Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.
Notice revision #20110804

C_opyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Software

PERFORMANCE OPTIMIZATION
VTUNE &ADVISOR

Paulius Velesko
Application Engineer

paulius.velesko@intel.com

Tuning at Multiple Hardware Levels

Exploiting all features of modern processors requires good use of the available resources
= Core
— Vectorization is critical with 512bit FMA vector units (32 DP ops/cycle)
— Cache use needed to feed vector units
= Socket
— Using all cores in a processor requires parallelization (MPI, OMP, ...)
— Using coherent, shared socket caches
= Node
— Minimize remote memory access (control memory affinity)

— Minimize resource sharing (tune local memory access, disk 10 and network traffic)

Optimization Notice

Copyright 018, Intel Corporation. All rights reserved.
*Other nar and brands may be claimed as the property of others.

Intel® Software Development Tools for Tuning

= Compiler Optimization Reports - Key to identify issues preventing
automated optimization

» [ntel® VTune™ Application Performance Snapshot - Overall performance
» Intel® Advisor - Core and socket performance (vectorization and threading)
* Intel® VTune™ Amplifier - Node level performance (memory and more)

= [ntel® Trace Analyzer and Collector - Cluster level performance (network)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

Get the tools

Intel profiling tools are now FREE:

https://software.intel.com/en-us/vtune/choose-download

https://software.intel.com/en-us/advisor/choose-download

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
and e

https://software.intel.com/en-us/vtune/choose-download
https://software.intel.com/en-us/vtune/choose-download
https://software.intel.com/en-us/advisor/choose-download

NBODY DEMONSTRATION

Nbody gravity simulation

Let's consider a distribution of point masses located at r_1,...,r_n and have masses
m_1,.,m_n.

We want to calculate the position of the particles after a certain time interval using the
Newton law of gravity.

struct Particle for (i = 0; i < n; i++){ // update acceleration
{ for (j = 0; j < n; j++){
public: real type distance, dx, dy, dz;
Particle() { init();} real type distanceSqr = 0.0;
void init() real type distanceInv = 0.0;
{
pos[0] = 0.; pos[l] = 0.; pos[2] = O0.; dx = particles[j].pos[0] - particles[i].pos[0];
vel[0] = 0.; vel[l] = 0.; vel[2] = O.;
acc[0] = 0.; acc[l] = 0.; acc[2] = 0.;
mass = 0.; distanceSqr = dx*dx + dy*dy + dz*dz + softeningSquared;
} distanceInv = 1.0 / sqrt(distanceSqr) ;
real type pos[3];
real type vel[3]; particles[i] .acc[0] += dx * G * particles[j] .mass *
real type acc[3]; distancelInv * distancelInv * distancelnv;
real type mass; particles[i] .acc[1l] += ..
}; particles[i] .acc[2] += ..

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

INTEL” COMPILER REPORTS

eeeeeeeeeeeeeeeeeeeeeee

Compile with -gopt-report=5

Which loops were vectorized = Prefetching

LOOP BEGI
remark
remark
remark
remark
remark
remark
remark
remark
remark
remark
remark
remark
remark
remark
remark

LOOP END

Vector Length = [ssues preventing vectorization
Estimated Gain = [nline reports

Alignment * [nterprocedural optimizations
Scatter/Gather = Register Spills/Fills

N at ../src/timestep.F(4835,13)

#15389:
#15381:
#15335:
#15329:
#15385:
#15399:
#15389:
#15450:
#15463:
#15475:
#15476:
#15477:
#15473:
#15488:
#25439:

vectorizatien support: reference nbd_(1) has unaligned access [../src/timestep.F(4836,16) |

vectorization support: unaligned access used inside loop body

loop was not vectorized: vectorization possible but seems inefficient. Use vector always directive or -vec-thresholde to override
vectorization support: irregularly indexed store was emulated for the variable =coefd (nbd (1))=, part of index 1s read from memory
vectorizatien support: vector length 2

vectorization support: unroll factor set to 4

vectorization support: normalized vectorization overhead ©.139

unmasked unaligned unit stride loads: 1

unmasked indexed (or scatter) stores: 1

--- begin vector cost summary ---

scalar cost: 4

vector cost: 4.508

estimated potential speedup: ©.820

--- end vector cost summary ---

unrolled with remainder by 2

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

The Basic Tuning Cycle

Infinite cycle only broken by external
constraints (time, papers, releases ...)

Procedures for measuring performance

Validate Measure and validating results are critical
Results Performance

Automation and environment control are

key for consistency
Profile

Modify Code L,
/ Application Where do | start?

/soft/perftools/intel/advisor/advixe.qsub

[soft/perftools/intel/vtune/amplxe.qsub

T
; (intel 10

Copyright © 2018, Intel Corporation. All rights reserved.
and e

amplxe.gsub Script

* Copy and customize the script from /soft/perftools/intel/vtune/amplxe.qsub
* All-in-one script for profiling

« Job size - ranks, threads, hyperthreads, affinity Google vune at v Q

All Shopping News Images Videos More Settings Tools

« Attach to a single, multiple or all ranks

About 575 results (0.33 seconds)

° Bi nary as arg#1 , in put as arg#z VTune on XC40 | Argonne Leadership Computing Facility
https:/www.alcf.anl.gov/user-guides/vtune-xc40 v
. . VTune is an advanced profiling tool which helps you to optimize your code on the KNL architecture. It
° QSUb amplxe.QSUb -/you r_exe ./InpUtS/Inp allows you to track how well your code is threaded and ...

You've visited this page 5 times. Last visit: 4/29/19

* Binary and source search directory locations
* Timestamp + binary name + input name as result directory

* Save cobalt job files to result directory

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Version Optimizations

VerO

= [|nitial implementation
Ver1

= -xMIC-AVX512

Ver2

= Use only floats
Ver3
= A0S -> SoA + SIMD Reduce

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

INTEL" ADVISOR

Vectorization and Static Analysis

https://www.alcf.anl.gov/user-guides/advisor-xc40

Intel® Advisor — Vectorization Optimization

FILTER: | Al Modules ~|[AlSources ~|[Loops ~|[ANThreads ~| INTEL ADVISOR 2017

G Summary % Survey Report | (@ Refinement Reports

Faster Vectorization Optimization: p—

Vectar
Issues

| |22 [loop in 5252 at loops90.£:1172)] O |

= Vectorize where it will pay off most 26 lopim e s opn

@ 2Ineffi.. 28755 0136 00825 | @ vectorizat ..

510 [loop in 5126 at loops30.f.447] @ 2Prov... 0.957s I Scalar 03971 01667 | @ vector de...

1 1 H H H 5O [loop in 5343 at loops90.£:2300] G 2Assu... 0873 [EEE Scal & vector de..

= Quickly ID what is blocking vectorization e et T e as Tl e O
. . . . [loop in 5353 at loops90.:2381] | [] 9 1Possi. 0.719s @M Vectorized (.. 27710 01250 ave [38e JaTex

| | Tlps for effectlve Vectorlzatlon (?[\anmsZEZijpSpara\lELfDr.” ?3%“ 0.693s EID Scalar Versions 02881 | 0.2220 ﬁwmumm

» Safely force compiler vectorization
= Optimize memory stride

Roofline model analysis:

» Automatically generate roofline model

= Evaluate current performance
» |dentify boundedness

0.033 0.54

http://intel.ly/advisor-'xe

Add Parallelism with Less Effort, Less Risk and More Impact

Copyright ® 2018, Intel Corporation. All rights reserved. (|nte‘ . 14

*Other names and brands may be claimed as the property of others.

http://intel.ly/advisor-xe

Cache-Aware Roofline
Next Ste PS If Under the Vector Add Peak

If just above the

Scalar Add Peak

Check vectorization
efficiency in the Survey.

flagstoin FMA usage.
If under or near a FLOPS gs to induce usage Follow the
memory roof... A recommendations to

Check “Traits” in the Survey to see if FMAs are
used. If not, try altering your code or compiler

. Try a MAP analysis. Ll improve it if it's low.
Make any approprlate 4 ? V‘ctor Add Peak
cache optimizations. : I ‘
« If cache optimization 1 | Scalar Add Peak...
is impossible, try I : Check the Survey Report
reworking the : I to see if the loop
algorithm to have a | ‘ vectorized. If not, try to
higher Al. ‘ Scalar Add Peak get it to vectorize if
possible. This may involve
running Dependencies to
see if it's safe to force it.

