OpenACC* 2 OpenMP* migration tool

Harald Servat PhD & Giacomo Rossi PhD and support of many Intel colleagues
AXG/DEE/TCE/XCSS

September 29th, 2021

intel.

*Other names and brands may be claimed as the property of others.

Directive-based parallel programming in OpenMP and
OpenACC

= Shared-memory multi-core programming and heterogenous computing
= Industry standards

= C/C++/Fortran

= OpenMP (v5.1)

= Not linked to a particular vendor, nor accelerator type
= Atruntime, all accelerators of the same kind
= Multiple vendors and open-source platforms are coming
= Shared multi-processors initially and supporting accelerators since 2013

= OpenACC (v3.1)
= Works on NVIDIA GPUs
= Adoptedby many HPC users for heterogenous computing
= Accelerator-centric since 2011 and adding multi-core support since 2018

* Interoperability between OpenACC and OpenMP?

intel.

OpenACC 2 OpenMP migration tool

= A prototype fora source-2-source tool for translating OpenACC
into OpenMP

= Initially planned for Fortran, later extended to C/C++
Python-based

= processing OpenACC pragmas / statements
= notusing AST generators currently
= Assumes syntactically and functionally correct input
» Resulting code can be compiled w/ either OpenACC or OpenMP
compilers
= Compilers can apply theirown heuristics & optimizations
= EFasy toadopt forthcoming specification extensions

= User can (has to) visually inspect for the translation correctness

intel.

3

Alternative OpenACC migration tools

= ACC20MP by N. Romero [https://github.com/naromero77/ACC20MP]
= Fortran only
= Did not succeed translating some mini-applications

 CLACC [FLACC?] by ORNL [https://csmd.ornl.gov/project/clacc]

= Traditional compilation translates OpenACC source to an executable (using
OpenMP runtime), and

= Source-to-source mode translated OpenACC source to OpenMP source
* Whatis the status of FLACC?

 GPUFORT by AMD [https://github.com/ROCmMSoftwarePlatform/gpufort]
* Fortran + OpenACC and CUDA fortran = Fortran + OpenMP 4.5+

= Requires additional OpenACC runtime component based on GCC LIBGOMP
and HIP++

intel.

a

Migration process

openaccZopenmp.py

ACCELERATED COMPUTING
SYSTEMS AND GRAPHICS

AX(E

same as input file

translated file

annotations for the
translated file

intel.

5

Migration tool knobs

$

./openacc2openmp.py -help

Expected parameters: <Options> file

W

NG

here options:

-h // -help
-[no-Jconditional-define
-conditional-define=DEF

: Shows this help screen
: If enabled, wraps translated code with #ifdef OPENACC20PENMP_TRANSLATION. (enabled)
: If enabled, wraps translated code with #ifdef DEF.

-[no-]force-backup : If enabled, enforce writing a backup of the original file. (disabled)
-[no-]generate-report : Enables/Disables report generation about the translation. (enabled)
-[no-Jgenerate-multidimensional-alternate-code : (enabled)

-loop=<ignore,collapse,keep> :

Provides implementation suggestions for ACC ENTER/EXIT DATA constructs to be employed
if the multi-dimensional data is non-contiguous

Specifies how to treat ACC LOOP constructs. (ignore)

- collapse refers to turn ACC LOOP into COLLAPSED clauses (experimental).

- keep refers to translate ACC LOOP into OMP LOOP constructs (requires OpenMP 5.1+ compiler).

-present=<alloc,tofrom,keep,hasdeviceaddr> : Specifies how to treat ACC LOOP constructs. (alloc)

-async=<ignore,nowait>

-[no-Jsupress-openacc
-[no-Joverwrite-input

ACCELERATED COMPUTING
SYSTEMS AND GRAPHICS

- alloc refers to mimic PRESENT clauses with MAP(ALLOC:)

tofrom refers to mimic PRESENT clauses with MAP(TOFROM:)

- keep refers to use OMP PRESENT clauses (requires OpenMP 5.1+ compiler).

- hasdeviceaddr refers to use OMP HAS_DEVICE_ADDR clauses (requires OpenMP 5.1+ compiler).

: Specifies how to treat ACC ASYNC clauses. (nowait)

- ignore refers to not translate the ASYNC clauses.
- nowait translates ACC ASYNC clauses into nowait.

