Overview of the Intel® oneAPl Math Kernel Library

Peter Caday

intel.

What’s in Intel® oneMKL (Beta)?

Multidimensional

LAPACK

ScaLAPACK

| sersc s J

Sparse BLAS

Cluster FFT

Sparse solvers

N

N\ N\ J

DPC++ API with GPU DPC++/C/C++/Fortran API C/C++/Fortran CPU
support with GPU support support only

Engines

S —

Distributions

A\ W/

Kurtosis

{ Hyperbolic)
(Exponential)
(" Logarithmic)

Variation
coefficient

Order statistics

i

Min/Max

Variance-
___covariance

{

Splines

Interpolation

Fast Poisson
Solver

o)

intel.

2

Zoom in: Dense Linear Algebra + FFT

Level 1
| (vector ops)

LU/QR

Complex
1D/2D/3D

r‘||||
b

Level 2 Cholesky

(matrix-vector)

A

-

Real-to-complex
Complex-to-real

Eigensolvers

Level 3

q (matrix-matrix) 1D/2D/3D

Batch factorizations

Level 3
extensions

Utility routines

| won
o)
e
e i
Uit ouie

Cluster FFT
Batched

e

ScaLAPACK)

L /

DPC++/OpenMP offload

with GPU support

DPC++ API
with GPU support

CPU support only

intel.

3

Potential GPU Usage Models

Example: multiply double-precision matrices C < AB

= On host (A/B/C in host memory)
= Automatic offload to GPU (A/B/Con hgst
* OpdrtsRobfIRid A GPJ tramsier ovedvéad !

= Manual offload (A/B/C on host or device)

* |[nside device kernel (A/B/C on device)

dgemm(.., A, .., B, .., C, ..);

dgemm(.., A, .., B, .., C, ..);

#pragma omp target variant dispatch ..

dgemm(.., A, .., B, .., C, ..);

dgemm(device queue, .., A, .., B, .., C,

)

void my_kernel(..) {
dgemm(.., A, .., B, .., C, ..);
}

intel.

4

oneMKL GPU Usage Models

Automatic offload OpenMP offload Manual offload Device API
CPU GPU

Invocation side

Data location

Interface

EQY support

GPU / CPU GPU / CPU / shared

C/C++/Fortran +

OpenMP DPC++

Most oneMKL GPU All oneMKL GPU
functionality functionality

Less Control More Control
Fewer Code Changes More Code Changes

GPU

DPC++

Limited support
(selected RNG)

intel.

5

Using oneMKL OpenMP Offload Interfaces

intel. s

Offload: Key OpenMP Directives (C)

#pragma omp target data

Map host-side variables to device variables inside this block.

#pragma omp target enter data
#pragma omp target exit data

Map/unmap host-side variables to device variables: the two halves of #pragma omp target data.
#pragma omp target
Offload execution of block to the GPU.

#pragma omp target variant dispatch

Offload oneMKL calls inside this block to the GPU.

intel.

7

GEMM with oneMKL C API

int main() {
long m = 10, n = 6, k = 8, 1lda = 12, 1ldb = 8, ldc = 190;
long sizea = 1lda * k, sizeb = 1ldb * n, sizec = ldc * n;
double alpha = 1.0, beta = 0.0;

// Allocate matrices

double *A = (double *) mkl malloc(sizeof(double) * sizea, 64);
double *B = (double *) mkl malloc(sizeof(double) * sizeb, 64);
double *C = (double *) mkl malloc(sizeof(double) * sizec, 64);

// Initialize matrices [..]

// Compute C = A * B on CPU
cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans,
alpha, A, 1lda, B, 1ldb, beta, C, ldc);

m, n, k)

C < aAB + fC

intel.

8

GEMM with oneMKL C OpenMP Offload

int main() {
long m = 10, n = 6, k = 8, 1lda = 12, 1ldb = 8, ldc = 190;
long sizea = lda * k, sizeb = 1ldb * n, sizec = ldc * n;
double alpha = 1.0, beta = 0.0;

C < aAB + fC

// Allocate matrices Use target data mapto
double *A = (double *) mkl_malloc(sizeof(double) * sizea, 64); send matrices to the device
double *B = (double *) mkl malloc(sizeof(double) * sizeb, 64);

double *C (double *) mkl malloc(sizeof(double) * sizec, 64);

// Initialize matrices [..]

