Argonne 4

NATIONAL LABORATORY

Optimizing MPI Performance on Theta
Using MPI on ThetaGPU

ALCF Computational Performance Workshop — May 6" 2021

Sudheer Chunduri
sudheer@anl.gov

www.anl.gov

mailto:sudheer@anl.gov

Outline

= Theta

. T

Cray XC network software stack and MPI software stack

Non-blocking collectives

Topology mapping optimizations
Few key performance tuning knobs
Cray XC routing optimizations
Darshan-Autoperf

netaGPU
ntroduction to MPIl usage on ThetaGPU

Cray XC Network Software Stack

Applications | GamEss | [NwChem

uGNI - Generic Network Interface Compilers R
(message passing based)

Hardware

i?ggzee';de"t | Global Arrayg | mp1cH2 | | SHMEM | | libpgas |

DMAPP - Distributed Shared Memory] [
Application APIs (shared memory)

uGNI and DMAPP provide low-level Dependen
communication services to user-space
software

‘]
2]
2
=
| =)

=
‘ °

mwomooor o= =0
wouaoor» Fo0=—0

Kernel Level GNI
kGNI)

GNI Core

Generic Hardware Abstraction Layer
(GHAL)

Hardware

Cray MPI Software Stack (CH3 device)

Application

MPI Interface

MPICH ROMIO

ADIO

Job launcher

MPI-3 Nonblocking Collectives

" Enables overlap of communication/computation similar to nonblocking (send/recv)
communication

" Non-blocking variants of all collectives: MPI_lbcast (<bcast args>, MPI_Request

“req);
" Semantics
= Function returns no matter what MPI_Comm comm;
]) int arrayl[100], array2[100];
= Usual completion calls (wait, test) int root=0;
= Qut-of-order completion MPI_Request req;
" Semantic advantages MPI_Tbcast(arrayl, 100, MPI_INT,

i ‘~alini t, comm, &req);
Enables asynchronous progression (software pipelinin TOot, ' a)i
Y Preg (PP 9) compute (array2, 100);

Decouple data transfer and synchronization MPI Wait(&req, MPI_STATUS IGNORE);
(Noise Resiliency)

Allow overlapping communicators

Multiple outstanding operations at any time

MPI-3 Nonblocking Collectives Support

" Includes many optimizations for MPI-3 nonblocking Collectives

" Not ON by default. User must set the following env. Variables:

export MPICH_NEMESIS_ASYNC_PROGRESS=[SC|MC|ML] (network interface DMA engine enables
asynchronous progress)

export MPICH_MAX_THREAD_SAFETY=multiple

" Special optimizations for Small message MPI_lallreduce, based on Aries
HW Collective Engine:

Users must link against DMAPP
-WI,--whole-archive,-ldmapp,--no-whole-archive (static linking)
-ldmapp (dynamic linking)

export MPICH_NEMESIS_ASYNC_PROGRESS =[SC|MC|ML]

export MPICH_MAX_THREAD_SAFETY=multiple

export MPICH_USE_DMAPP_COLL=1

Topology Mapping and Rank Reordering

" Topology mapping
= Minimize communication costs through interconnect topology aware task mapping
= Could potentially help reduce congestion
= Node placement for the job could be a factor (no explicit control available to request a specific
placement)
" Application communication pattern

= MPI process topologies expose this in a portable way
= Network topology agnostic

" Rank reordering
= Can override the default mapping scheme

= The default policy for aprun launcher is SMP-style placement

= To display the MPI rank placement information,
 set MPICH_RANK_REORDER_DISPLAY.

MPI Rank Reordering

" MPICH_RANK_REORDER_METHOD
= Vary rank placement to optimize communication (ex: maximize on-node communication
between MPI ranks)
= Use CrayPat with “-g mpi” to produce a specific MPICH_RANK_ORDER file to maximize
intra-node communication

= Or, use perf_tools grid_order command with your application's grid dimensions to layout
MPI ranks in alignment with data grid

= To use:
* name your custom rank order file: MPICH_RANK_ORDER

* This approach is physical system topology agnostic
export MPICH_RANK_REORDER_METHOD=3

MPI Rank Reordering

" MPICH_RANK_REORDER_METHOD (cont.)
= A topology and placement aware reordering method is also available
= Optimizes rank ordering for Cartesian decompositions using the layout of nodes in the job
= To use:

« export MPICH_RANK_REORDER_METHOD=4
* export MPICH_RANK_REORDER_OPTS=“-ndims=3 -dims=16,16,8"

MPI Grid Detection:
There appears to be point-to-point MPI communication in a 96 X 8 grid pattern. The 52% of the total execution time

spent in MPI functions might be reduced with a rank order that maximizes communication between ranks on the same node.
The effect of several rank orders is estimated below.

