
OpenACC* 2 OpenMP* migration tool
Harald Servat PhD & Giacomo Rossi PhD and support of many Intel colleagues
AXG / DEE / TCE / XCSS

September 29th, 2021

*Other names and brands may be claimed as the property of others.

Intel ConfidentialDepartment or Event Name 22

Directive-based parallel programming in OpenMP and
OpenACC
• Shared-memory multi-core programming and heterogenous computing
• Industry standards
• C/C++/Fortran
• OpenMP (v5.1)

• Not linked to a particular vendor, nor accelerator type
• At runtime, all accelerators of the same kind

• Multiple vendors and open-source platforms are coming
• Shared multi-processors initially and supporting accelerators since 2013

• OpenACC (v3.1)
• Works on NVIDIA GPUs
• Adopted by many HPC users for heterogenous computing
• Accelerator-centric since 2011 and adding multi-core support since 2018

• Interoperability between OpenACC and OpenMP?

Intel ConfidentialDepartment or Event Name 33

OpenACC 2 OpenMP migration tool

• A prototype for a source-2-source tool for translating OpenACC
into OpenMP
• Initially planned for Fortran, later extended to C/C++
• Python-based

• processing OpenACC pragmas / statements
• not using AST generators currently

• Assumes syntactically and functionally correct input
• Resulting code can be compiled w/ either OpenACC or OpenMP

compilers
• Compilers can apply their own heuristics & optimizations
• Easy to adopt forthcoming specification extensions

• User can (has to) visually inspect for the translation correctness

Intel ConfidentialDepartment or Event Name 44

Alternative OpenACC migration tools

• ACC2OMP by N. Romero [https://github.com/naromero77/ACC2OMP]
• Fortran only
• Did not succeed translating some mini-applications

• CLACC [FLACC?] by ORNL [https://csmd.ornl.gov/project/clacc]
• Traditional compilation translates OpenACC source to an executable (using

OpenMP runtime), and
• Source-to-source mode translated OpenACC source to OpenMP source
• What is the status of FLACC?

• GPUFORT by AMD [https://github.com/ROCmSoftwarePlatform/gpufort]
• Fortran + OpenACC and CUDA fortranFortran + OpenMP 4.5+
• Requires additional OpenACC runtime component based on GCC LIBGOMP

and HIP++

Intel ConfidentialDepartment or Event Name 55

Migration process

file.f.original

file.f.report

file.f.translatedfile.f openacc2openmp.py

same as input file

translated file

annotations for the
translated file

Intel ConfidentialDepartment or Event Name 66

Migration tool knobs
$./openacc2openmp.py -help
Expected parameters: <Options> file

Where options:
-h // -help : Shows this help screen
-[no-]conditional-define : If enabled, wraps translated code with #ifdef OPENACC2OPENMP_TRANSLATION. (enabled)
-conditional-define=DEF : If enabled, wraps translated code with #ifdef DEF.
-[no-]force-backup : If enabled, enforce writing a backup of the original file. (disabled)
-[no-]generate-report : Enables/Disables report generation about the translation. (enabled)
-[no-]generate-multidimensional-alternate-code : (enabled)

Provides implementation suggestions for ACC ENTER/EXIT DATA constructs to be employed
if the multi-dimensional data is non-contiguous

-loop=<ignore,collapse,keep> : Specifies how to treat ACC LOOP constructs. (ignore)
- collapse refers to turn ACC LOOP into COLLAPSED clauses (experimental).
- keep refers to translate ACC LOOP into OMP LOOP constructs (requires OpenMP 5.1+ compiler).

-present=<alloc,tofrom,keep,hasdeviceaddr> : Specifies how to treat ACC LOOP constructs. (alloc)
- alloc refers to mimic PRESENT clauses with MAP(ALLOC:)
- tofrom refers to mimic PRESENT clauses with MAP(TOFROM:)
- keep refers to use OMP PRESENT clauses (requires OpenMP 5.1+ compiler).
- hasdeviceaddr refers to use OMP HAS_DEVICE_ADDR clauses (requires OpenMP 5.1+ compiler).

-async=<ignore,nowait> : Specifies how to treat ACC ASYNC clauses. (nowait)
- ignore refers to not translate the ASYNC clauses.
- nowait translates ACC ASYNC clauses into nowait.

