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The way of Deep neural networks
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A scalable automated machine learning (AutoML)
package for developing deep neural networks

https://github.com/deephyper/deephyper
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https://github.com/deephyper/deephyper
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The DeepHyper workflow
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The DeepHyper workflow
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Problem setup
load_data. py

Dataset

100% def Load_data():

Return Training, Validation

problem. py

Problem = HpProblem(seed=42)

Problem.add_hyperparameter(alpha, (0.0, 1.0))

=
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=
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Problem.add_starting_point(alpha=0.01)

Training Validation  Testing
60% 17%>} 33%
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Definition of metric for model selection

13

run.py

def run(configuration):
set_random_state(seed)
training, validation = lLoad_data()
model = create_model (configuration)
model.fit(training)
score = model .evaluate(validation,
objective = compute_ob jective(score)
return objective

AAAAAAAAAAAAAAAAAA



Automatic search
How to choose my search?

14
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Automatic Search
How to scale or run my search?




Best candidates selection and retraining

With the « deephyper-analytics » commande line you can
analyze the results of your search. See if the outcome is
meaningful then rank the evaluated models and select the
top-k. In the case of neural networks you can launch a
post-training procedure to train the top-k models to their
limits with a greater number of epochs for instance.
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Final model

You should not have used the « testing dataset » yet.
Evaluate the best model you have on it and you will have its
final performance.

17 Argon neA
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Good Practices (alias Zen of DeepHyper)

2. Always try it on your local machine before
running experiments at scale

3. Always try it in debug queue before running
experiments at scale

18 Argon neA
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| - General Hyperparameter Search
(HPS)

Il - Hyperparameter Search for AutoML

lIl - Neural Architecture Search
(NAS)
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General Hyperparameter Search
(HPS)
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A bilevel optimization framework

Lower-level problem: Training data

solve  minimize errp (|X 4, Xp]|;T;w)

Upper-level problem: Validation data

solve  minimize erry (|X 4, Xp|; V;w™ [ X4, Xp|)
XA, Xp

Architecture space  Hyperparameter space

" Argonne
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Bayesian optimization

=== True (unknown)
-—= u(x) . X Next sample point
Observations
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Problem example

from deephyper.problem import HpProblem

Problem = HpProblem()

Problem.add_dim("epochs", (5, 500))

Problem.add_dim("'nunits_11", (1, 1000))
Problem.add_dim("'nunits_12", (1, 1000))
Problem.add_dim("activation_11", ["relu", "elu", "selu", "tanh"])
Problem.add_dim("activation_12", ["relu", "elu", "selu", "tanh"])
Problem.add_dim("batch_size", (8, 1024))
Problem.add_dim("dropout_11", (0.0, 1.0))
Problem.add_dim("dropout_12", (0.0, 1.0))

» Argonne
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Hyperparameter Search for AutoML

AAAAAAAAAAAAAAAAAA



Problem example

import numpy as np
from deephyper.search.hps.automl.classifier import autosklearnl

def load_data():
from sklearn.datasets import load_breast_cancer

X, y = load_breast_cancer(return_X_y=True)
print(np.shape(X))

print(np.shape(y))

return X, y

run(config):
return autosklearnl.run(config, load_data)
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Custom auto-sklearn?

import ConfigSpace as cs
from deephyper.problem import HpProblem

Problem = HpProblem(seed=45)

classifier = Problem.add_hyperparameter(
name="classifier",
value=["RandomForest", "Logistic", "AdaBoost", "KNeighbors", "MLP", "SVC", "XGBoost"],

)

# n_estimators

n_estimators = Problem.add_hyperparameter(
name="n_estimators", value=(1, 2000, "log-uniform™)

),

cond_n_estimators = c¢s.0rConjunction(
cs.EqualsCondition(n_estimators, classifier, "RandomForest"),
cs.EqualsCondition(n_estimators, classifier, "AdaBoost"),

Problem.add_condition(cond_n_estimators)
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https://automl.github.io/ConfigSpace

Model selection advice

from sklearn.model_selection import Kfold : T
from deephyper.search.nas.model.preprocessing import minmaxstdscaler - Avoid |UCky flndlngs
kf = KFold(n_splits=10, random_state=472, shuffle=True)

cross_score = []

for train_index, valid_index in kf.split(X):
X_train, X_valid = X[train_index], X[valid_index] For unbalanced

y_train, y_valid = y[train_index], y[valid_index] classes

sm = SMOTE(random_state=seed, k_neighbors=smote_k_neighbors, n_jobs=4)
X_train, y_train = sm.fit_resample(X_train, y_train)

scaler = minmaxstdscaler()
X_train = scaler.fit_transform(X_train)
X_valid = scaler.transform(X_valid) Distributed