A file named MPICH RANK ORDER.Grid was generated along with this report and contains usage instructions and the Custom
rank order from the following table.

Rank On-Node On-Node MPICH RANK REORDER METHOD
Order Bytes/PE Bytes/PE%
of Total
Bytes/PE
Custom 2.385e+09 95.55% 3
SMP 1.880e+09 75.30% 1
Fold 1.373e+06 0.06% 2
RoundRobin 0.000e+00 0.00% 0

Profiling with CrayPat

Table 1: Profile by Function Group and Function

Time% | Time | Imb. Time | Imb. | Calls | Group
. . . . | | | Time% | | Function
[J
Application built with | | | | | pE-arDE
“pat build -g mpi” 100.0% | 667.935156 | -- | --| 49,955,946.2 | Total
- | oo
[J
pat_report generates | 40.0% | 267.180169 | — | —— | 49,798,359.2 | MPI
the CrayPat report L
|| 24.0% | 160.400193 | 28.907525 | 15.3% | 2,606,756.0 | MPI_Wait
|| 6.4% | 42.897564 | 0.526996 | 1.2% | 157,477.0 | MPI_Allreduce
4.8% 31.749303 3.923541 | 11.0% | 42,853,974.0 | MPI_Comm rank
* Note the MPI call [l 5| | i e | MPT_Comn_
|| 3.5% | 23.303805 | 1.774076 | 7.1% | 1,303,378.0 | MPI_Isend
times and number of || 1.1% | 7.658009 | 0.637044 | 7.7% | 1,303,378.0 | MPI_Irecv
||===
calls | 39.1% | 260.882504 | — | — 2.0 | USER
* Load imbalance [
|| 39.1% | 260.882424 | 17.270557 | 6.2% | 1.0 | main
| 20.9% | 139.872482 | — | — 157,585.0 | MPI_SYNC
e
|| 20.4% | 136.485384 | 36.223589 | 26.5% | 157,477.0 | MPI_Allreduce(sync)

Profiling with CrayPat

Total
© MPI Msg Bytess 100.0%
MPI message sizes are NPT g Count O 460 9590 msgs
rE}F)()rtEECj TEEEZM:;EZCEEEE Count 157’522:8 2:3:
256<= MsgSz <4KiB Count 2,815.0 msgs
4KiB<= MsgSz <64KiB Count 1,300,511.0 msgs
The message size e e
distributions can help St
characterize an NPT tog Deten. 18,051, 670,433.0
application as MagSe o16 oount s maos
 Latency sensitive e T e 28120 moce
» Bandwidth sensitive o o S Gorm 220500 mevs

Argonne &5

NAL LABORATORY

Key Environment Variables for XC

" Use MPICH USE DMAPP COLL for hardware supported collectives

Most of MPI's optimizations are enabled by default, but not the DMAPP-optimized
features, because...

Using DMAPP may have some disadvantages

* May reduce resources MPICH has available (share with DMAPP)

* Requires more memory (DMAPP internals)

« DMAPP does not handle transient network errors

These are highly-optimized algorithms which may result in significant performance gains,
but user has to request them

Supported DMAPP-optimized functions:

e MPI Allreduce (4-8 bytes)
e MPI Bcast (4 or 8 bytes)
* MPI Barrier

To use (link with libdmapp):
* Collective use: export MPICH_USE_DMAPP_COLL=1

Key Environment Variables for XC

" MPICH GNI environment variables

= To optimize inter-node traffic using the Aries interconnect, the following are the most significant env variables
to play with (avoid significant deviations from the default if possible):

= MPICH GNI MAX VSHORT MSG SIZE
e Controls max message size for EO mailbox path (Default: varies)

= MPICH GNI MAX EAGER MSG SIZE
e Controls max message size for E1 Eager Path (Default: 8K bytes)

= MPICH GNI NUM BUFS
e Controls number of 32KB internal buffers for E1 path (Default: 64)

= MPICH GNI NDREG MAXSIZE
* Controls max message size for RO Rendezvous Path (Default: 4MB)

= MPICH GNI RDMA THRESHOLD
* Controls threshold for switching to BTE from FMA (Default: 1K bytes)

" Refer the MPI man page for further details

Argonne &5

NAL LABORATORY

Key Environment Variables for XC

= Specific Collective Algorithm Tuning
= Different algorithms may be used for different message sizes in collectives (e.qg.)