// Compute C = A * B on
cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans,
alpha, A, 1lda, B, 1ldb, beta, C, ldc);

K,

} Optional nowait clause for asynchronous execution
Use #pragma omp taskwait for synchronization

Use target variant
dispatch to request GPU
execution for cblas_dgemm

List mapped device pointers in
the use_device ptr clause

GEMM with oneMKL Fortran OpenMP Offload

. // module files

-————— ____ Module for Fortran OpenMP

program main offload

integer ::m=10, n = 6, k = 8, 1lda = 12, 1db = 8, 1ldc = 10

integer :: sizea = lda * k, sizeb = 1ldb * n, sizec = 1ldc * n

double :: alpha = 1.0, beta = 0.0 Use target data mapto
double, allocatable :: A(:), B(:), C(:) send matrices to the device
// Allocate matrices..

allocate(A(sizea)) Use target variant
dispatch to request GPU

// Initialize matrices.. execution for dgemm

List mapped device pointers in

! Compute C = A * B on the use_device_ ptr clause
call dgemm(‘N’, ‘N’, m, n, k, alpha, A, lda, B, 1ldb, beta,|C, ldc) — —

Optional nowait clause for asynchronous execution
end program Use !$omp taskwait for synchronization

intel.

Using oneMKL DPC++ Interfaces

intel. =

Data Parallel C++ (DPC++) Introduction

= SYCL is a C++-based, single-source programming language for
heterogeneous computing.

=" DPC++ is SYCL + many new extensions.

* e.g. pointer-based programming (Unified Shared Memory)

= Open, standards-based, multi-vendor.

https://software.intel.com/en-us/oneapi

intel.

https://software.intel.com/en-us/oneapi/onemkl

DPC++: Key SYCL Constructs for oneMKL Usage

sycl::queue Q{sycl::cpu_selector{}};
sycl::queue Q{sycl::gpu selector{}};
sycl::queue Q{device};

Create device queue attached to a given device or device type.

All device execution goes through a queue object.

sycl::malloc_shared(bytes, Q);
sycl::malloc_device(bytes, Q);

void *mem
void *mem

Allocate device-accessible memory. malloc_shared memory is also accessible from the host.

sycl: :buffer<T,1> mem(elements);
sycl: :buffer<T,1> mem(elements, hostptr);

Smart buffer object. Migrates memory automatically and tracks data dependencies.

Can be attached to host memory (synchronized at creation and destruction).

intel. =

GEMM with oneMKL C API

int main() { C <—0£AB+,BC

inté4_t m = 16, n = 6, k = 8, 1lda = 12, 1db = 8, 1ldc = 10;
int64_t sizea = lda * k, sizeb = 1ldb * n, sizec = 1ldc * n;
double alpha = 1.0, beta = 0.0;

// Allocate matrices

double *A = (double *) mkl malloc(sizeof(double) * sizea);
double *B = (double *) mkl malloc(sizeof(double) * sizeb);
double *C = (double *) mkl malloc(sizeof(double) * sizec);

// Initialize matrices [..]

cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, m, n, Kk,
alpha, A, 1lda, B, 1ldb, beta, C, ldc);

intel.

GEMM with oneMKL DPC++

int main() {

int64_t m =

double alpha

// Allocate
double *A
double *B
double *C

10, n = 6, k = 8, 1da = 12, 1db = 8, 1ldc = 10;
int64_t sizea = lda * k, sizeb = 1ldb * n, sizec = 1ldc * n;
= 1.0, beta = 0.0;

matrices

A

(sizea, Q);
(sizeb, Q);

(sizec, Q);

// Initialize matrices [..]

Output e is a sycl::event object representing command completion

Call e.wait () to wait for completion

A

C < aAB + fC

Set up GPU queue

Allocate CPU/GPU-accessible
shared memory

New oneMKL DPC++ API

Computation is performed on
given queue

intel.

Batch Computations in oneMKL

intel.