: Enables/Disables supression of OpenACC translated statements in result. (disabled)
: Enables/Disables overwriting the original file with the translation. (disabled)

intel

6

NG

Demonstration

" openacc20penmMp.git bbecr27e3dsab91cics480680a022d662734041]

= POT3D [I’S] O] https://qithub.com/ Dl’edSCi/ PO T 3D [4298428ce428d54036d6082073210520468(840]

= Edit Makefile
FC = mpiifort -fc=1fx

FFLAGS = -fiopenmp -fopenmp- targets=s€1r64—"—mllvm -vpo-paropt-enable-64bit-opencl-atomics=true
-0 I/nfs/home2/hservatg/apps/H F5/1.12.1/include

LDFLAGS = —L/nfs/homeZ/hservatEé gps/HDFS/l 12.1/1ib -Wl,-rpath
1,/nfs/home2/hservatg/apps/HDF5/1.12.1/11ib ~Thdf5_fortran —1hdf5 hl_fortran -1hdf5 -1hdf5_hl

. ~/src/openacc2openmp.g|t/src/openacc2openmp.py -loop=keep -async=ignore -no-conditional-define *f
= Use vimdiff to compare original and translated file
= Modify cgdot reduction (file pot3df, line ~ 5550) to run reduction on the host and prepend
= 1$omp target update from(x,y)
* Copy translated into original
* Runmake
= Gointo ./testsuite/validation/input
= Runmpirun-np 2../././src/pot3d
= Compare pot3d.out against ../validation/pot3d.out

= ifx (IFORT) dev.x.0 Mainline 20210923

ACCELERATED COMPUTING
SYSTEMS AND GRAPHICS

intel.

7

OpenACC vs OpenM

P discussion

intel. s

NG

#oragma acc kernels

= #fpragma acc kernels constructis a
hint (Vs #pragma acc parallel which
IS an assertion

= compilerautomatically extracts
parallelism from the code

= typically, each loop nest will be a
istinctkernel

= gangs, workers and vector length may
be different for each kernel

= Migration issues
= no semantically equivalentin OpenMP
= not necessarily applied ontop of aloop

= loop siblings and loop nests may need
to be parallelized independently

. ASTnmythbuuhaeSabowQ&to
identify parallelization opportunities

ACCELERATED COMPUTING
SYSTEMS AND GRAPHICS

#pragma acc kernels
for (1 =0; 1 < N; ++1)

0.0f;
(float)(i+1);

for (1 = 0; 1 < N; ++1)

y[i] = 2.0 * x[1] + y[i];

'$acc kernels

do i =1, N
y(1)
x(1)

enddo
do i =1, N
y(i) = 2.0 * x(1) + y(1)
enddo
!'$acc end kernels

Code from OpenACC Programming and Best Practices Guide

intel.

9

#oragma acc kernels

» #pragma acc kernels gets fhragna g kernets
translated into target teams U or (=05 1 <Ny ++)
(serial) ! y[i] = 0.0f;

= ...except if combined with loop y b= (fleat)tixt);
for (1 =0; 1 < N; ++1)
i y[il = 2.0 * x[1] + y[i];

#pragma acc kernels loop
#pragma omp target teams distribute parallel for
for (1 =0; 1 < N; ++1)

y[i]l = 2.0 * x[1] + y[1];

ACCELERATED COMPUTING

A \c—-; SYSTEMS AND GRAPHICS i n tel s 10

NG

Alignment between the two languages (present)

= #pragma acc ... present(X)

= -present=keep

= Use OpenMP 5.1 present clause but not
supported on Intel compilers yet

= -present=alloc
= semantically different
= allocate if not already allocated
= -present=tofrom
= semantically different (host-centric)
= perfoverhead
= for debugging purposes?
= -present=has_device_addr

= use OpenMP 5.1has_device_addrbut not
fully supported on Intel compilers yet

= more tocomein OpenMP 5.2
= default(present)

= not currently supported but could ma
to olefauI’tm}a/pOl%O .

ACCELERATED COMPUTING
SYSTEMS AND GRAPHICS

#pragma acc parallel loop present(X)

[tentative/5.1]

#pragma omp target teams distribute parallel for
map(present,tofrom:X)

#pragma omp target teams distribute parallel for
map(alloc:X)

#pragma omp target teams distribute parallel for
map(tofrom:X)

[tentative/5.1+]

#pragma omp target teams distribute parallel for
has_device_addr(X)

intel.

n

Alignment between the two languages (loop)

= #pragma acc loop “loop=keep

= Similar constructin OpenMP 5.0
#pragma acc parallel loop

= use—loop=|<eep #pragma omp target teams distribute parallel for
for (auto 1 = 0; 1 < N; ++1)

orolder #pragma omp loop ,
) for (auto j = 0; j < M; ++j)
= -loop=collapse = tries to collapse { .
loops but has some limitations , vec[1][j[] += 1.0;
= -loop=ignore = ignores the loop
constructs

-loop=collapse

#pragma acc parallel loop

- #pragma acc |Oop can SpeCIfy num #pragma omp target teams distribute parallel for collapse(2)

gangs, num workers and vector size for (3uto 1 = 03 & < N; ++1)