Algorithm A might be used for Alltoall for messages < 1K.
Algorithm B might be used for messages >= 1K.

= To optimize a collective, you can modify the cutoff points when different
algorithms are used. This may improve performance. A few important ones are:

MPICH ALLGATHER VSHORT MSG
MPICH ALLGATHERV VSHORT MSG
MPICH GATHERV SHORT MSG
MPICH SCATTERV SHORT MSG
MPICH GNI_A2A BLK SIZE
MPICH GNI_A2A BTE THRESHOLD

" Refer the MPI man page for further details

MPI+X Hybrid Programming Optimizations

" MPI Thread Multiple Support for

= Point to point operations & Collectives (optimized global lock)
= MPI-RMA (thread hot)

= All supported in default library

(Non-default Fine-Grained Multi-Threading library is no longer needed)

" Users must set the following env. variable:
= export MPICH_MAX_THREAD_SAFETY=multiple

" Global lock optimization ON by default (N/A for MPI-RMA)
= export MPICH_OPT_THREAD_SYNC=0 falls back to pthread_mutex()

" “Thread hot” optimizations for MPI-3 RMA:

= Contention free progress and completion
= High bandwidth and high message rate

= |Independent progress — thread(s) flush outstanding traffic, other threads make uninterrupted progress

Argonne &5

NATIONAL LABORATORY

Memory

Network Card

MPI + Threads

Cray XC Routing

Aries provides three basic routing modes

= Deterministic (minimal)

= Hashed deterministic (minimal, non-minimal),
hash on “address”

= Adaptive
* 0O — No bias (default)

* 1-—Increasing bias towards minimal (as packet
travels)

* Used for MPI all-to-all
e 2 — Straight minimal bias (non-increasing)

* 3 — Strong minimal bias (non-increasing)

Non-adaptive modes are more susceptible to
congestion unless the traffic is very uniform and
well-behaved

MPICH_GNI_ROUTING_MODE environment variable

= Setto one of ADAPTIVE_[0123], MIN_HASH,
NMIN_HASH, IN_ORDER

= MPICH_GNI_A2A ROUTING_MODE also available

PDF

ssssss

ssssss
[(e,

ssssss

e
\\\\\\

(S S SN SN

Cray XC group:
Minimal path: 2 hops
Non-minimal path: 4 hops

0.025F

0.020}

0.015F

0.010Ff

0.005}

0.000

MILC_ADO
Reorder_ADO
MILC_AD3
Reorder_AD3

400 500 600
MILC runtime (sec)

700

module load adaptive-routing-a3
module unload adaptive-routing-a3
module help adaptive-routing-a3 6

Core Specialization

® Offloads some kernel and MPI work to unused
Hyper-Thread(s)

8-Byte Allreduce on Theta

" Good for large jobs and latency sensitive MPI 64 processes per node
collectives (run in production — other jobs
" Highest numbered unused thread on node is are running)
chosen 200 , l , .]
, 180 |CS OFF mummm]
= Usually the highest numbered HT on the CS ON s
highest numbered physical core oo |]
" Examples S 120} |
>
" aprun -r 1 ... % 100]
= aprun -r N ... # use extra threads § 28:]
" Cannot oversubscribe, OS will catch 40 - |
" Tllegal: aprun -rl -n 256 -N 256 -j 4 20 - =
a.out
. 16 32 64 128 256 512 1024
= Legal: aprun -rl -n 255 -N 255 -3 4 A HES
a.out

