
Argonne Leadership Computing Facility1

Enabling Workflows with

Argonne Leadership Computing Facility1

Antonio Villarreal, Argonne Leadership Computing Facility



Argonne Leadership Computing Facility2

Goals of this Demo

● Explain the Basic Parsl Functionality
● Demonstrate Parsl Wrappers on Python Definitions
● Demonstrate Parsl Wrappers to Make Bash Calls
● Demonstrate Parsl Submitting Jobs to Theta

● Experiment with Job Monitoring Utilities 



Argonne Leadership Computing Facility3

How Does Parsl Work?

● Parsl is a Python library (https://parsl.readthedocs.io/)
● Parsl augments Python with decorator functions
● Parsl can connect these decorated functions via Python objects or files

● Parsl runs a work manager that then executes these tasks — scaling to 
thousands of compute nodes

https://parsl.readthedocs.io/en/stable/


Argonne Leadership Computing Facility4

How to Install Parsl on Theta

Installing Parsl is relatively straightforward on Theta!
1. module load miniconda-3

2. pip install --user parsl

3. optional: pip install --user parsl[monitoring]
With this, you are ready to run Parsl! It will require Python 3.5+.



Argonne Leadership Computing Facility5

A Simple Test Case

For this demo, we will be doing a very simple algorithm—calculating the 
value of pi via a Monte Carlo approach. In brief:
1. We sample a number of random points between 0 and 1 in two 

dimensions.
2. We determine if these points lie within a quarter circle of radius 1.
3. By the ratio of the number of points within the circle to those outside of 

the circle, we can compute pi.



Argonne Leadership Computing Facility6

pi_test_local.py

For our first example, we look at only a local execution. The following code block 
defines an executor, which determines how the Parsl manager will run tasks.

ThreadPoolExecutor will use local 
compute threads. We’ve limited it to 8 
threads and attached a label to this 
executor for later.



Argonne Leadership Computing Facility7

pi_test_local.py

We now decorate our python function to estimate pi with the @python_app 
decorator.

Here we refer back to the executor label 
from earlier. By default, this will use any 
available executor, rather than specific 
resources.



Argonne Leadership Computing Facility8

pi_test_local.py

We can then run this by calling:
python pi_test_local.py

Each time estimate_pi is called, Parsl will 
define a new task to be run on its 
workers. The output becomes a future, 
which can then be passed to other 
functions.
To get our results, we use the .result() 
method on each task and then average 
them together!



Argonne Leadership Computing Facility9

pi_test_bash.py

We can also execute arbitrary bash commands via the @bash_app decorator.
Note: this decorator does not return a python object and will require you to string 
commands together using output/input files as necessary. The return string is 
executed in bash.
Handy for calling non-Python code or using containers!
See pi_test_bash.py and the README for more details.



Argonne Leadership Computing Facility10

pi_test_queue.py

The 
HighThroughputExecutor 
allows you to run thousands 
of Parsl workers 
simultaneously.
It will also submit a job 
request to Theta using 
Cobalt, potentially even 
spacing workers across 
multiple job submissions.



Argonne Leadership Computing Facility11

pi_test_queue.py

The provider keyword lets us define all elements necessary for job submission.
1. queue and account contain information about your Theta allocation.
2. walltime and nodes_per_block set your job submission parameters.
3. init_blocks refers to the number of initial job submissions.
4. max_blocks refers to how many job submissions to keep at once.
5. launcher defines how Parsl workers should launch tasks.
6. worker_init appends a bash command ahead of launching workers on resources.

a. The included export helps with finding a worker specific task.
You may also define a max number of workers to keep up simultaneously.



Argonne Leadership Computing Facility12

pi_test_queue.py

After changing MY_USER_PATH to include your account name, you can run this 
task with:

python pi_test_queue.py

You may want to do this in a screen, as the parsl driver will be now running, 
waiting for the allocated resources to become available!



Argonne Leadership Computing Facility13

pi_test_monitoring.py

Parsl can also run a sqlite monitoring database which keeps additional info!

The monitoring keyword is added onto 
the Parsl configuration and creates a 
database named monitoring.db in the 
directory of the Parsl driver.
Details on all the stored tables can be 
located in the README.md.



Argonne Leadership Computing Facility14

Thanks for Listening

Some helpful links!

● Parsl Documentation: https://parsl.readthedocs.io/en/stable/

● Parsl Tutorials: https://github.com/Parsl/parsl-tutorial

If you have any other questions, don’t hesitate to reach out to Antonio Villarreal on 
Slack!

https://parsl.readthedocs.io/en/stable/
https://github.com/Parsl/parsl-tutorial

