
www.anl.gov

Using OpenMP on ThetaGPU

2021 Virtual ALCF Computational Performance Workshop

Ye Luo and Colleen Bertoni
Argonne Leadership Computing Facility

Argonne Leadership Computing Facility2

Maximum speed at which you can compute is bound by

(clock rate of cores) * (number of cores) * (number of operations each core can do per cycle)

Motivation

Amount of parallelism
you can exploit

Argonne Leadership Computing Facility3

Maximum speed at which you can compute is bound by

(clock rate of cores) * (number of cores) * (number of operations each core can do per cycle)

Motivation
CPU

GPU

GPU

Amount of parallelism
you can exploit

Argonne Leadership Computing Facility4

Maximum speed at which you can compute is bound by

(clock rate of cores) * (number of cores) * (number of operations each core can do per cycle)

Motivation

For the GPUs on a ThetaGPU node:
78 Tflops ~= (1.41 *109 cycles/second)* (108 SMs/ GPU) * (8 GPUs) * (32 FPU inst/ (SM*cycle))*
2 (FMA factor)
For the CPUs on a ThetaGPU node:
2.3 Tflops ~= (2.25 *109 cycles/second)* (64 cores) * (2 CPUs) * 4 (SIMD width) * 2 (FMA factor)

Amount of parallelism
you can exploit

CPU
GPU

GPU

Argonne Leadership Computing Facility5

Maximum speed at which you can compute is bound by

(clock rate of cores) * (number of cores) * (number of operations each core can do per cycle)

Motivation

For the GPUs on a ThetaGPU node:
78 Tflops ~= (1.41 *109 cycles/second)* (108 SMs/ GPU) * (8 GPUs) * (32 FPU inst/ (SM*cycle))*
2 (FMA factor)
For the CPUs on a ThetaGPU node:
2.3 Tflops ~= (2.25 *109 cycles/second)* (64 cores) * (2 CPUs) * 4 (SIMD width) * 2 (FMA factor)

1. Far more
computational power
on GPUs than CPUs Amount of parallelism

you can exploit

CPU
GPU

GPU

Argonne Leadership Computing Facility6

Maximum speed at which you can compute is bound by

(clock rate of cores) * (number of cores) * (number of operations each core can do per cycle)

Motivation

For the GPUs on a ThetaGPU node:
78 Tflops ~= (1.41 *109 cycles/second)* (108 SMs/ GPU) * (8 GPUs) * (32 FPU inst/ (SM*cycle))*
2 (FMA factor)
For the CPUs on a ThetaGPU node:
2.3 Tflops ~= (2.25 *109 cycles/second)* (64 cores) * (2 CPUs) * 4 (SIMD width) * 2 (FMA factor)

1. Far more
computational power
on GPUs than CPUs Amount of parallelism

you can exploit

CPU
GPU

GPU

2. Be careful of data
transfer bottlenecks

Argonne Leadership Computing Facility7

Maximum speed at which you can compute is bound by

(clock rate of cores) * (number of cores) * (number of operations each core can do per cycle)

Agenda: how OpenMP can help you…

For the GPUs on a ThetaGPU node:
78 Tflops ~= (1.41 *109 cycles/second)* (108 SMs/ GPU) * (8 GPUs) * (32 FPU inst/ (SM*cycle))*
2 (FMA factor)
For the CPUs on a ThetaGPU node:
2.3 Tflops ~= (2.25 *109 cycles/second)* (64 cores) * (2 CPUs) * 4 (SIMD width) * 2 (FMA factor)

1. Effectively use the
computational power
on GPUs Amount of parallelism

you can exploit

CPU
GPU

GPU

2. Avoid data transfer
bottlenecks

Argonne Leadership Computing Facility8

Later today: Hands-on!
• Using OpenMP (~20 min)

• Demo of OpenMP (~20 min)

• OpenMP 101 and basics on ThetaGPU

• Hands-on Exercises (~20 min)

$ git clone https://github.com/argonne-lcf/CompPerfWorkshop-2021.git

$ cd CompPerfWorkshop-2021

$ cd 01_openmp

https://github.com/argonne-lcf/CompPerfWorkshop-2021.git

Argonne Leadership Computing Facility9

Brief OpenMP offload overview and
upcoming features

Argonne Leadership Computing Facility10

High-level OpenMP Programming Model Overview
• Why OpenMP?

