwrite-input        : Enables/Disables overwriting the original file with the translation.      (disabled)
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Demonstration
• openacc2openmp.git [bbcc727e3d64b91c1c6480680ad22d6e2f73d0d1]

• POT3D [r3.1.0] https://github.com/predsci/POT3D [42984a8ce428d54036d6b8a0732f05a046e8f840]

• Edit Makefile
• FC = mpiifort -fc=ifx
• FFLAGS = -fiopenmp -fopenmp-targets=spir64="-mllvm -vpo-paropt-enable-64bit-opencl-atomics=true" 

-O -I/nfs/home2/hservatg/apps/HDF5/1.12.1/include
• LDFLAGS = -L/nfs/home2/hservatg/apps/HDF5/1.12.1/lib -Wl,-rpath -

Wl,/nfs/home2/hservatg/apps/HDF5/1.12.1/lib -lhdf5_fortran -lhdf5_hl_fortran -lhdf5 -lhdf5_hl
• ~/src/openacc2openmp.git/src/openacc2openmp.py -loop=keep -async=ignore -no-conditional-define *.f
• Use vimdiff to compare original and translated file
• Modify cgdot reduction (file pot3d.f, line ~ 5550) to run reduction on the host and prepend

• !$omp target update from(x,y)
• Copy translated into original
• Run make
• Go into ../testsuite/validation/input
• Run mpirun –np 2 ../../../src/pot3d
• Compare pot3d.out against ../validation/pot3d.out

• ifx (IFORT) dev.x.0 Mainline 20210923
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OpenACC vs OpenMP discussion
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#pragma acc kernels

• #pragma acc kernels construct is a 
hint (vs #pragma acc parallel which 
is an assertion)
• compiler automatically extracts 

parallelism from the code 
• typically, each loop nest will be a 

distinct kernel
• gangs, workers and vector length may 

be different for each kernel

• Migration issues
• no semantically equivalent in OpenMP
• not necessarily applied on top of a loop
• loop siblings and loop nests may need 

to be parallelized independently
• AST may help but there is also work to 

identify parallelization opportunities

#pragma acc kernels
{

for (i = 0; i < N; ++i)
{

y[i] = 0.0f;
x[i] = (float)(i+1);

}
for (i = 0; i < N; ++i)
{

y[i] = 2.0 * x[i] + y[i];
}

}

!$acc kernels
do i = 1, N

y(i) = 0
x(i) = i

enddo
do i = 1, N

y(i) = 2.0 * x(i) + y(i)
enddo
!$acc end kernels

Code from OpenACC Programming and Best Practices Guide
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#pragma acc kernels

• #pragma acc kernels gets 
translated into target teams 
(serial)
• … except if combined with loop

#pragma acc kernels
#pragma omp target
{

for (i = 0; i < N; ++i)
{

y[i] = 0.0f;
x[i] = (float)(i+1);

}
for (i = 0; i < N; ++i)
{

y[i] = 2.0 * x[i] + y[i];
}

}

#pragma acc kernels loop
#pragma omp target teams distribute parallel for
for (i = 0; i < N; ++i)
{
y[i] = 2.0 * x[i] + y[i];

}
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Alignment between the two languages (present)

• #pragma acc … present(X)
• -present=keep

• Use OpenMP 5.1 present clause but not 
supported on Intel compilers yet

• -present=alloc
• semantically different 
• allocate if not already allocated

• -present=tofrom
• semantically different (host-centric)
• perf overhead
• for debugging purposes?

• -present=has_device_addr
• use OpenMP 5.1 has_device_addr but not 

fully supported on Intel compilers yet
• more to come in OpenMP 5.2

• default(present)
• not currently supported but could map 

to defaultmap(X)

#pragma acc parallel loop present(X)

[tentative/5.1]

#pragma omp target teams distribute parallel for 
map(present,tofrom:X)

#pragma omp target teams distribute parallel for 
map(alloc:X)

#pragma omp target teams distribute parallel for 
map(tofrom:X)

[tentative/5.1+]

#pragma omp target teams distribute parallel for 
has_device_addr(X)
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Alignment between the two languages (loop)