>

Arithmetic Intensity

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Typical Vectorization Optimization Workflow

There is no need to recompile or relink the application, but the use of -g is recommended.
Note: if you're using Theta run out of /projects rather than /home
1. Collect survey (overhead ~5%) advixe-cl -c survey
= Basicinfo (static analysis) - ISA, time spent, etc.
2. Collect Tripcounts and Flops (overhead 1-10x) advixe-cl -c tripcounts -flop
» |nvestigate application place within roofline model
= Determine vectorization efficiency and opportunities for improvement
3. Collect dependencies (overhead 5-1000x) advixe-cl -c dependencies
» Differentiate between real and assumed issues blocking vectorization

4. Collect Memory Access Patterns advixe-cl -c map

Optimization Notice

Copyright © 2018, Intel C

Use -h Option!

advixe-cl -h collect

Examples:

1) Survey the application to determine hotspots. _ _
advixe-cl --collect survey --project-dir ./advi --search-dir src:r=./src
-- ./bin/myApplication

2) Collect memory access patterns data with specified loops for analysis.
advixe-cl --collect map --mark-up-list=5,18,12 --project-dir ./advi
--search-dir src:r=./src -- ./bin/myApplication

3) Collect survey data on 4 nodes of MPI cluster into the shared ./advi project directory.
mpirun -n 4 advixe-cl --project-dir ./advi --collect survey
-- <PATH=/mpil-sample/1_mpil_sample_serial

4) Collect dependencies data for all loops that are both innermost and hold above 2% of the total CPU time.
advixe-cl --collect dependencies --project-dir ./advi --loops="loop-height=0,total-time=2"
-- ./bin/myaApplication

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Generate Advisor Command Lines from the GUI

m C\Users\pauliusvitest - Intel Advisor
File View Help

‘v | B BT B | B

Welcome

(] ‘ b Start Survey Analysis = | = |®

Summary %5 Survey & Roofline

/5 NoData
To collect data about your application's perfformance, compile your application with Release
build settings and run Survey analysis.

Copy Command Line to Clipboard
Command line:

& Consider selecting loops for deeper analysis using checkboxes in Survey Report

mpiexec -n 1 -gtool "advixe-cl -collect tripcounts -module-filter-mode=exclude -trip-counts -no-flop -no-
stacks -ne-callstack-tripcounts -no-flops-and-masks -no-callstack-flops -stack-stitching -no-profile-python
-auto-finalize - project-dir Ch\Usershpauliusvitest:0" "C\Users\ pauliusv\AppDatatLocal\Apps\Pexip Connect

‘\pexip-connect.exe’

Copy | ‘ Close

[JHide knobs with default values

Generate command line for MP|

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Collect survey and tripcounts (roofline)

$ module load advisor

$ cd /projects/intel/pvelesko/nody-demo/ver0
$ make

$ cp /soft/perftools/intel/advisor/advixe.qsub ./
$ gsub ./advixe.qsub ./nbody.x 2000 500

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

View Result

X-forwarding is not recommended.

Tar the result along with sources (if you want to be able to view them)
or
Generate a snapshot:

$ advixe-cl --snapshot --pack --cache-sources --cache-binaries

then scp to your local machine

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Summary Report

m C:\Users\pauliusv\Desktop\webinar\advixe_ver0 - Intel Advisor

Summary provides overall
‘lis |2 BT Bz | B M@ P StartSurvey Analysis 7 | <k | | @ : H
; performance characteristics

Welcome €000 x
Summary | % Survey & Roofline ™7 Refinement Reports INTELADVISOR 2019

Elapsed time: 29365 FILTER| AllModules ~|[All'Sources ~
] Top time consuming loops are
H Vectorization Advisor H H H
| | listed individually
Vectorization Advisor is a vectorization analysis toolset that lets you identify loops that will benefit most from vector parallelism

discover performance issues preventing from effective vectorization and characterize your memory vs. vectorization bottlenecks
with Advisor Roofline model automation.

Vectorization efficiency is based
&) Program metrics
E:ps;:'ﬂme t 29.36s » GFLOPS 1.86 On used ISA

Vector Instruction Set AVXE12, AVX2, AVX » GINTOPS 0.03
Number of CPU Threads 1

& Performance characteristics

Metrics Total

Total GPU time 29.35s N 100%
Time in 2 vectorized loops 29.31s 99.9%
Time in scalar code 0.04s 0.1%

(® Vectorization Gain/Efficiency

(® OP/S and Bandwidth

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Survey Report (Source Tab)

) st RN v~ WG v | MY -, \tic the folowing:

my
B Summary % Survey & Roofline | ®i Refinement Reports ‘

v & Higher instruction set architecture (ISA) available 420f2 e Xy o ngher ISA available
Consider recompiling your application using a higher ISA.
P Vectorized Loops Pl| FLops i u i
= [+] [=] Function Call Sites and Loops PRSI Self Time = |Total Time | Type Why No Vectorization? — - Type conversion
b Issues Vector...| Efficiency | Gain E... VL (Ve... | Self GFLOPS
= = [loop in GSi ion::start at GSi ion.cpp:138] | @ 1 Data type con... 90.600s @ 90.600s Bl Vectorized (Body) SSE2 91% 182x 2 0993 ™ | = Use Of Square root
- /O [loop in GSimulation:start at GSimulation.cpp:136] 0.020s! 90.620s B Scalar & inner loop was already v... 0.1500 |
5 5 _start 0.000s! 90.620s B Function
3§ main 0000s| 90.620sEEE Function . All of these elements
s f GSimulation:start 0.000s! 90.620s B Function \
e —— —— = , o v! may affect performance
< >« >
, Source | Top Down | Code Analytics | Assembly | v Rec dations | @ Why No Vectorization?
Line Source Total Time | % | Loop/Function Time | % Traits | ||
I35 = fuUr (im S—1, SN—gTi_uStopS (7, 1rSy |
134 {
135 ts0 += time.start();
136 © for (i = 0; i < n; i++)// update acceleration
137 {
138 B for (j = 0; j < n; j++) 1.020s 90.600s m—
) O [loop in GSimulation::start at GSimulation.cpp:138]
Vectorized SSE; SSE2 loop processes Float32; Float64; Int64 data type(s) and includes Square Roots; Type Convers|
No loop transformations applied
Selected (Total Time): 1.020s v
< >

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Survey Report (Code Analytics Tab)

(@ C:\Users\pauliusv\ Desktop\webinar\advixe_ver0 - Intel Advisor
File View Help

fh[® £5 G2 | B @ » Start Survey Analysis
icome €000

FILTER| Al Modules || Al Sources | [[TER| Al Threads ~

@ Survey & Roofline %l Refinement Reports

Function Call Sites and Loops

loop in at 132]
loop in GSimulation:start at GSimulation.cpp:130]
[loop in GSimulation:start at GSimulation.cpp:153]
[loop in _libc_start_main at libc-startc:186]

floop in _ibc_start_main at libc-start.c173]
2 [loop in GSimulation:start at GSimulation.cpp:127]

¥ Performance CPU Time
Issues Total Time

Self Time v

Type

Why No Vectorization?

© 2 Possible ineffi... 29,3065 B 29.306s @ Vectorized (Body)

&1 Data type conv... 29,3425 R
0.008s!

29,3505 SN
293505 G
1 Data type conv... 29.350s SN

¢ 1 Possible ineffici...

B SWIuIToanm] Code Analytics ‘Asenb!yld Inwnyuo

Loop in GSimulation: start at GSimulation.cpp-132
29.306s
i (Body) Total time

AVX512ER_512; 29.306s
AVX512F 512 Sefftme

» ry (4250000000, 34) NI
» Compute 32% (4500000000, 36) (D
> Mixed 2% (250000000, 2) §

Other 36% (5000000000, 40) (NI

2.34447e-07s | 0.00003s

(0] ation Notice

Average Trip Counts:

Roofline

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

003651
0.008s!
0.000s!
0.000s!
0.000s!

125

Scalar

@ inner loop was already v..

Vectorized (Body)

Scalar
Scalar

Scalar

& inner loop was already v...

12.19 GFLOPS (76.6x).

1.86 GFLOPS
1.29 FLOP/Byte

FLOPBe (2crmatc inmes

-
i Customize View l|
INTELADVISOR 2019

Vectorized Loops [Instruction Set Analysis

Vector ISA | Efficiency Gain E... VL (Ve... | Traits
AVXs12 [(51% |823x 16 2-Source Permutes; Blends; Extracts; FMA; G
2-Source Permutes; Blends; Extracts; FMA; Gathy
AVX512 10% 161x 16 2-Source Permutes; Blends; FMA; Gathers; Mask
Appr. Reciprocals(AVX-512ER); Divisions; Expol
>
GFLOPS: 1.86 ®
GINTOPS: 0.03

AVX-512 Mask Usage: 96%

Code Optimizations

Compiler: Intel{R) C++ Intel(R) 64 Compiler for applications running on Intel(R) 64,
Version' 19.0.5.281 Build 20190815

Compiler estimated gain: 6.31x

Vectorization/Optimization report by Compiler: no messages

Analytics tab contains a
wealth of information

Instruction set
= |nstruction mix

» Traits (sqrt, type
conversions, unpacks)

= Vector efficiency

= Floating point statistics

And explanations on how
they are measured or
calculated - expand the box
or hover over the question
marks.

CARM (Cache-aware roofline model) Analysis

Using single threaded roof

Performan ce (GFLOPS) X a [B - | [/ Use Single-Threaded Roofs @ | [[] Show Roofline with Callstacks © =

100

Code vectorized, but
performance on par with
scalar add peak?