Batching Overview

= Execute multiple independent operations of the same type in a single call

e e.g. invert 100 different 8x8 matrices
= Benefits: increased parallelism, reduced overhead

= Available APIs:
* BLAS: gemm, trsm, axpy

 LAPACK™: LU (getrf, getri, getrs), Cholesky (potrf, potrs), QR (geqrf, orgqr, ungqr)
 FFT: all DFTs

* only available in DPC++

intel. v

BLAS/LAPACK Group APIs

Group = set of operations with identical parameters (size, transpose...)
but different matrix/vector data

Group batch APIs process one or more groups simultaneously.

Group 1 Group 2

intel.

BLAS/LAPACK Group APIs

Group = set of operations with identical parameters (size, transpose...)
but different matrix/vector data

Group batch APIs process one or more groups simultaneously.

Examples:
* n operations, 1 group: all parameters identical

* n operations, n groups: each operation has different parameters

intel.

Example: Batch DGEMM

cblas_dgemm_batch(CblasColMajor, transA, transB, m, n, k, alpha, a, lda, b, 1db,

group_size[0]

group_size[1]

beta, ¢, 1ldc, num _groups, group sizes);

a
, | |
= 3
k[0] B
m | m[@] m[1] k[1]
k[el | k[1]

1 array entry per group

1 array entry per GEMM
operation

intel.

20

BLAS/LAPACK Strided DPC++ APIs

=" DPC++ oneMKL adds strided APIs for simple batch cases

* Single group: all matrix/vector sizes, parameters are homogeneous

 Fixed stride between successive matrices/vectors in batch
e Base address + stride replaces array of pointers

 Strides on inputs may be zero to reuse an input for all operations in the batch

intel. =

Strided Batch Snippet - LU

#include “oneapi/mkl.hpp”
using namespace oneapi::mkl;

int64_t batch = 100; // 100 matrices

inte4 t N = 10; // Matrix size - square in this example
int64_t stride = N * N; // 10x10 matrices are contiguous in memory
int64_t stride_piv = N; // Pivot entries also contiguous in memory

sycl::queue Q{sycl::gpu_selector{}};

// Allocate memory for matrices and pivot indices, as well as scratch space.
auto A_array sycl::malloc_shared<double>(stride * batch, Q);
auto pivot_array sycl::malloc_shared<double>(stride_piv * batch, Q);

auto scratch_size
auto scratch

lapack: :getrf_batch scratchpad size(Q, n, n, n, stride, stride piv, batch);
sycl::malloc_shared<double>(scratch _size, Q);

// [Initialize A _array here]
// Batch computation

lapack: :getrf_batch(Q, n, n, A _array, n, stride, pivot_array, stride_piv, scratch, scratch_size)
wait();

intel. =

oneMKL Resources

intel. =

Resources

Websites

https://software.intel.com/en-us/intel-mkl

https://software.intel.com/en-us/oneapi/onemkl

Forum

https://software.intel.com/en-us/forums/intel-math-kernel-library

Developer Reference

https://software.intel.com/en-us/oneapi-mkl-dpcpp-developer-reference

Link Line Advisor

http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

Benchmarks

https://software.intel.com/en-us/intel-mkl/benchmarks

intel.

24

https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/oneapi/onemkl
https://software.intel.com/en-us/forums/intel-math-kernel-library
https://software.intel.com/en-us/oneapi-mkl-dpcpp-developer-reference
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/
https://software.intel.com/en-us/intel-mkl/benchmarks

Notices & Disclaimers

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Intel

technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the
OEM or retailer.

The benchmark results reported herein may need to be revised as additional testing is conducted. The results depend on the specific platform configurations and workloads
utilized in the testing, and may not be applicable to any particular user’s components, computer system or workloads. The results are not necessarily representative of other
benchmarks and other benchmark results may show greater or lesser impact from mitigations.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION

INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Copyright © 2020, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and OpenVINO are trademarks of Intel Corporation or its subsidiaries in the
U.S. and other countries. Khronos® is a registered trademark and SYCL is a trademark of the Khronos Group, Inc.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

intel.

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

Questions & Answers

intel. =