\\ .
score = model.evaluate(X_valid, metric) computation on
cross_scores.append(score) CPU

return mean(cross_scores)
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Visualize your results #1
Visual Studio Code + Rainbow CSV

classifier,C,alpha, kernel, max_depth,n_estimators,n_neighbors,gamma,objective,clapsed_sec
AdaBoost,nan,nan, V4,nan,187,nan,nan,0.96276595744L468085,= . 2721280652281 20L8
AdaBoost,nan,nan, V4,nan,19,nan,nan,0.962765957L468085,7.2702L9271392822
SvVC,0.910144037187624L,nan, /inear,nan,nan,nan,nan,0.9574468085106383,11.24L47097969055176
Logistic,0.056704L4414597599125,nan, N4, nan,nan,nan,nan,0.9574468085106383,15.79076814651L893
AdaBoost,nan,nan, N4,nan,1662,nan,nan,0.973404255319149,22 . 4L618LE97L227905
RandomForest,nan,nan, V4,6 6L,561,nan,nan,0.957L4468085106383, ¢ .97 72L594L424L50928
RandomForest,nan,nan, V4 ,15,1812,nan,nan,0.9574468085106383, - 12259791 755676
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Visualize your results #2

Visual Studio Code + SandDance
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Visualize your results #3
Visual Studio Code + SandDance
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Neural Architecture Search
(NAS)
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The NAS Search Space @

A discrete space embedded as a directed
graph where each nodes represents a

\ 4
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The NAS Search Space Input,

A discrete space embedded as a directed
graph where each nodes represents a
choice between differents operations.

Output,
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The NAS Search Space Input,

A discrete space embedded as a directed
graph where each nodes represents a
choice between differents operations.

Output,
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The NAS Search Space

A discrete space embedded as a directed
graph where each nodes represents a
choice between differents operations.

35

Input,
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The NAS Search Space

A discrete space embedded as a directed
graph where each nodes represents a
choice between differents operations.
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The NAS Search Space

A discrete space embedded as a directed |

graph where each nodes represents a
choice between differents operations. Dense(10, relu’)

A 4
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The NAS Search Space

A discrete space embedded as a directed
graph where each nodes represents a
choice between differents operations.
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The NAS Search Space

A discrete space embedded as a directed
graph where each nodes represents a
choice between differents operations.
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NAS Workflow
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Reinforcement
Learning
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Aging
Evolution
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CANcer Distributed Learning Environment

Combo

Given combination drug
screening results on NCI60
cell lines predict the growth
percentage from the cell
line molecular features and
the descriptors of both
drugs.

43

(CANDLE)

Uno

Predict tumor dose response
across multiple data sources.

NT3

Classify RNA-seq gene
expression profiles into
normal or tumor tissue
categories.
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CANcer Distributed Learning Environment
(CANDLE)

Combo Uno NT3

A2C —%— RDM A2C —%¥— RDM A2C —¥— RDM

60 120 180 240 300 360 _10 60 120 180 240 300 360 "0 60 120 180 240 300 360
time (m) time (M) time (M)

(a) Combo (b) Uno (c)NT3

Figure 4: Search trajectory showing reward over time for A3C, A2C, and RDM on the small search space
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Uno

Prédire la réponse de la tumeur au dosage
d’une molécule/médicament (eng: drug) a
partir de plusieurs données:

- Séquence ARN

- Dosage de la molécule

- Descripteur de la molécule

- Empreinte de la molécule

45

Drug d

Drug fingerprints
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Best models found

manually designed
A3C-best

manually designed
A3C-best

manually designed
A3C-best

Trainable
Parameters
Combo
13,772,001
1,883,301
Uno
19,274,001
1,670,401
NT3
96,777,878
120,968

Training
Time (s)

705.26
283.00

164.94
63.53

247.63
16.65

R? or ACC

0.926
0.93

0.649
0.729

0.986
0.989
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6.541611696775362e-09% explored
18413 unigue models

256 nodes

~50 selected
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https://deephyper.readthedocs.io/