= Irregular memory access
patterns force gather
operations.

i o
01+ pend 4
o™ =7

| » QOverhead of setting up
Arthmetc tensity (FLOP/Byte) vector o p erat | ons
reduces efficiency.

T T
0.01 0.1 1
Self Elapsed Time: 10.080s Total Time: 10.080 s

Next step is clear: perform a Memory Access Pattern analysis

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Memory Access Pattern Analysis (Refinement)

Modify advixe.gsub to collect “survey” followed by “map”

gsub ./advixe.gsub

./nbody.x 2000 500

& Summary % Survey & Roofline *1 Refinement Reports B MAP Source: GSimulation.cpp Ly Storage of part|cle5 isin an Array
SI{E[D(E[I-IJI'I ! l{m-p-Camed Dependencies Strides Distribution A(.(essPanem Max. Site Footprint SlIeN?me Re(umme.ndallons : : | Of Stru Ctu res (AOS) Style

“ [loop in start at GS cpp:1.. No 33%/33% //33% | Mixed strides SKB loop_site_1 ¥ 2 Inefficient gather/scatter instructions present

= . .

P—— N -_— gy This leads to regular, but non-unit
\DI L5} S:m:l? Type Source Nested Function Vanab.\erlefe:re:\ces - - Ma-x,SneFootpn'n(Modules | Site Name ..C\-:cessType strldes In memory access

142 real_type distanceInv = 0.0f;

143 .

144 dx = particles(j].pes[0] - particles(i].pes(0]; //1£10p . 330/0 u nlt

145 dy = particles[j].pos[1] - particles[i].pes[1]; /1£flop

146 dz = particles[j).pos[2] - particles[i].pos[2]; //1flop

PR @ Gather stride GSimulation.cpp:144 block 0x60a0b0 allocated at GSimulation.cpp:109 5KB nbody.x loop_site_1 Read . .

- — — = 339% uniform, non-unit

143

144 pos[0]; //1£1lop

1te DEan snog * 33% non-uniform

P3 nbody.x loop_site_1

45 : -

{doposiots /1100 Re-structuring the code into a

145 dy c es[i].pos[1]; //1flop

46 dz = particles[j].po=[2] - particles(i].pos[2); //1£1cp Structu re Of Arrays (SOA) may

PS B 0 Uniform stride GSimulation.cpp:149 4B nbody.x loop_site 1 Read . .

w0 lead to unit stride access and

148 distanceSqr = dx*dx dy*dy + dz*dz + softeningSquared; //6flopa H H H

145 Giovancetaw - 1.0F / saret wiscanessgmr it vrna more effective vectorization

151 particles[i].acc[0] += dx * G * particles[j].mass * distancelnv * distancelnv * distancelnv; //6£lops

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Vectorization: gather/scatter operation

The compiler might generate gather/scatter instructions for loops automatically

vectorized where memory locations are not contiguous

{
public:

real type
real type
real type

real type
};

struct Particle

pos[3];
vel[3];
acc[3];
mass;

{
public:

real type
real type

real type
real type

struct ParticleSoA

*pos_x,*pos_y,*pos_z;
*vel x,*vel y,*vel z;
*acc_x,*acc_y;*acc_z
*mass;

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

AoS - array
of structures
Memory
I —~
H
il
|.l.
(0]
|_l
[0}
n
2
-
- ~
o
H
N
|.l.
(0]
|_l
[0}
1]
E:
i .

4
A

Vector
Register

SoA - structure
of arrays

//hemory “\\

P.pos_x[i]

P.pos_x[i+l]

P.pos_x[i+2]

P.pos_x[i+3]

P.pos_x[i+4]

p-pos_x[i+5]

p-pos_x[i+6]

P.pos_x[i+7]

P.pos_x[i+8]

A 4

Vector
Register

Memory access pattern analysis; (NN

How should | access data ?

For B, 1 cache line load computes 4 DP

Unit stride access are faster

= W B 6 g 0 B0

A[i] = B[i]*d

For B, 2 cache line loads compute 4 DP with

Constant stride are more complex reconstructions

for (i=0; i<N; i+=2)
A[i] = B[i]*d

Non predictable access are
usually bad

for (i=0; i<N; i++)
A[i] = B[C[i]]*d

For B, 4 cache line loads compute 4 DP with
reconstructions, prefetching might not work

inteI' \ 28

Performance After Data Structure Change

In this new version (version 3 in
GitHub sample) we introduce the
following change:

= Change particle data structures
from AOS to SOA

Note changes in report:

= Performanceis lower

= Main loop is no longer vectorized

» Assumed vector dependence
prevents automatic vectorization

Sl] =] Function Call Sites and Loops

[Summary % Survey & Roofline ™0 Refinement Reports

¥ Performance

Self Time = | Total Time Type

« 1 GSimuilation:start
< > <

Issues
= - [loop in at cpp:151] ¢ 1A d dep... 46.360sM 46.360s MM Scalar
Scalar loop. Not vectorized: vector dep || |Scalar loc orized: vector dependence pre
: [No loop transformations applied No loop tx mations applied
" (5.0 [loop in GSimulation:start at GSimulation.cpp:171] @ 1 Assumed depe.. 0.040s! 0.040s1 Scalar
1 start 0.000s1 46.400s @I Function
4 f main 0.000s1 46.400s B Function

0.000<1 46,400 IR Function

Souoe|TopDawn

Code Analytics ‘ Assembly IJ

Loop in GSimulation: start at GSimulation.cpp:151

O 463605

46.360s

Self time

¥ Static Instructior mary

» Memory 24% (8) @I

» Compute 32% (11) D

> Mixed 32% (1) BB
Other 12% (4) @

» Dynamic Instruction Mix Summary

Traits ®

Souare Roots. FMA

& Why No Vectorizati

Average Trip Counts: 2000

Next step is clear: perform a Dependencies analysis

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

Vectorized Loops | rLops &

Why No Vectorization?
Vector.. Gain E.. VL (Ve..|Self GFLOPS

& vector dependence pre... 1122800 ¢
@ vector dependence preve.. 0475@8 C
v
>
() GFLOPS: 1.12166 ®

AVX-512 Mask Usage: 100

(¥) Code Optimizations

Compiler: Intel(R) C++ Intel(R) 64 Compiler for applications
running on Intel{R) 64,
Version: 18.0.0 128 Build 20170811

*Other names and brands may be claimed as the property of others.

Dependencies Analysis (Refinement

Modify advixe.gsub to collect “survey” followed by “dependencies”

gsub advixe.gsub ./ver3/nbody.x

B C CUE B FAEREN ™ ficfincment Reports | EAINE R R M D d H l H h
e tnon o caresompmimee soceDevam | pommreien | i foopt | [SeNane | pesomencion ependaencies analyslis nas
high overhead:

| lloop in start at GSimulation.cpp:157) @ RAW:4 No information available No information available No information available loop_site_ 1 & 1 Proven (real) dependency present

D | @ Type Site Name | Sources Modules State Severity
Pl @ Parallel site information loop_site.1 GSimulation.cpp nbodyx «Nota problem Error Aitems
P3 Read after write dependency loop, GSimulation.cpp nbodyx M New Information 1item WO r k l 0 a d
P4 |R=ad after write dependency |loop. 1 | GSimulation.cpp; main.cpp | nbos New
P5 @ Read after write dependency loop_site_1 GSimulation.cpp nbodyx MNew Tope
i/ P6 @ Read after write dependency loop_site_1 GSimulation.cpp nbodyx A New Parallel site information 1 item

Read after write depend .. 4 items.

ot st it sy it —————— B Advisor Findings:

ID |Instruction Address | Description | Source Function |Variable references Module | State ~ | GSimulation.cop 5 items
X3 0x401c85 Parallel site [GSimulation.cpp:157 start nbodyx RNew maincpp 1item
155 real_type distancelnv = 0.0f; Module
156 -
157 dx = particles->pos_x[3] - particles->pos_x[il; //1flop nbodyx 5 ftems]
158 dy = r 3] - particles->pos_y[il; /1flop State
155 dz = 3] - particles—>pos £[il; //iflop
" New 4 items
X6 0x401coB, 0x401d17 Read GSimulation.cpp:164 start register XMM1 nbodyx R New
162 tancelnv = 1.0f / agrté (distancedgr); +1lsqrt Not a problem 1iem
163 L] L]
164 #= dx * G * particles->mass[3] * distanceInv * distanceInv * distancelnv; //6flops]
185 += dy * G * part s->ma. . ance + distan + distanceT: {/6€lops -
166 4= dz * G * part. . - N - distanc //6£1ops
SX7 0xd01dle Write GSimulation.cpp:164 start nbodyx M New 0
= T e dependencies
163 « 7 SortBy ltem Name ®
164 particl x[il += dx * G * particl 4] _* distanceInv * distancelny * distancelny: Sflcpa

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Recommendations

Memory Access Patterns Report l Dependencies Report ‘ ¥ Recommendations

All Advisor-detectable issues: C++ | Fortran

Recommendation: Resolve dependency

The Dependencies analysis shows there is a real (proven) dependency in the loop. To fix: Do one of the following

« If there is an anti-dependency, enable vectorization using the directive #pragma omp simd
safelen(length) , where length is smaller than the distance between dependent iterations in
anti-dependency. For example:

fpragma omp simd safelen(4)
for (1 =0; 1 <n - 4; 1 += 4)
{

af[i + 4] = a[i] * c;

ISSUE: PROVEN (REAL) DEPENDENCY
PRESENT

The compiler assumed there is an
anti-dependency (Write after read - WAR) or
true dependency (Read after write - RAW) in the
loop. Improve performance by investigating the
assumption and handling accordingly.