– Open standard for parallel programming with support across vendors
– OpenMP runs on CPU threads, GPUs, SIMD units
– C/C++ and Fortran
– Supported by Intel, Cray, GNU, LLVM compilers and others
– Specification and examples http://www.openmp.org
– OpenMP offload will be supported on Aurora, Frontier, Perlmutter

• Four Important high-level features to express parallelism
– Fork and join thread parallelism
– SIMD parallelism (added in 4.0)
– Device Offload parallelism (added in 4.0)
– Tasking parallelism (added in 3.0)

https://www.alcf.anl.gov/support-center/theta/openmp-theta

http://www.openmp.org/

Argonne Leadership Computing Facility11

The goal is to introduce important basic topics for OpenMP offloading
We will cover three basic offloading topics:
1. Offloading code to the device and getting device info
2. Expressing parallelism
3. Mapping data

OpenMP Offload Introduction

CPU

GPU

Transfer data and
execution control

• GCC
• LLVM
• IBM XL
• Cray

• NVIDIA
• Intel
• AMD

Compiler support for
offloading

Argonne Leadership Computing Facility12

CPU OpenMP parallelism

#pragma omp parallel for private(x) reduction(+:sum)
for(int i=0; i<=num_steps; i++){

x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}

Distributes iterations to the threadsSpawn threads in a thread team

Argonne Leadership Computing Facility13

GPU OpenMP parallelism

#pragma omp target teams distribute parallel for private(x) reduction(+:sum)
for(int i=0; i<=num_steps; i++){

x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}

Creates teams of threads in the
target device

Distributes iterations to the threads

Argonne Leadership Computing Facility14

• Target construct: offloads
code and data to the device
and runs in serial on the
device

OpenMP Offload Introduction

CPU
GPU

Transfer data and
execution control

Argonne Leadership Computing Facility15

• Target construct: offloads
code and data to the device
and runs in serial on the
device

• Teams construct: creates a
league of teams, each with
one thread, which run
concurrently on SMs (Nvidia
terminology)

OpenMP Offload Introduction

CPU
GPU

Transfer data and
execution control

Argonne Leadership Computing Facility16

• Target construct: offloads
code and data to the device
and runs in serial on the
device

• Teams construct: creates a
league of teams, each with
one thread, which run
concurrently on SMs (Nvidia
terminology)

• Parallel construct: creates
multiple threads in the teams,
each which can run
concurrently

OpenMP Offload Introduction

CPU
GPU

Transfer data and
execution control

Argonne Leadership Computing Facility17

GPU OpenMP parallelism

...

#pragma omp target teams distribute parallel for simd map(v1[0:N],p[0:N])
for (i=0; i<N; i++)
{

p[i] = v1[i];
}

...

Creates teams of
threads in the
target device

Distributes iterations to the threads, where each
thread uses SIMD parallelism

Controlling data
transfer

Argonne Leadership Computing Facility18

New features in OpenMP 5.0/5.1
• Unified Shared Memory Support (no need to explicitly map data)

• Loop construct (simpler expression of parallelism)

• Declare variant (portable wrappers for variants of a function)

• Metadirective

• Host teams

• Implicit declare target

• Declare mapper

• Collapse on non-rectangular loops and additional loop conditions

• More…

Argonne Leadership Computing Facility19

OpenMP and exploiting parallelism

Argonne Leadership Computing Facility20

Find the concurrency in you app
Within a kernel running on a computing device

• Coarse level concurrency (>10~100)

• OpenMP teams(GPU SMs), OpenMP threads(CPU cores)

• Minimize (~zero) synchronization

• Emphasize on weak scaling

• Fine level concurrency (100~1000)

• OpenMP threads within teams (GPU threads)

• OpenMP simd within threads (CPU vector unit)

• Emphasize on data locality.

• If two levels are fused (>104~105)

Argonne Leadership Computing Facility21

Find the concurrency in you app
Beyond a compute kernel. Handling the control flow by the host

• Exploit task parallelism (very coarse level)
• Enqueue target tasks (OpenMP target nowait)
• Having a few CPU threads to offload more rapidly (OpenMP threads + target)

• Using leverage more GPUs (extremely coarse level)
• Decompose the computation into multiple subtasks

• Distribute them using MPI to multiple GPU
• Distribute them by leveraging OpenMP multi device support.