-[no-]supress-openacc : Enables/Disables supression of OpenACC translated statements in result. (disabled)
-[no-]overwrite-input : Enables/Disables overwriting the original file with the translation. (disabled)

Intel ConfidentialDepartment or Event Name 77

Demonstration
• openacc2openmp.git [bbcc727e3d64b91c1c6480680ad22d6e2f73d0d1]

• POT3D [r3.1.0] https://github.com/predsci/POT3D [42984a8ce428d54036d6b8a0732f05a046e8f840]

• Edit Makefile
• FC = mpiifort -fc=ifx
• FFLAGS = -fiopenmp -fopenmp-targets=spir64="-mllvm -vpo-paropt-enable-64bit-opencl-atomics=true"

-O -I/nfs/home2/hservatg/apps/HDF5/1.12.1/include
• LDFLAGS = -L/nfs/home2/hservatg/apps/HDF5/1.12.1/lib -Wl,-rpath -

Wl,/nfs/home2/hservatg/apps/HDF5/1.12.1/lib -lhdf5_fortran -lhdf5_hl_fortran -lhdf5 -lhdf5_hl
• ~/src/openacc2openmp.git/src/openacc2openmp.py -loop=keep -async=ignore -no-conditional-define *.f
• Use vimdiff to compare original and translated file
• Modify cgdot reduction (file pot3d.f, line ~ 5550) to run reduction on the host and prepend

• !$omp target update from(x,y)
• Copy translated into original
• Run make
• Go into ../testsuite/validation/input
• Run mpirun –np 2 ../../../src/pot3d
• Compare pot3d.out against ../validation/pot3d.out

• ifx (IFORT) dev.x.0 Mainline 20210923

Intel ConfidentialDepartment or Event Name 88

OpenACC vs OpenMP discussion

Intel ConfidentialDepartment or Event Name 99

#pragma acc kernels

• #pragma acc kernels construct is a
hint (vs #pragma acc parallel which
is an assertion)
• compiler automatically extracts

parallelism from the code
• typically, each loop nest will be a

distinct kernel
• gangs, workers and vector length may

be different for each kernel

• Migration issues
• no semantically equivalent in OpenMP
• not necessarily applied on top of a loop
• loop siblings and loop nests may need

to be parallelized independently
• AST may help but there is also work to

identify parallelization opportunities

#pragma acc kernels
{

for (i = 0; i < N; ++i)
{

y[i] = 0.0f;
x[i] = (float)(i+1);

}
for (i = 0; i < N; ++i)
{

y[i] = 2.0 * x[i] + y[i];
}

}

!$acc kernels
do i = 1, N

y(i) = 0
x(i) = i

enddo
do i = 1, N

y(i) = 2.0 * x(i) + y(i)
enddo
!$acc end kernels

Code from OpenACC Programming and Best Practices Guide

Intel ConfidentialDepartment or Event Name 1010

#pragma acc kernels

• #pragma acc kernels gets
translated into target teams
(serial)
• … except if combined with loop

#pragma acc kernels
#pragma omp target
{

for (i = 0; i < N; ++i)
{

y[i] = 0.0f;
x[i] = (float)(i+1);

}
for (i = 0; i < N; ++i)
{

y[i] = 2.0 * x[i] + y[i];
}

}

#pragma acc kernels loop
#pragma omp target teams distribute parallel for
for (i = 0; i < N; ++i)
{
y[i] = 2.0 * x[i] + y[i];

}

Intel ConfidentialDepartment or Event Name 1111

Alignment between the two languages (present)

• #pragma acc … present(X)
• -present=keep

• Use OpenMP 5.1 present clause but not
supported on Intel compilers yet

• -present=alloc
• semantically different
• allocate if not already allocated

• -present=tofrom
• semantically different (host-centric)
• perf overhead
• for debugging purposes?

• -present=has_device_addr
• use OpenMP 5.1 has_device_addr but not

fully supported on Intel compilers yet
• more to come in OpenMP 5.2

• default(present)
• not currently supported but could map

to defaultmap(X)

#pragma acc parallel loop present(X)

[tentative/5.1]

#pragma omp target teams distribute parallel for
map(present,tofrom:X)

#pragma omp target teams distribute parallel for
map(alloc:X)

#pragma omp target teams distribute parallel for
map(tofrom:X)

[tentative/5.1+]

#pragma omp target teams distribute parallel for
has_device_addr(X)

Intel ConfidentialDepartment or Event Name 1212

Alignment between the two languages (loop)

• #pragma acc loop
• Similar construct in OpenMP 5.0

• use –loop=keep
• On compilers supporting OpenMP 4.5

or older
• -loop=collapse  tries to collapse

loops but has some limitations
• -loop=ignore  ignores the loop

constructs

• #pragma acc loop can specify num
gangs, num workers and vector size
if not specified by parent construct
• not available in OpenMP’s loop, though