Resolve dependency

o If there is a reduction pattern dependency in the loop, enable vectorization using the directive #pragma omp simd reduction(operator:list) . For example:

#pragma omp simd reduction (+:sumx)
for (k = 0;k < size2; k++)
{

sumx += x[k]*b[k];

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Performance After Resolved Dependencies

Summary % Survey & Roofline |™{/Refinement Reports

Performance (GFLOPS) x (Q) B ~ | [Use Single-Threaded Roofs @ | [] Show Roofline with Callstacks €

«n
z
5]
2

100

14

T T
0.01 0.1 1 10

Self Elapsed Time: 2.320s Total Time: 2.320 s Arithmetic Intensity (FLOP/Byte)

New memory access pattern plus vectorization produces much improved performance!
What's next?

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

AdV|sor Roofline — How much further can we go?

1< n; 1++)
Performance Metrics Summary ~

) & —
alignment); kQ |Cores:| 1 v =

alignment);
alignment); 100 4
alignment);
alignment);
alignment);
alignment);

540149

- particl
- particl
- particl

Current % of Peak = in 40%

ancelnv ancelnv;
stancelnv stancelnv;

Why only 40%?
* Vectorization Efficiency
* Long Latency/Complex Operations

° Df\f\ r rﬁ C hn I |+|| 21.. NN FLOP/Byte (A\'\l‘m'\‘et\‘

FoofFcache-JthiZzation T

3 |
FMA Ratio - 2_9 = 10% Physical Cores: 64 @ App Threads: 1 @

= SP Vector ADD * (1+ FMA Ratio)
=40 *(1+0.1) = 44 GFLOPS

Copyright © 2018, Intel Corporation. All rights reserved.

o

D

Q

=
|

Peak =

*Other names and brands may be claimed as the property of others.

Vectorization Efficiency?

@ Elapsed time: 5.195 EeRYETad1yr:0) Not Vectorized ElFIIIER:l All Modules -

F Summary % Survey ofline % nement Reports
B s % s & Roofline ™ Refi t Report

Vectorized Loops

=] Function Call Sites and Loops

El@ [loop in GSimulation::start at GSin
=5 [loop in GSimulation::start at GSimulati

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of ot

Complex Operations?

Performance Metrics Summary ~

ormance Metrics Summary ~

kQ |cores: 1 v e Cores:[1 ~ | @ =
B 0
e =
100 3 >
a
80,05 GFLOPS (2.6x) 8
2] 38.57 GFL(
: GSimulation::st
31.14
o]
. 31
r . r
|
FLOP/Byte (Arithmetic Intensity) [-O1 FLOP/Byte
0.01 0.1 10 0.01 0.1 1 10

Physical Cores: 64 @ App Threads: 1 @

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Phvsical Cores: 64 @ App Threads: 1 @

Poor Cache Utilization?

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

INTEL" VTUNE™ AMPLIFIER

Core-level hardware metrics

https://www.alcf.anl.gov/user-guides/vtune-xc40

Intel® VTune™ Amplifier

VTune Amplifier is a full system profiler

= Accurate

* Low overhead

» Comprehensive (microarchitecture, memory, 10, treading, ...)
= Highly customizable interface

» Direct access to source code and assembly

= User-mode driverless sampling

» Event-based sampling

Analyzing code access to shared resources is critical to achieve good performance
on multicore and manycore systems

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Predefined Collections

Many available analysis types:

» uarch-exploration General microarchitecture exploration
» hpc-performance HPC Performance Characterization

" memory-access Memory Access

= disk-io Disk Input and Output

= concurrency Concurrency

= gpu-hotspots GPU Hotspots

= gpu-profiling GPU In-kernel Profiling

= hotspots Basic Hotspots

= locksandwaits Locks and Waits Python Support
= memory-consumption Memory Consumption

= system-overview System Overview

Optimization Notice

Copyright 018, Intel Corporation. All rights reserved.
*Other nar and brands may be claimed as the property of others.

Collect uarch-exploration

cd /projects/intel/pvelesko/nody-demo/ver7
module load vtune

vim Makefile # edit to add -dynamic

cp /soft/perftools/intel/advisor/amplxe.qsub ./

vim amplxe.gsub # edit collection to "uarch-exploration

gsub ./advixe.qsub ./nbody.x 2000 500

scp result back to your local machine

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

I & | B P B W= ®HWe\ccme "NewA... x
& Choose Analysis Type

INTEL VTUNE AMPLIFIER 2018

4 B Analysis Target A Analysis Type

Algorithm Analysis

Start
HPC Performance Characterization i ‘o 2 y

Basic Hotspots

Advanced Hotspots

‘GStart Paused ’
Analyze important aspects of your application performance, including CPU utilization with additional details on OpenMP efficiency analysis,
Concurrency memory usage, and FPU utilization with vectoerization information.

Locks and Waits For vectorization optimization data, such as trip counts, data dependencies, and memeory access patterns, try Intel Advisor. It identifies the loops Choose Target

o @ q that will benefit the most from refined vectorization and gives tips for improvements.
|smory Lonsumeton The HPC Performance Characterization analysis type is best used for analyzing intensive compute applications. Learn more (F1)

rization anal

Compute-Intensive Application Analysis A

HPC Perlormance Characterization

Microarchitecture Analysis !

limited for this platform. Only metrics ba: on binary static analy

or instruction will be available.

CPU sampling interval, ms

General Exploration & Copy Command Line to Clipboard@jlselogin2 x
M A
emory fceess Command line:
TSX Exploration
soft/compilersfintelfvtune_amplifier_2018.1.0.535340/bin64/amplxe-cl -collect hpe-
TSX Hotspots performance -app-working-dir fusr/bin -- s

SGX Hotspots

Platform Analysis
CPUIGPU Concurrsncy
System Overvisw

GPU Hotspots

Copy
GPU In-kernel Profiling

Disk Input and Qutput [Use -collect-with action

Hide knobs with default values

Custom Analysis

53 Command Line...
S == e - =

o —— ec———————
*Other names and brands may be claimed as the property of oth

Hotspots analysis for nbody demo (ver7: threaded)

* gsub amplxe.qsub./your_exe./inputs/inp

e b DBE D [weome vuners X = OpenMP Region Duration Histogram
i Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ INTELVTUNE AMPLIFIER 2018 This histogram shows the total number of region instances in your application executed with a specific duration. High number of slow instances may signal a performance
4 E]Collection Log @ Analysis Target A A isType d Summary & Botiom-up @ Caller/Callee @ T Tree 4 Platfe - bottieneck. Explore the data provided in the Bottom-up, Top-down Tree, and Timeline panes to identify code regions with the slow duration.
- OpenMP Region: | startSompSparaliel 64@unknown 146182 ~
Elapsed Time : 1.037s
CPU Time 21.420s 00 €
Effective Time 2.280s S
Spin Time 7 18.660s & 018
nbala % 17.3195 1 £
0s 3004 =
: 13425
Overhead Time ”: 0.480s 200
Total Thread Count 64
sed Tir 0s 100
OpenMP Analysis. Collection Time : 1.037 0

Serial Time (outside parallel regions) : 0.733s (70.7%) &
Top Serial Hotspots (outside parallel regions)

Parallel Region Time : 0.304s (29.3%) Duration Type (sec)

Top Hotspots

CPU Usage Histogram Lots of spin time indicate issues with load balance and
This histogram displays a percentage of the wall time the specific number of GPUS were running simutaneously. Spin and Overhead time adds to the Idie CPU usage B .
synchronization
1000ms g8l sl
- 3 Given the short OpenMP region duration it is likely we do not
o g have sufficient work per thread
400ms. |
|
200ms !
o .- . i Let's look a the timeline for each thread to understand things

0 50 100 150 200 250 bette r..

Simultaneously Utized Logical CPUs

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Bottom-up Hotspots view

& Basic Hotspots Hotspots by CPU Usage viewpoint (change) @

B Collection Log @ Analysis Target A Analysis Type & Summary & Bottom-up &3 Caller/Callee & Top-down Tree ' Platform [GSimulation...