Application developers are responsible to find as much concurrency as possible
OpenMP compiler/runtimes enable corresponding parallelism

Argonne Leadership Computing Facility22

OpenMP and Data transfer

Argonne Leadership Computing Facility23

Maximum speed at which you can compute is bound by

(clock rate of cores) * (number of cores) * (number of operations each core can do per cycle)

Agenda: how OpenMP can help you…

1. Effectively use the
computational power
on GPUs

CPU
GPU

GPU

2. Avoid data transfer
bottlenecks

It’s roughly an order of
magnitude slower to access
memory over PCIe than
accessing memory on the
device

Argonne Leadership Computing Facility24

OpenMP and data transfer
...

#pragma omp target teams distribute parallel for map(tofrom:a[0:num], b[0:num])
for (size_t j=0; j<num; j++) {

a[j] = a[j]+scalar*b[j];

}
...

…

host device

a[0:num], b[0:num]

a[0:num], b[0:num]

Maps a and b to
and from the device

Argonne Leadership Computing Facility25

OpenMP and data transfer
...

#pragma omp target teams distribute parallel for map(tofrom:a[0:num], b[0:num])
for (size_t j=0; j<num; j++) {

a[j] = a[j]+scalar*b[j];

}
...
#pragma omp target teams distribute parallel for map(tofrom:a[0:num], c[0:num])

for (size_t j=0; j<num; j++) {
c[j] = c[j]+scalar*a[j];

}
…

Maps a and b to
and from the device

Maps a and c to
and from the device

Argonne Leadership Computing Facility26

OpenMP and data transfer
...
#pragma omp target enter data map(to:a[0:num],b[0:num],c[0:num])

#pragma omp target teams distribute parallel for map(tofrom:a[0:num], b[0:num])
for (size_t j=0; j<num; j++) {

a[j] = a[j]+scalar*b[j];

}
...
#pragma omp target teams distribute parallel for map(tofrom:a[0:num], b[0:num])

for (size_t j=0; j<num; j++) {
c[j] = c[j]+scalar*a[j];

}
…
#pragma omp target exit data map(from:c[0:num])

Only maps a,b,c to device
once and c back once

Argonne Leadership Computing Facility27

OpenMP and multiple GPUs

Argonne Leadership Computing Facility28

Two ways of handling multiple on-node GPUs
• Using MPI, one GPU per MPI rank

• Pros: No difference intra-node vs inter-node, locality imposed by MPI.
• Cons: cross-rank communication is non-trivial if performance is critical

• IPC, GPU-aware communication

• Using OpenMP device clause
• Pros: all the GPUs are within one process, no OS barrier
• Cons:

• explicit device management. Both compute and memory spaces.
• Multi threading/tasking required to keep all the devices busy
• CPU-GPU affinity matters on multi-socket nodes

Argonne Leadership Computing Facility29

OpenMP offload device control

• Device information routines
• omp_get_default_device/omp_set_default_device
• omp_get_num_devices/omp_get_device_num

• Device memory routines
• omp_target_alloc/omp_target_free
• omp_target_memcpy/omp_target_memcpy_async

• Device clause on target construct
• #pragma omp target enter/exit data map(…) device(deviceID)
• #pragma omp target teams distribute map(…) device(deviceID)

Argonne Leadership Computing Facility30

Later today: Hands-on!
• Using OpenMP (~20 min)

• Demo of OpenMP (~20 min)

• OpenMP 101 and basics on ThetaGPU

• Hands-on Exercises (~20 min)

$ git clone https://github.com/argonne-lcf/CompPerfWorkshop-2021.git

$ cd CompPerfWorkshop-2021

$ cd 01_openmp

https://github.com/argonne-lcf/CompPerfWorkshop-2021.git

Argonne Leadership Computing Facility31

References and Resources
1. “Using OpenMP Effectively on Theta”

– https://www.alcf.anl.gov/files/Using%20OpenMP%20Effectively%20on%20Th
eta.pdf

2. Using OpenMP – The Next Step by van der Pas, Stotzer and Terboven, MIT
Press, 2017

Argonne Leadership Computing Facility32

Thank You!