-loop=keep

#pragma acc parallel loop
#pragma omp target teams distribute parallel for
for (auto i = 0; i < N; ++i)

#pragma acc loop
#pragma omp loop
for (auto j = 0; j < M; ++j)
{

vec[i][j[] += 1.0;
}

-loop=collapse

#pragma acc parallel loop
#pragma omp target teams distribute parallel for collapse(2)
for (auto i = 0; i < N; ++i)

#pragma acc loop
for (auto j = 0; j < M; ++j)
{

vec[i][j[] += 1.0;
}

Intel ConfidentialDepartment or Event Name 1313

Asynchronism

• OpenACC’s async(x) clause
• if x is non-negative, then is used to select the

queue (stream) on the current device onto
which to enqueue an operation

• successive clauses on the same queue will be
executed sequentially

• if x is negative, the behavior is implementation
defined

• acc_async_noval, acc_async_sync

• OpenMP’s async mechanisms
• #pragma omp target … nowaitmay be

sufficient to mimic on simple cases
• depend clause  express chain of

dependencies and mimic OpenACC’s async
• turn #pragma acc … async(1) into #pragma omp

target .. depend (inout: dep_async_1)
• turn #pragma acc wait (1) into #pragma omp

target .. depend (in:dep_async_1)
 need to define dep_async_X list item or depobj in
some headers / modules

Intel ConfidentialDepartment or Event Name 1414

Non-contiguous data-mapping

• OpenACC supports data mapping
of non-contiguous arrays (e.g.
pointers to pointers)
• At what performance cost?

• Not supported directly in OpenMP
with Intel compiler
• OpenMP 5.0 defines iterators but not

implemented on Intel compiler yet
migration tool suggests an
alternative code that transfers data
on per-row basis

Intel ConfidentialDepartment or Event Name 1515

Seq clause

• OpenACC supports the seq
clause on loop and routine
constructs
• Override any automatic

parallelization or vectorization
• Not to be executed in parallel by

gangs/threads
• Not to be executed in a vector

fashion
• Nothing similar in OpenMP

• Cannot specify thread_limit nor
simdlen on #pragma omp loop and
#pragma declare target

• Currently ignored

#pragma acc routine seq
float func(float, float);

#pragma acc loop seq
for (auto i = 0; i < N; ++i)
data[k] += _data[k][i];

Intel ConfidentialDepartment or Event Name 1616

Performance portability

• OpenACC 3-levels of parallelism (gangs,
workers, vector) can be mapped to similar
clauses in OpenMP (teams, threads and
vector)
• Mapping on hardware with different

characteristics

#pragma acc parallel loop num_gangs(NG)
num_workers(NW)
#pragma omp target teams distribute num_teams(NG)
thread_limit(NW)
for (auto i = 0; i < N; ++i)
{

#pragma acc loop gang
#pragma omp loop bind(teams)
for (auto j = 0; j < M; ++j)
{
..
}
#pragma acc loop worker
#pragma omp loop bind(thread)
for (auto j = 0; j < M; ++j)
{
..
}

}

Intel ConfidentialDepartment or Event Name 1717

Interoperability with the runtime

• OpenACC API supports interaction with CUDA/OpenCL
• e.g.

• acc_get_current_cuda_device/context,
• acc_set/get_cuda_stream,
• acc_get_current_opencl_device/context,

• OpenMP 5.0 includes “interop” constructs into the spec
• https://github.com/OpenMP/Examples/blob/v5.1/program_control/sources/in

terop.1.c
• OpenMP and CUDA interaction

• https://github.com/argonne-lcf/HPC-
Patterns/blob/main/interop_omp_ze_sycl.cpp
• OpenMP and SYCL interaction

• Applications using these features?

Intel ConfidentialDepartment or Event Name 1818

Conclusions and future work

• We’ve shown a prototype tool for helping migrate Fortran and
C/C++ OpenACC codes into OpenMP

• We’re gathering feedback for more complex applications
• Extend support for additional OpenACC constructs, applications

• AST likely to help, but what AST generator for Fortran?

• Performance suggestions/evaluations
• Guidance on perf hints (gangs, workers, vector length, collapse,

transfers…) ?
• OpenACC vs translated OpenMP using different compilers & hw (HPC

SDK, clang/LLVM on NVidia hw and Intel compilers)