Grouping:| Module | Function | Call Stack Y[x)alfw]l[crumme]

Viewing * 1of 1 + selected stack

CPU Time ¥

Module / Function / Call Stack Effective Time by Ulitzation E s »| Module 100.0% (2 260s ofzzaos)
Wide @Foor BOk Bideal @Over | OPnTMe | OverheadTime nbody xIGSir ,
» libiomp5 so 0s 186&05 0.320s ; libiomp5.sol[
¥ nbody.x 2.260s _ 0.160s libiomp5 sol|
» GSimulation: startSomp3Sparallel_forg 2.260s 0s | nbody.x GSimulation: startSompSpatfiylstls FRLE
» GSimulation:start (3 0.160s nbodyx GSimulation:start(void) nbodyxh. ai
» [Unknown] 5 I 0s)s nbody x!_start+0x28 - stat $:118
> < >
O + e o 0s 01s 02s Ruler Area:
¥ OMP Master Thread #0 (TID. : Region Instance
MP -
£ OMP Worker Thread #60 (T [0 7 OpenMP Barrier.

to-Bammer Segment
OMP Worker Thread #56 (T).

OMP Worker Thread #50 (T1
OMP Worker Thread #55 (T
OMP Worker Thread #54 (T,
OMP Worker Thread #49 (T
OMP Worker Thread #58 (T [
OMP Worker Thread #59 (Tl
OMP Worker Thread #61 (T
OMP Worker Thread #52 (T,
OMP Worker Thread #41 (Tl
OMP Worker Thread #47 (T [
OMP Worker Thread #35 (T,
OMP Worker Thread #39 (T v

[Thread]
I Running

4 CPU Time

i Spin and Overhea
[0 *® CPUSample

[] CPU Usage

FILTER 1000% 5 | [AnyProcess | Thiead | any Trread ~ || Any Module [Any Utiizatio ~ [S| Only user funcions || Show iniine functic + [Functions only

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

There is not enough work per
thread in this particular example.

Double click on line to access
source and assembly.

Notice the filtering options at the
bottom, which allow customization
of this view.

Next steps would include
additional analysis to continue the
optimization process.

& Intel VTune Amplifier — O *

S B» = @ Welcome amplxe_distress__2019-04-10-20-23

ﬁ Hotspots Hotspots by CPU Utilization ~ & INTEI. VTUNE AMPI.IFIER 2["9
Analysis Configuration Collection Log Summary Bottom-up gCaller/Callee Top-down Tree Platform
» o]

Grouping:! Function / Call Stack

Function/ Call Stack CPUTIme ¥ ”| Module | Function (Full) Source File | Start Address | =
vdpowr_ 18.664s libmkl_intel_Ip64.so vdpowr_ 0x695310
aa 10.495s | distress aa aux.fo0 Ox41ecic
aa 9.674s distress aa aux.fo0 Ox41ecBa
invariants 9.055s distress invariants aux.fo0 0x41d550
_ libm_csqrt_ex 7.792s libimf.so __libm_csqrt_ex 0xc7a50
spinoru 7.779s distress spinoru aux.fo0 0x41e9e0
ktjet 7.137s distress ktjet analysis.f90 0x420ae0
__svml_log8_mask_b3 6.056s distress _svml_log8_mask_b3 0x532f50
breit2lab 2.096s distress breit2lab PS.f90 0x4602d0
getljet 1.857s distress getljet analysis.f90 0x421830
me0_qglglgg 1.814s distress me0_qglglgg amplitudes.f90 0x4408d0
__libm_acos_I9 1.688s libimf.so __libm_acos_I9 Oxedd8o
analyzejet 1.658s | distress analyzejet analysis.f90 0x422050
ds_qgl_s_nnlo_qcd_g 1.605s | distress ds_qgl_s_nnlo_gcd_g sub.f90 0x4694e0
csart 1.384s | libimf.so csart 0x1d430 v
o+ S s e s R | B (Ted 7]
E] uCPU Time

W Spin and Overhead
] @ CPU Sample

CPU Utilization
WCPU Time
#Spin and Overhead -..

m CPU Utilization

oRAS FILTER 100.0% X | |AI’WPI'OCESSV| |AnyThread V| |AnyM0duIe V| |AnyUtiIizatMV‘ | |Userfunction5+1 V| ‘Showinlinefunct\/‘ |Fum:ti0n50n|y

*Other nan

@ Intel WVTune Amplifier
A =

Hotspots Hotspots by CPU Utilization ~ @

= &+ P Welcome

Analysis Configuration Coll Summary

Bottom-up

amplxe_distress__2019-04-10-20-23

Caller/Callee

Top-down Tree Platform

O X

INTEL VTUNEAMPLIFIER-ZI]IEI
NS/

Grouping:! Function / Call Stack

CPUTime ¥ (2

Function / Call Stack

aa

_ libm_csqrt_ex
spinoru

ktjet
__svml_log8_mask_b3
breit2lab

getljet

me0_qglglgg
__libm_acos_I9
analyzejet
ds_qgl_s_nnlo_qcd_g
csart

20s

O+

distress (TID: 55598)

Thread

distress

distress
distress
distress
distress
distress
distress
libimf.so
distress
distress
libimf so

40s

Module
13.1% | libmkKI_intel_Ip64.so

| vdpowr_

Function (Full) Start Address
| 0x695310
Oxd1ecic

Ox41ec9a

Source File

__libm_csqrt_ex 0xc7a50
spinoru aux.fo0 0x41e9e0
ktjet analysis.f90 0x420ae0
_svml_log8_mask_b3 0x532f50
breit2lab PS.f90 0x4602d0
getljet analysis.f90 0x421830
me0_qglglgg amplitudes.f90 0x4408d0
__libm_acos_I9 Oxedd80
analyzejet analysis.f90 0x422050
ds_qgl_s_nnlo_gcd_g sub.f90 0x4654e0
csart Ox1d430
60s 80s 100s 120s 140s

[Optimi;

Copyright ¢
*Other nan

CPU Utilization

H[x]o]f~]

[Thread
[ERunning
WuCPU Time
W Spin and Overhead
] @ CPU Sample

CPU Utilization
WCPU Time
#Spin and Overhead -..

FILTER 100.0%

x® | |Any PIOEESSV| |AnyThlead

V| |Any Module

V| |Any Utilizati: V‘ | |USEI functions + 1 V| EShow inline funct V‘ | Functions only

& Intel VTune Amplifier — O *

= B» = @ Welcome amplxe_distress__2019-04-10-20-23 = i
Hotspots Hotspots by CPU Utilization ~ & INTEI.VT“NE AMPI.IFIER 2["9

Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform

Grouping:! Source Function / Function / Call Stack - | @
-~

Source Function / Function / Call Stack CPUTime ¥ | Module Function (Full) | Source File Start Address

» aa 14.2% aa aux.f90 0

vdpowr_ 13.1% vdpowr_ 0

invariants 6.4% invariants aux.fa0 0

__libm_csqrt_ex 5.5% __libm_csqrt_ex 0

spinoru 5.5% spinoru aux.f90 0

ktjet 5.0% ktjet analysis.f90 0

__svml_log8_mask_b3 4.3% __svml_log8_mask_b3 0

subqcd 3.2% subqcd amplitudes.f90 0

breit2lab 1.6% breit2lab PS.f90 0

hamp_glglqgb_1 1.4% hamp_glglggb_1 amplitudes.f30 0

getljet 1.3% getljet analysis.f90 0

me0_qlglgg 1.3% me0_qldlgg amplitudes.f30 0

__libm_acos_I9 1.2% __libm_acos_I9 0

analyzejet 1.2% analyzejet analysis.f90 0

hamp alaloob 2 1.1% hamp alaloab 2 amplitudes_f30 0 v

o+ oo e M e Mt s 4 [l [T -

E waCPU Time

W Spin and Overhead
] @ CPU Sample

CPU Utilization
WCPU Time
#Spin and Overhead -..

m CPU Utilization

oRAS FILTER 100.0% ® | |AI’WPI’OCESSV| |AnyThread V| |AnyM0duIe V| |AnyUtiIizatMV‘ | |Userfunction5+1 V| EShowinIinefunCEv Functions only

*Other nan

Intel VTune Amplifier — O *

=k A B = D Welcome x|

Bottom-up

Grouping:| Source Function / Function / Call Stack v|@
-~

Source Function / Function / Call Stack CPUTme ¥ » | Module Function (Full) Source File Start Address
27.5% spinoru aux.fa0

0
» invariants 9.0% invariants aux.f90 0
I+ getpdfs 8.3% getpdfs fitpdf.f90 0
I ktjet 6.9% ktjet analysis.f90 0
» me0_qglglgg 6.1% me0_glglgg amplitudes.f90 0
b __svmi_log8_mask_b3 5.9% __svml_log8_mask_b3 0
I breit2lab 2.5% breit2lab PS.f90 0]
I dli2 2.4% dii2 lis.f90 0 i
) getljet 1.8% getljet analysis.f90 0
) analyzejet 1.6% analyzejet analysis.f90 0
»» me0_glglggb_f3 1.6% me0_glglggb_f3 amplitudes.f30 0
I ds_gl_s_nnlo_gecd_g 1.6% ds_gl_s_nnlo_gcd_g sub.f90 0
» me0_glglgqgb_f4 1.3% me0_qglqglggb_f4 amplitudes.f90 0
I ps4 1.3% ps4 PS.f90 0
» for costr 1.3% for costr 0 v
< > [€ >
O:d = & 0s 20s 40s 60s 80s 100s 120s 1405 [Thread ml
T distress (TID: 55598) [ERunning
‘E wuCPU Time