. . (. ragma acc LOO

if not specified by parent construct for (auto § = 05 < M; ++)
= notavailable in OpenMP’s loop, though i vec[1I[j[] += 1.0;

intel 12

ACCELERATED COMPUTING
SYSTEMS AND GRAPHICS

NG

Asynchronism

NG

OpenACC’sasync(x) clause

= if xis ngn-negative, thenis used to select the
queue (stream) on the current device onto
which to enqueue an operation

= successive clauses on the same queue will be
executed sequentially

= if xis negative, the behavioris implementation
defined
= acc_async_noval,acc_async_sync

OpenMP’s async mechanisms

= #pragma omp target ... nowait = may be
sufficient to mimic on simple cases

= dependclause = express chain of
dependencies and mimic OpenACC’s async

= turn #pragma acc ... async(l) into #pragma omp
target .. dépend (inout:dep_async_1)

= turn #pragma acc wait (1) into #pragma om
target?.dgpend (in:dep_async_B J .

- need to define dep_async_Xlist item or depobjin
some headers / modules

ACCELERATED COMPUTING
SYSTEMS AND GRAPHICS

i= ,hrml
br(i,j,k)=(phi(i+1,j,k)-phi(i,]j,k))/dr(1)

k=1,np
j=1,ntml

i=1,nr

bt(i,j,k)=(phi(1,j+1,k)-phi(i,],k))/(rh(i)*dt(j))

Lo aes |

- bp(1,]j,k)=(phi(1,]),k+1)-phi(1,],k))/(rh(1)*sth(])*dp(k))

k=1,npml
j=1,nt
i=1,nr

intel

Non-contiguous data-mapping

= OpenACC supports data mapping
of non-contiguous arrays (e.g.
pointers to pointers)

= Atwhat performance cost?

= Not supported directly in OpenMP
with Intel compiler
= OpenMP 5.0 defines iterators but not
implemented on Intel compiler yet

- migration tool suggests an
alternative code that transfers data
on per-row basis

intel

14

Seqgclause

OpenACC supports the seq
clause onloop and routine
constructs
= Override any automatic
parallelization or vectorization

= Notto pe executed in parallel by
gangs/threads

= Notto be executedina vector
fashion

Nothing similarin OpenMP

= Cannot specify thread_limit nor

simdlen on #pragma omp loop and

#pragma declare target

Currently ignored

ACCELERATED COMPUTING
SYSTEMS AND GRAPHICS

INGE

#pragma acc routine seq
float func(float, float);

#pragma acc loop seq
for (auto Lt = 0; 1 < N; ++1)
datalk] += _datalk][i];

intel.

15

Performance portability

" OpenACC 3-levels of parallelism (gangsl #pragma acc parallel loop num_gangs(NG)
. . num_workers(Nw)
Workers{ vector)can be mapped to similar #pragma omp target teams distribute num_teams(NG)
clausesin OpenMP (teams, threads and ’Fhread_%lm}tiN\g) . |
vector) {or (auto i = 0; i < N3 ++1)
= Mapping on hardware with different #pragma acc loop gang

#pragma omp loop bind(teams)

characteristics for (auto j = 0; j < M; ++j)
{

}'
#pragma acc loop worker

#pragma omp loop bind(thread)
for (auto j = 0; j < M; ++j)

ACCELERATED COMPUTING

A \c—-; SYSTEMS AND GRAPHICS i n tel s 16

Interoperability with the runtime

= OpenACC API supports interaction with CUDA/OpenCL
" e.qg.
= acc_get_current_cuda_device/context,
= acc_set/get_cuda_stream,
= acc_get_current_opencl_device/context,

* OpenMP 5.0 includes “interop” constructs into the spec

» https://qgithub.com/OpenMP/Examples/blob/v5.1/program_control/sources/in
terop.l.Cc
= OpenMP and CUDA interaction
= https://qgithub.com/argonne-lcf/HPC-
Patterns/blob/main/interop_omp_ze sycl.cpp
= OpenMP and SYCL interaction

= Applications using these features?

y ACCELERATED COMPUTING .
A § | SYSTEMS AND GRAPHICS |ntel 17

Conclusions and future work

= We've shown a prototype tool for helping migrate Fortran and
C/C++ OpenACC codes into OpenMP

= We're gathering feedback for more complex applications
= Extend support for additional OpenACC constructs, applications
= AST likely to help, but what AST generator for Fortran?
» Performance suggestions/evaluations

= Guidance on perf hints (gangs, workers, vector length, collapse,
transfers...) ?

= OpenACC vs translated OpenMP using different compilers & hw (HPC
SDK, clang/LLVM on NVidia hw and Intel compilers)

y ccccccccccccccccccc =
A § | SYSTEMS AND GRAPHICS |ntel 18

intel.