" Legal: aprun —r8 —n 248 —N 248 —j 4
a.out

Autoperf — Low-overhead MPI profiler

" Autoperf 2.0

= Collection of modules for profiling MPI (APMPI), network counters (APXC) etc.
= Based on PMPI (MPI profiling interface)
= |ntercepts 74 MPI operations (collectives, P2P (blocking and non-blocking), RMA)
= For each operation,
e Call count
* Total time per call
* Message size per op (have 6 bins 1B-256B, 256—1KB, 1KB-8KB, 8KB-256KB, 256-1MB, 1MB+)
= Sync enable option — for collectives adds an extra Barrier
* By adding this overhead, we can have an idea of load imbalance across the ranks
= Autoperfis now a submodule within Darshan
 module load darshan/3.3.0 (on Theta and on ThetaGPU, a new Darshan release with Autoperf included)

« APXC - Another module to capture network counters
« APNVGPU - work in progress to capture GPU performance counters

Autoperf 2.0 output sample

#
APMPI module data
#

description of APMPI counters:
global summary stats showing the variance across all MPI processes:

MPIL_TOTAL_COMM_TIME_VARIANCE: variance in total communication time across all the
processes.

MPL_TOTAL_COMM_SYNC_TIME_VARIANCE: variance in total sync time across all the
processes, if enabled.

per-process detailed stats on the usage of various MPI routines:

MPI_PROCESSOR_NAME: name of the processor used by the MPI process.

MPI_* CALL_COUNT: total call count for an MPI op.

MPI_* TOTAL_BYTES: total bytes (i.e., cumulative across all calls) moved with an MPI op.
MPI_* MSG_SIZE_AGG_*: histogram of total bytes moved for all the calls of an MPI op.
MPI_* TOTAL_TIME: total time (i.e, cumulative across all calls) of an MPI op.

MPI_* MIN_TIME: minimum time across all calls of an MPI op.

MPI_* MAX_TIME: maximum time across all calls of an MPI op.

MPI_* TOTAL_SYNC_TIME: total sync time (cumulative across all calls of an op) of an MPI op, if
enabled.

MPI_TOTAL_COMM_TIME: total communication (MPI) time of a process across all the MPI ops.

HOHOHFE R R OHH

MPL_TOTAL_COMM_SYNC TIME: total sync time of a process across all the MPI ops, if enabled.

APMPI 0 7713204788897956166 MPI_TOTAL_COMM_TIME_VARIANCE 0.000106
APMPI 0 2250748219237254214 MP|_PROCESSOR_NAME nid00000

APMPI 0 2250748219237254214 MP|_SEND_CALL_COUNT 2100

APMPI 0 2250748219237254214 MP_SEND_TOTAL_BYTES 734006000
APMPI 0 2250748219237254214 MP|_SEND_MSG_SIZE_AGG_0_256 700
APMPI 0 2250748219237254214 MP|_SEND_MSG_SIZE_AGG_256_IK 0
APMPI 0 2250748219237254214 MP|_SEND_MSG_SIZE_AGG_IK_8K 0
APMPI 0 2250748219237254214 MP|_SEND_MSG_SIZE_AGG_8K_256K 0
APMPI 0 2250748219237254214 MP|_SEND_MSG_SIZE_AGG_256K_1M 1400
APMPI 0 2250748219237254214 MP|_SEND_MSG_SIZE_AGG_IM_PLUS 0
APMPI 0 2250748219237254214 MP|_SEND_TOTAL_TIME 0.207326

APMPI 0 2250748219237254214 MPI_SEND_MIN_TIME 0.000003

APMPI 0 2250748219237254214 MP_SEND_MAX_TIME 0.00229|

oooooooo

MPI on Theta GPU

Dual Port HDR S BT A e A g Optional 2nd HDR

InfiniBand / f = : : ; InfiniBand /
I 200GigE to 200GigE Link to
h eta G I U n Od e External Storage External Storage

HDR
S| InfiniBand /
200GigE

HDR Pz
InfiniBand / [N
200GigE

* NVIDIA DGX A100)
+ 2 AMD EPYC Rome CPUs ot ()
« 8 NVIDIA A100 GPUs

 GPUs interconnected over NVLink

i HDR
Sl InfiniBand /
200GigE

. 8 HDR IB NICs = = BE) 2BE=E B g
« PCle Gen 4 switch for connecting CPUs, | | '5‘3‘;;"(

GPUs and NICs

HDR
InfiniBand / | InfiniBand /
200GigE e | e e | e 200GigE
| 1 1 as S

@) AMD Infinity fabric
Wl Eight-channel DDR4 (171GB/s per CPU)

@) PCl-Express x16 (gen 4.0) bus to CPU
PCl-Express x16 (gen 4.0) GPUDirectRDMA (~24.7 GB/s)
PCI-Express x8 (gen 4.0) GPUDirectStorage
25GB/s NVLink 3.0(50GB/s bi-directional per connection)

(2 connections from GPU to each of 6 NVSwitches
600 GB/s of NVLink BW for each GPU)

source:
microway.com

MPI Usage on ThetaGPU

" OpenMPI over UCX is the default MPI currently
" MPICH over OFI will be installed as well soon.