W Spin and Overhead
[] @ CPU Sample

CPU Utilization
WCPU Time
MSpin and Overhead -

CPU Utilization

Copyright ¢ v Any Thread ~| | [98.9%] distres: | | Any Utilizatic ~ Userfunctions + 1 ~| | Hide inline functic ~

nteI' ' 47
—

& Intel VTune Amplifier — O *
Sl N S A = Welcome amplxe_distress__2019-04-10-20-23 » =
Hotspots Hotspots by CPU Utilization ~ @ INTELVTUNE AMPLIFIER2019
Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform aux.f80 x aux. yr - //
Grouping:| Source Function / Function / Call Stack v|@
Source Function / Function / Call Stack CPUTime ¥ | Module Function (Full) Saource File Start Address =
[Loop at line 264 in spinoru] 23.8% [Loop at line 264 in spinoru] aux.fe0 0
[Loop at line 141 in nnlobeami] 19.3% [Loop at line 141 in nnlobeami] beamintegrand.f80 0
[Loop at line 2499 in dxsec_gl_nnlor] 11.1% [Loop at line 2489 in dxsec_gl_nnlor] xsec.f80 0
[Loop at line 112 in vegas] 10.6% [Loop at line 112 in vegas] vegas.f90 0
[Loop at line 2750 in dxsec_gl_nnlov_a] 3.2% [Loop at line 2750 in dxsec_gl_nnlov_a] xsec.f80 0
[Loop at line 60 in ktjet] 3.1% [Loop at line 60 in ktjet] analysis.f90 0
[Loop at line 1778 in ds_gl_s_nnlo_gcd_g 2.9% [Loop at line 1778 in ds_gl_s_nnlo_gcd_g] sub.f90 0
[Loop at line 181 in invariants] 2.6% [Loop at line 181 in invariants] aux.fe0 0
[Loop at line 180 in invariants] 2.1% [Loop at line 180 in invariants] aux.f30 0
[Loop at line 2055 in ds_gl_s_nnlo_gecd_fi 2.0% [Loop at line 2055 in ds_ql_s_nnlo_gcd_f2] sub.f90 0
[Loop at line 43 in ktjet] 2.0% [Loop at line 43 in ktjet] analysis.f90 0
[Loop at line 1986 in ds_gl_s_nnlo_qgcd_f 1.8% [Loop at line 1986 in ds_gl_s_nnlo_gcd_f1] sub.f90 0
[Loop at line 1882 in ds_gl_s_nnlo_qcd_g 1.8% [Loop at line 1882 in ds_ql_s_nnlo_gcd_g] sub.f90 0
[Loop at line 1846 in ds_gl_s_nnlo_qcd_g 1.8% [Loop at line 1846 in ds_ql_s_nnlo_gcd_g] sub.f90 0
[Looo at line 1812 inds al s nnlo acd a 1.7% [Loop at line 1812 inds al s nnlo acd al sub f90 0 v
< >
O: &4 [0s] 20s 40s 60s 80s 100s 120s 140s [Thread .y
T distress (TID- 55598) [ERunning
E WaCPU Time
Spin and Overhead
[] @ CPU Sample
CPU Utilization
#CPU Time
#Spin and Overhead -..

CPU Utilization

[Optimi;

Copyright ¢

FILTER 0 98.9%

*Other nan

% | ‘Any P[OCESSV| ‘AnyThlead

~| 1198.9%] distres: | | Any Utilizatic ~ | | | User functions + 1

V‘ ‘Showinlinefuncli V| |L00psonty

& Intel VTune Amplifier — O *

= %3 b & BB @ | Welcome Kress 2019-04-10-20-23 =
. Hotspots Hotspots by CPU Utilization ~ INTEI.VT“NEAMPI.IFIERZ["B

Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform aux.f90 x W /
Grouping:| Call Stack HE.

Function Stack CPU Time Total ¥ /| CPU Time: Seff > Module | Function (Full) | SourceFile | StartAddress |
Total 100.0% Os
[Outside any loop] 99.9% 0.020s [Outside any loop] 0
[Loop at line 100 in vegas] 99.6% Os | distress [Loop at line 100 in vegas] vegas.f90 0x4162c8
[Loop at line 112 in vegas] 99.6% 1.531s distress [Loop at line 112 in vegas] vegas.f90 0x416641
[Loop at line 112 in vegas] 98.2% 13.427s distress [Loop at line 112 in vegas] vegas.f90 0x4166f1
[Loop at line 2489 in dxsec_gl_ 36.9% 15.606s distress [Loop at line 2499 in dxsec_gl... xsec.f90 0x49ba17
[Loop at line 263 in spinoru] 24.2% 1.422s distress [Loop at line 263 in spinoru] aux.fo0 O0x41ecd6
. 32.939s| distress [Loop at line 264 in spinoru] i Oxd1edcf
[Loop at line 258 in spinoru] 1.1% 0.498s distress [Loop at line 258 in spinoru] aux.fo0 Ox41ea94
[Loop at line 260 in spinoru] 0.4% 0.324s distress [Loop at line 260 in spinoru] aux.fo0 Ox41ec41
[Loop at line 2487 in LHAPD 0.1% 0.048s libLHAPDF.s0 [Loop at line 2487 in LHAPDF:... stl_algo.h 0x669¢9
[Loop at line 1169 in LHAPD 0.1% 0.036s libLHAPDF.s0 [Loop at line 1169 in LHAPDF:... stl_tree.h 0x66960
[Loop at line 139 in nnlobeami] 19.1% Os | distress [Loop at line 139 in nnlobeami] beaminteg... 0x4310f9
[Loop at line 43 in ktjet] 6.4% 2.808s distress [Loop at line 43 in ktjet] analysis.f90 | 0x420c70
. [Loob at line 2750 in dxsec u)l 3.8% 4.494s | distress [Loob at line 2750 in dxsec al... |xsec.f90 0x49d2b2 v
O: Os 20s 40s 60s 80s 100s 120s 140s |Thread -
§ distress (TID: 55598) [ERunning
E waCPU Time

W Spin and Overhead
] @ CPU Sample

CPU Utilization
WCPU Time
#Spin and Overhead -..

m CPU Utilization

oRAS FILTER 100.0% x® | |AnyPlocess V| |AnyThread V| ‘Anyl'vlodule V| |AnyUliIizalitV| | |U5&lfuncli0ns+1 V| |Showin|inefuncliV| |L00p50nty V‘ s

*Other nan

CPU Utilization

Optim

m e VTR A - — O *
S B = Welcome amplxe_distress__2019-04-10-20-23 =
[l Hotspots Hotspots by CPU Utiization + @ INTELVTUNE AMPLIFIER 2019
Analysis Configur HPC Performance Characterization ottom-up Caller/Callee Top-down Tree Platform aux.f90 x aux.fa0 x

Grouping:| Call Sta Hotspots by CPU Utilization |V |@D

. . al ¥ *»| CPUTime: Self » Module ‘ Function (Full) | Source File Start Address | =
Total Threading Efficiency 100.0% 0s
[Outside any loop] [99.9% 0.020s [Outside any loop] 0
[Loop at line 100 in vegas] 99.6% Os | distress [Loop at line 100 in vegas] vegas.fo0 0x4162c8
[Loop at line 112 in vegas] 99.6% 1.531s | distress [Loop at line 112 in vegas] vegas.fo0 0x416641
[Loop at line 112 in vegas] 98.2% 13.427s | distress [Loop at line 112 in vegas] vegas.fo0 0x4166f1
[Loop at line 2489 in dxsec_gl_ 36.9% 15.606s | distress [Loop at line 2499 in dxsec_gl... xsec.f90 0x49ba17
[Loop at line 263 in spinoru] 24.2% 1.422s distress [Loop at line 263 in spinoru] aux.fo0 O0x41ecd6
[Loop at line 264 in spinor| 23.2% 32.939s distress [Loop at line 264 in spinoru] aux.fo0 0x41edcf
[Loop at line 258 in spinoru] 1.1% 0.498s distress [Loop at line 258 in spinoru] aux.fo0 Ox41ea94
[Loop at line 260 in spinoru] 0.4% 0.324s distress [Loop at line 260 in spinoru] aux.fo0 Ox41ec41
[Loop at line 2487 in LHAPD 0.1% 0.048s libLHAPDF.s0 [Loop at line 2487 in LHAPDF:... stl_algo.h 0x669¢9
[Loop at line 1169 in LHAPD 0.1% 0.036s libLHAPDF.s0 [Loop at line 1169 in LHAPDF:... stl_tree.h 0x66960
[Loop at line 139 in nnlobeami] 19.1% Os | distress [Loop at line 139 in nnlobeami] beaminteg... 0x4310f9
[Loop at line 43 in ktjet] 6.4% 2.808s distress [Loop at line 43 in ktjet] analysis.f90 | 0x420c70

. [Loob at line 2750 in dxsec u)l 3.8% 4.494s | distress [Loob at line 2750 in dxsec al... |xsec.f90 0x49d2b2 v

o+ S A e e e P [Thead -

E waCPU Time

W Spin and Overhead
[] @ CPU Sample
CPU Utilization
#CPU Time
#Spin and Overhead -..