• #pragma acc loop
• Similar construct in OpenMP 5.0

• use –loop=keep
• On compilers supporting OpenMP 4.5 

or older
• -loop=collapse  tries to collapse 

loops but has some limitations
• -loop=ignore  ignores the loop 

constructs

• #pragma acc loop can specify num 
gangs, num workers and vector size 
if not specified by parent construct
• not available in OpenMP’s loop, though

-loop=keep

#pragma acc parallel loop
#pragma omp target teams distribute parallel for 
for (auto i = 0; i < N; ++i)

#pragma acc loop
#pragma omp loop
for (auto j = 0; j < M; ++j)
{

vec[i][j[] += 1.0;
}

-loop=collapse

#pragma acc parallel loop
#pragma omp target teams distribute parallel for collapse(2)
for (auto i = 0; i < N; ++i)

#pragma acc loop
for (auto j = 0; j < M; ++j)
{

vec[i][j[] += 1.0;
}
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Asynchronism

• OpenACC’s async(x) clause
• if x is non-negative, then is used to select the 

queue (stream) on the current device onto 
which to enqueue an operation

• successive clauses on the same queue will be 
executed sequentially

• if x is negative, the behavior is implementation 
defined

• acc_async_noval, acc_async_sync

• OpenMP’s async mechanisms
• #pragma omp target … nowaitmay be 

sufficient to mimic on simple cases
• depend clause  express chain of 

dependencies and mimic OpenACC’s async
• turn #pragma acc … async(1) into #pragma omp

target .. depend (inout: dep_async_1)
• turn #pragma acc wait (1) into #pragma omp

target .. depend (in:dep_async_1)
 need to define dep_async_X list item or depobj in 
some headers / modules
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Non-contiguous data-mapping

• OpenACC supports data mapping 
of non-contiguous arrays (e.g.
pointers to pointers)
• At what performance cost?

• Not supported directly in OpenMP 
with Intel compiler
• OpenMP 5.0 defines iterators but not 

implemented on Intel compiler yet
migration tool suggests an 
alternative code that transfers data 
on per-row basis
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Seq clause

• OpenACC supports the seq 
clause on loop and routine 
constructs
• Override any automatic 

parallelization or vectorization
• Not to be executed in parallel by 

gangs/threads
• Not to be executed in a vector 

fashion
• Nothing similar in OpenMP

• Cannot specify thread_limit nor 
simdlen on #pragma omp loop and 
#pragma declare target

• Currently ignored

#pragma acc routine seq
float func(float, float);

#pragma acc loop seq
for (auto i = 0; i < N; ++i)
data[k] += _data[k][i];
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Performance portability

• OpenACC 3-levels of parallelism (gangs, 
workers, vector ) can be mapped to similar 
clauses in OpenMP (teams, threads and 
vector)
• Mapping on hardware with different 

characteristics

#pragma acc parallel loop num_gangs(NG) 
num_workers(NW)
#pragma omp target teams distribute num_teams(NG) 
thread_limit(NW)
for (auto i = 0; i < N; ++i)
{

#pragma acc loop gang
#pragma omp loop bind(teams)
for (auto j = 0; j < M; ++j)
{
..
}
#pragma acc loop worker
#pragma omp loop bind(thread)
for (auto j = 0; j < M; ++j)
{
..
}

}
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Interoperability with the runtime

• OpenACC API supports interaction with CUDA/OpenCL
• e.g.

• acc_get_current_cuda_device/context,
• acc_set/get_cuda_stream,
• acc_get_current_opencl_device/context,

• OpenMP 5.0 includes “interop” constructs into the spec
• https://github.com/OpenMP/Examples/blob/v5.1/program_control/sources/in

terop.1.c
• OpenMP and CUDA interaction

• https://github.com/argonne-lcf/HPC-
Patterns/blob/main/interop_omp_ze_sycl.cpp
• OpenMP and SYCL interaction

• Applications using these features?
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Conclusions and future work

• We’ve shown a prototype tool for helping migrate Fortran and 
C/C++ OpenACC codes into OpenMP

• We’re gathering feedback for more complex applications 
• Extend support for additional OpenACC constructs, applications

• AST likely to help, but what AST generator for Fortran?

• Performance suggestions/evaluations
• Guidance on perf hints (gangs, workers, vector length, collapse, 

transfers…) ?
• OpenACC vs translated OpenMP using different compilers & hw (HPC 

SDK, clang/LLVM on NVidia hw and Intel compilers)