= Current working recipe:
= Compilation:
» /soft/thetagpu/hpc-sdk/Linux_x86 64/21.3/cuda/bin/nvcc -l/soft/thetagpu/hpc-sdk/Linux_x86 64/21.3/comm_libs/mpi/include -c
test.cu

* /soft/thetagpu/hpc-sdk/Linux_x86 64/21.3/cuda/bin/nvcc -L/soft/thetagpu/hpc-sdk/Linux_x86 64/21.3/comm_libs/mpi/lib -lmpi -o
test test.o

= Run:
* mpirun -n 2 -bind-to socket -x UCX_TLS=cuda_ipc ./test
= Example:
* https://github.com/argonne-lcf/CompPerfWorkshop-202 | /tree/main/07 mpi/MPIl ping-pong
e Compares the ping pong latency and bandwidth for message sizes (8B — | MB) between two processes
* CPU to CPU transfer

* GPU to GPU transfer staged through CPU memory
* GPU to GPU tranfer through GPUDirect RDMA/NVLink

= CUDA-aware MPI run config parameters: https://www.open-mpi.org/fag/?category=runcuda

22

https://github.com/argonne-lcf/CompPerfWorkshop-2021/tree/main/07_mpi/MPI_ping-pong

Ping-pong Bandwidth

256.0000 -
16.0000 =
% Type
% - CPU-CPU
S - .
o
S —— GPU-GPU-staged
M
0.0625 —

1 1 1 1
4096 262144 16777216 1073741824
Message Size(B)

23

Summary

= Optimizations were done in Cray MPI to improve pt2pt and collective latency on KNL
= Further tuning is possible through the environment variables
= MPI on ThetaGPU

= Recommend using the on-node NVLink communication for efficient data transfers

References:
= Cray XC series Network: https.//www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf
= MPI 3.1 Standard: https.//www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

= Cray MPI for KNL: https.//www.alcf.anl.qov/files/Chunduri_MPI_Theta.pdf (May 18 workshop - slightly basic version than this
talk)

= MPI benchmarking on Theta: https.//cug.org/proceedings/cug2018_proceedings/includes/files/pap131s2-filel.pdf

= Advanced MPI Programming Tutorial at SC17, November 2017 (https://www.mcs.anl.gov/~thakur/sc17-mpi-tutorial/)

= Low-overhead MPI profiling tool (Autoperf): https.//www.alcf.anl.qov/user-quides/automatic-performance-collection-autoperf
= Run-to-run Variability: https.//dl.acm.org/citation.cfm?id=3126908.3126926

= [DMS: https.//qgithub.com/ovis-hpc/ovis/tree/master/Idms

24

https://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.alcf.anl.gov/files/Chunduri_MPI_Theta.pdf
https://cug.org/proceedings/cug2018_proceedings/includes/files/pap131s2-file1.pdf
https://www.mcs.anl.gov/~thakur/sc17-mpi-tutorial/
https://www.alcf.anl.gov/user-guides/automatic-performance-collection-autoperf
https://dl.acm.org/citation.cfm?id=3126908.3126926
https://github.com/ovis-hpc/ovis/tree/master/ldms

Hands-on Session

" Few sample codes are provided here at
https://xgitlab.cels.anl.gov/alcf/training/tree/mpi/ProgrammingModels/MPI|/Theta

" These are also accessible at
/projects/Comp_Perf_Workshop/examples/training/ProgrammingModels/MPI/Theta

" The nonblocking_coll and nonblocking_p2p have sample run scripts to submit jobs

" Feel free to experiment with using the environment variables with your own
application codes

" Some examples to try out

Potential performance optimization (Huge pages, Routing mode change, Hardware collective offload,
Core specialization etc.)

Functionality specific (nonblocking collectives, MPI+X etc.)

25

https://xgitlab.cels.anl.gov/alcf/training/tree/mpi/ProgrammingModels/MPI/Theta