Copyright

FILTER 100.0%

*Other nan

® | |AnyPr0cess V| |AnyThread

~ | ‘ Any Module

V| |Any Utilizatic V| | | User functions + 1

V| |Sh0wm|mefunctiV| |L00p50ﬂ|y

Intel VTune Amplifier@jlselogini

SR A S| =

AT

Welcome »

Grouping:| Function / Call Stack

rooohpc

INTELVTUNE AN

Al

IPLIFIER

Function / Call Stack

bicub_interpoll_aio_vec

» bicub_interpol2_aio_vec
» efield_gk_elec2_vec

» derivs_elec_vec

» field_following_pos2_vec
) i_interpol_ider0_aio_vec
) field_vec

» derivs_single_with_e_ele
» fld_vec_modulefield_folla
» bvec_interpol_vec
» pushe_single_vec

I | 'irernnl ider0 aio vec

CPU
Time

O: dp = r xr0s

Bottom-up
¥| CPlRate Front-End Bound Bad Speculation

8% 09 15.2% 9

1% 1.488 36.4% 0.9%
9% 1.850 29.2% 1.0%
1% 2.241 57.9% 0.2%
7% 0.969 43.6% 1.8%
3% 1.896 12.0% 0.0%
8% 2.413 57.1% 0.0%
0% 1.734 55.5% 0.0%
0% 1.189 34.9% 6.7%
9% 1.131 38.8% 0.0%
3% 1.943 43.9% 1.5%

OMP Master Thread #0 (...

Thread

OMP Worker Thread #1 (..

OMP Worker Thread #2 (..

OMP Worker Thread #3 (..

OMP Worker Thread #17 .

OMP Worker Thread #55 .

OMP Worker Thread #52 .

CPU Time

v

%

paused

. Any Thread v

Back-End Bound

Memory Latency Mer
L1 Hit Rate L2 Hit Rate L2 Hit Bound L2 Miss Bound UTLB Overhead Split Loads
97.9¢ 00.0¢9 :
97.8% 100.0% 7.2% 0.0% 0.3% 0.0%
85.2% 100.0% 31.0% 0.0% 2.7% 0.0%
86.2% 100.0% 28.7% 0.0% 0.3% 0.0%| {
94.3% 100.0% 33.3% 0.0% 0.2% 0.0%|
89.5% 100.0% 11.8% 0.0% 0.5% 0.0%
89.9% 100.0% 23.6% 0.0% 0.0% 0.0%
88.5% 100.0% 34.4% 0.0% 0.8% 0.0%
74.0% 100.0% 73.0% 0.0% 0.9% 0.0%
91.2% 100.0% 36.2% 0.0% 0.0% 0.0%
71.3% 100.0% 54.7% 0.0% 1.1% 5.1%
< o 0.0% 0.0% 1.4% 0.0%
183.876s |200s ¥ [Thread v
[« [Running
| waCPU Time
¥ CPU Time
#aCPU Time

Any Module ¥

. | Functions only v | | Show inline functions | I

Viewing the result

* Textfile reports:
« amplxe-cl -help report How do | create a text report?
« amplxe-cl -help report hotspots What can | change
* amplxe-cl -R hotspots -r./res_dir -column=? Which columns are available?

* Ex: Report top 5% of loops, Total time and L2 Cache hit rates
« amplxe-cl -R hotspots -loops-only
-limit=5 -column="L2_CACHE_HIT, Time Self (%)"
* Vtune GUI
* unset LD _PRELOAD; amplxe-gui

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

Poor Cache Utilization?

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of oth

Using result path '/gpfs/jlse-f pvelesko/nbody-demo/ver5/amplxe_knl_nodiv_60k"
ecuting actions 75 % Generating a report El d Time

Tlocktick: 5,093,000,00

Instructions Retired: 342,199,000,000

CPI Rate: 1.184

MUX Reliability

" Front-End Bound of pipeline slots
ITLB Overhead: 0. f Clocktic
BACLEARS: 0.1% 1
M5 Entry
ache Line Fetch: 1.0% of Clockticks
ad Speculation: 0.2% of Pipeline Slots

Branch Mppredl:t 0. f Clockticks
SMC Machine 0 Clockti
MO Machine
ack-End Bound
A significant proportion of pipeline slots are remaining empty. Whe
operations take too long in the back-end, they introduce bubbles in ths
pipeline that ultimatel e fewer pipeline slots containing useful
work to be retired per vc'\e than the machine capable of supporting.
This opportunity cost results in slower execution.
operations like divides and memory operations can cause this, as
H H many operatlons being directed to a single execution port (for ex
General Exploration Microarchitecture R) EoEl TS BT 2 (T8 (] i GoeL e e

execution unit can support).

Memory Latency
. " - . L1 Hit Rate: 66.2%
Analysm Conngurancn Collection ch Summa The L1 cache is the first, and shortest-latency, level in the
memory hierarchy. This metric provides the ratioc of demand load
ts that hit the L1 cache to the total number of demand load

Srouping: Function / Call Stack

Hit Rate: 08.8%
Hlt Bound: 100.0% of Clockticks
ue: A significant poertion of cycles is being spent on d.

Function / Call Stack Tolches they mise The U1 bot hit the L2. This serre includ] SDECU'ZItiOI'I Back-End Bound Hetirinq
! coherence penalties for shared data.
GSimulation::start 0.1% 41.3% 58.6%
re indicated as likely
der the performance

apic_timer_interrupt tuning applicable to an L2 mi reduce the data 4

working set size, improve data access locality s locking
or partitioning your working set 2 into the L1,

native_write_msr_safe St s e pree
2. Consider using software prefetchers

interfere with normal loads, potenti
1 L ure on the memory

. - - Bound: 36.2% of Clockticks
ue: A high number of CPU cycles is being
load misses to be serviced.

Grouping: Function / Call Stack

Tips:

1. Reduce the data working set si ta access
locality, blocking and consuming that fit into the
L2, or better exploit hardware prefetchers.

Function / Call Stack 2. Consider using softuar prefetchers but that they can Me mory Latency
: 5 e

ency by interfering with normal 1
th m. . .
o on e e L2 Hit Bound L2 Miss Bound UTLB Overhead |

mpute-to-L1 Acc

mpute-to-L2 Access Rat
o metric provides the ratio of SIMD compute instructions to R e et B
| the total number of memory loads that hit the L2 cache. on this
lanic navt Aaadlina | platform, it is that this ratio is large to ensure

| efficient usage of compute resources.

0%
of Clocktic

Loads Blocked by Store Forwarding: 0.0%
Retiring: 42.1% of Pipeline Slots

Optimization Notice GEU L 2 g .)
el intel) 54

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others. Total Th:ﬁd

Memory Performance

;L= on; 144)

ume_aligned(particl

igned(particl

1gned(particl

ligned(particl

1gned(particl

1gned(particl alignment);
ume_aligned(particl S @lignment) ;

particl
particl
particl

;] < n; 3++)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Maximum N before we lose caching?
KNL L1-32kB L2-1MB (1 tile/2cores)
32k/(4*4) = 2k (L1)

TMB/(7*4) = 35.7k(L2)

GFLOPsvs N

80
70
60
50
40
30
20
10

1000
1500
2000
2500
30000
35000
40000
50000
60000

65000

Microarchitecture Exploration - Caches

L1 Hit% 100% 63.9%
L2 Hit% 0% 100%
L2 Hit 0% 100%
Bound %

L2 Miss 0% 0%
Bound %

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

62.4% 48.5% 57.5% 60.2%
100% 100% 99.2% 98.8%
100% 100% 100% 100%
0% 0% 28.6% 36.2%

PROFILING PYTHON & ML APPLICATIONS

Python

Profiling Python is straightforward in VTune™ Amplifier, as long as one does the
following:

= The "application” should be the full path to the python interpreter used

= The python code should be passed as “arguments” to the “application”

In Theta this would look like this:

aprun -n 1 -N 1 amplxe-cl -c hotspots -r res dir \
-- /usr/bin/python3 mycode.py myarguments

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Simple Python Example on Theta

aprun -n 1 -N 1 amplxe-cl -c hotspots -r vt pytest \
-- /usr/bin/python ./cov.py naive 100 1000

SiBasic Hotepots| HORpots by CPU Usage viewpomt (hange) [0 INTELVTUNE AMPLIFIER 2018
N

7 B coliectionLog O Analysis Target A Analysis Type i Summary &3 Bottom-up & Caller/Callee @ Top-down Tree - Platform [covpy

