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Goals of this Demo

● Explain the Basic Parsl Functionality
● Demonstrate Parsl Wrappers on Python Definitions
● Demonstrate Parsl Wrappers to Make Bash Calls
● Demonstrate Parsl Submitting Jobs to Theta

● Experiment with Job Monitoring Utilities 
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How Does Parsl Work?

● Parsl is a Python library (https://parsl.readthedocs.io/)
● Parsl augments Python with decorator functions
● Parsl can connect these decorated functions via Python objects or files

● Parsl runs a work manager that then executes these tasks — scaling to 
thousands of compute nodes

https://parsl.readthedocs.io/en/stable/
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How to Install Parsl on Theta

Installing Parsl is relatively straightforward on Theta!
1. module load miniconda-3

2. pip install --user parsl

3. optional: pip install --user parsl[monitoring]
With this, you are ready to run Parsl! It will require Python 3.5+.
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A Simple Test Case

For this demo, we will be doing a very simple algorithm—calculating the 
value of pi via a Monte Carlo approach. In brief:
1. We sample a number of random points between 0 and 1 in two 

dimensions.
2. We determine if these points lie within a quarter circle of radius 1.
3. By the ratio of the number of points within the circle to those outside of 

the circle, we can compute pi.
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pi_test_local.py

For our first example, we look at only a local execution. The following code block 
defines an executor, which determines how the Parsl manager will run tasks.

ThreadPoolExecutor will use local 
compute threads. We’ve limited it to 8 
threads and attached a label to this 
executor for later.



Argonne Leadership Computing Facility7

pi_test_local.py

We now decorate our python function to estimate pi with the @python_app 
decorator.

Here we refer back to the executor label 
from earlier. By default, this will use any 
available executor, rather than specific 
resources.
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pi_test_local.py

We can then run this by calling:
python pi_test_local.py

Each time estimate_pi is called, Parsl will 
define a new task to be run on its 
workers. The output becomes a future, 
which can then be passed to other 
functions.
To get our results, we use the .result() 
method on each task and then average 
them together!
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pi_test_bash.py

We can also execute arbitrary bash commands via the @bash_app decorator.
Note: this decorator does not return a python object and will require you to string 
commands together using output/input files as necessary. The return string is 
executed in bash.
Handy for calling non-Python code or using containers!
See pi_test_bash.py and the README for more details.
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pi_test_queue.py

The 
HighThroughputExecutor 
allows you to run thousands 
of Parsl workers 
simultaneously.
It will also submit a job 
request to Theta using 
Cobalt, potentially even 
spacing workers across 
multiple job submissions.
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pi_test_queue.py

The provider keyword lets us define all elements necessary for job submission.
1. queue and account contain information about your Theta allocation.
2. walltime and nodes_per_block set your job submission parameters.
3. init_blocks refers to the number of initial job submissions.
4. max_blocks refers to how many job submissions to keep at once.
5. launcher defines how Parsl workers should launch tasks.
6. worker_init appends a bash command ahead of launching workers on resources.

a. The included export helps with finding a worker specific task.
You may also define a max number of workers to keep up simultaneously.



Argonne Leadership Computing Facility12

pi_test_queue.py

After changing MY_USER_PATH to include your account name, you can run this 
task with:

python pi_test_queue.py

You may want to do this in a screen, as the parsl driver will be now running, 
waiting for the allocated resources to become available!
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pi_test_monitoring.py

Parsl can also run a sqlite monitoring database which keeps additional info!

The monitoring keyword is added onto 
the Parsl configuration and creates a 
database named monitoring.db in the 
directory of the Parsl driver.
Details on all the stored tables can be 
located in the README.md.
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Thanks for Listening

Some helpful links!

● Parsl Documentation: https://parsl.readthedocs.io/en/stable/

● Parsl Tutorials: https://github.com/Parsl/parsl-tutorial

If you have any other questions, don’t hesitate to reach out to Antonio Villarreal on 
Slack!

https://parsl.readthedocs.io/en/stable/
https://github.com/Parsl/parsl-tutorial