S S—— Naive implementation of the
~calculation of a covariance matrix

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Function Module CPU Time

covpy 13533
<genexpr: covpy 91.587s
i — el Summaryv shows:
[Unknow frame(s)] 1260s -
madue covpy 05885
. .
CPU Usage Histogram = Single thread execution
This histogram displays a percentage of the walltime the sy of GPUs were running Spinand 0 tothe Idle CPU usage value.
s 3
200s 4 £ g B!
EE 5! - H H 1} H n
e 52 3 op Ttunction IS nalve
& el
§ I
100s4 < |
i
I
505 I
|
i

| . ; i i Click on top function to go to Bottom-
: = up view

Simultaneously Utiized Logical CPUs

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Bottom-up View and Source Code

Inefficient array multiplication found quickly
We could use numpy to improve on this

& Basic Hotspots Hotspots by CPU Usage viewpoint (change) © I ER2018
 ElCollectionLog @ Analysis Target A Analysis Type & Summary & 8ottom-up & Caller/Callee & Top-down Tree ' Platform [3 cov.py - /7/ L3
Grouping.| Module / Function / Call Stack Y[l |}[cPuTime |
CPU Time ¥ A | Viewing « 10f1 + selected stack(s)
Module / Function / Call Stack > Module 100.0% (1124735 of 112 473s)
0i0e O5om Ok Bea v | SPTme. | Overod Time P ——
v covpy 2037285 2280s 0s covpylmain+0x42 - covpy:200
¥ naive 111.873s 1660s 0s covpy naive(fullArray) covpyl<module>+0x221 - covpy.
v main 110.833s (NS 1.660s 0s covpy main() python2.7!_stari+0x28 - [unknow.
1108135 | 16605 05 | covpy <modue>
» B main — <module> — _star S covpy main()
» M naive — main — <module> | 1.040s 0s 0Os covpy naive(fullAray)
» <genexpr> 90.967s (NS 06205 0s covpy naive@<genexpr>:
» <module> 0.588s 0s 0s covpy <module>
» main 0.300s 0s 0s covpy main()
» [Unknown) 2720s | 0s 0s
» libc-dynamic so 132 s
» python2.7
» libpinddwarf so
~ trackdanc cn o-¢
< >ll¢ >
O: + 0s 505 100s 1505 200s) [Theead
£] #aCPUTime
[2] #a Spin and Overhead Ti
O ® cPu sample

&l Basic Hotspots Hotspots by CPU Usage viewpoint (change) @
7 EJCollectionLog D Analysis Target A Analysis Type & Summary @& Bottom-up & Caller/Callee @ Top-down Tree ‘=

Assembly “ % | % Q| Assembly grouping: Function Range / Basic Block | Address
CPU Time:
Sou. Source Etfective Time by Utili
Line y Utili
| @idie @Poor DOk W 1de:
59
60 # calculate norm arrays and populate norm arrays dict
61 for i in range (numCols):
62 normArrays.append (np.zeros ((numRows, 1), dtype=float))
63 for § in range (numRows) : |
64 normArrays (i) [§]=fullArray(:, i](3]-np.mean(fullrray(:, i 6.3%[
65
66
67 # calculate covariance and populate resulta array
68 for i in range {numCols):
69 for j in range (numCols): |
70 result[i,j] = sum(p*g for p,q in zip(
7 normArrays(i],nommirrays[j]))/ (numRows)
72
73 end = time.time()
74 print ('overall runtime = ' 4 str(end - start))

Note that for mixed Python/C code a Top-Down view can often be helpful to drill down into the C kernels

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

INTEL" UTUNE APPLICATION PERFORMANCE
SNAPSHOT

you fingertips

VTune™ Amplifier's Application Performance
Snapshot

High-level overview of application performance

= |dentify primary optimization areas

= Recommend next steps in analysis

= Extremely easy to use

» Informative, actionable data in clean HTML report

= Detailed reports available via command line

= |ow overhead, high scalability

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Usage on Theta

Launch all profiling jobs from /projects rather than /home
No module available, so setup the environment manually:
S module load vtune
$ export PMI NO FORK=1
Launch your job in interactive or batch mode:
$ aprun -N <ppn> -n <totRanks> [affinity opts] aps ./exe
Produce text and html reports:

$ aprun -report ./aps result ...

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

APS HTML Report

Application: heart_demo
Report creation date: 2017-08-07 12:08:48

Nmber of renks: 144 Your application is MPI bound.

anks per node:

Opgn,\fpm,eads per rank: 2 This may be caused by high busy wait time inside the library (imbalance), nen-
HW Platform: Intel(R) Xeen(R) Processor code named Broadwell-EP optimal communication schema or MPI library settings. Use MPI profiling toals

Logical Core Count per node: 72 like [ntel® Trace Analyzer and Collector to explore performance bottlenecks.

121.39s BT

MPI Time 5374%K <10% | —
Elapsed Time OpenMP Imbalance 043% <10%

14.70% <20%

0.30%K >50%
0.00% <10%

50.98 0.68

SPFLOPS

MPI Time Stalls
53.74%N of Elapsed Time 0.43% of Elapsed Time 14.70% of pipeline slots
65.235, 0.52s
(65.235) (0529 Cache Stalls SBFLOPS per.Cycle

MPLImbalance 12.84% of cycles 0.08 Out of 32.00

11.03% of Elapsed Time

(19,59 5 b : DRAM Stalls Vector Capacity Usage

: i Resident: 0.18% of cycles 25.84%K
TOP 5 MPI Functions % Per node:
Waitall 37.35 Peak. 786.96 MB ;‘1‘%’; — FP Instruction Mix
. .79% of remote accesses 9

Herd o Average: 687.49 MB d % of Packed FP |

- Per rank:
Barrier 5.52 Peak: 127.62 MB
Irecy 3.70 Average: 38.19 MB

Virtual: . .
Scatterv 0.00 P Arith/Mem Rd Instr. Ratio
Per node: 0.07R
Peak: 9173.34 MB
_| /OBOU n d Averag.e: 9064.92 MB
Per rank:

0.00%

Peak; 566.52 MB

(AVG 0.00, PEAK 0.00) Average: 50361 MR

Optimiza

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

COMMON ISSUES

Fixes

No call stack information/unknown stack frame
» Check finalization log
= Make sure Vtune finds your binary along with libraries that you call
Incompatible database scheme when trying to open result in GUI
= Make sure your local Vtune is the same version or newer
Vtune sampling driver.. using perf or errors mentioning PMU Resources

* Notify support@alcf.anl.gov or me pvelesko@anl.gov

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

TIPS AND TRICKS

Speeding up finalization

Advisor Vtune

add "--no-auto-finalize " to the aprun add "--finalization-mode=none" to aprun
followed by "advixe-cl R survey ...” without followed by "amplxe-cl -R hotspots..."
aprun will cause to finalize on the without aprun will cause to finalize on
momnode rather than KNL. momnode rather than KNL

You can also finalize on thetalogin: You can also finalize on thetalogin:

cd your_src_dir; cd your_src_dir;

export SRCDIR="pwd | xargs realpath’ export SRCDIR="pwd | xargs realpath’
advixe-cl -R survey --search-dir amplxe-cl -R hotspots --search-dir
src:=${SRCDIR} .. src:=${SRCDIR} ..

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Managing overheads

Advisor Dependencies and MAP analyses can have huge overheads

If able, run on reduced problem size. Advisor just needs to figure out the
execution flow.

Only analyze loops/functions of interest:

https://software.intel.com/en-us/advisor-user-guide-mark-up-loops

Optimization Notice

Copyright © 2018, Intel C
*Other names and brands

https://software.intel.com/en-us/advisor-user-guide-mark-up-loops

When do | use Vtune vs Advisor?

Vtune

What's my cache hit ratio?

Which loop/function is consuming
most time overall? (bottom-up)

Am | stalling often? IPC?
Am | keeping all the threads busy?
Am | hitting remote NUMA?

When do | maximize my BW?

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Advisor

Which vector ISA am | using?

Flow of execution (callstacks)

What is my vectorization efficiency?
Can | safely force vectorization?
Inlining? Data type conversions?

Roofline

BACKUP

VTune Cheat Sheet

Compile with —g —-dynamic

amplxe-cl —-c hpc-performance -flags -- ./executable
* -—-result-dir=./vtune output dir
e --search-dir src:=../src --search-dir bin:=./

* -knob enable-stack-collection=true —-knob collect-memory-
bandwidth=false

* -knob analyze-openmp=true

* —finalization-mode=deferred i1if finalization 1is taking too long on KNL
* -data-limit=125 < in mb

* -—trace-mpi for MPI metrics on Theta

* amplxe-cl —-help collect survey

https://software.intel.com/en-us/vtune-amplifier-help-

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others. amplxe—cl—command—syntax

Advisor Cheat Sheet

Compile with —-g -dynamic

advixe-cl -c¢ roofline/depencies/map —-flags -- ./executable

—--project-dir=./advixe output dir
——search-dir src:=../src —--search-dir bin:=./

-no-auto-finalize 1f finalization is taking too long on
KNL

-—-interval 1 (sample at 1ms interval, helps for profiling
short runs)

—data-1imit=125 € in mb

advixe—-cl -help

https://software.intel.com/en-us/advisor-help-lin-

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

command-line-interface-reference

Software

