
ALCF Computational Performance Workshop, May 2020

1

Romain Egele
Engineering student in Computer
Science & Applied Mathematics,

specialized in Software and Artificial
Intelligence at ENSEEIHT (Toulouse,

France) & École Polytechnique (Paris)

Prasanna Balaprakash
Computer Scientist, Argonne National

Laboratory [Project Lead]

2

Stefan Wild
MCS

Venkat Vishwanath
ALCF

Misha Salim
ALCF

Romit Maulick
ALCF

Bethany Lusch
ALCF

Elise Jennings
ALCF

Tom Uram
ALCF

Taylor Childers
ALCF

Kyle Gerard Felker
ALCF

Matthieu Dorier
MCS

Team

Contributors

3

The way of Deep neural networks

Does it do well
on the training

data

Does it do well
on the testing

data
Done

Increase model
complexity

Collect more
data

NO NO Magic/Art
(60-70%)

Ng A., Challenges of Deep Learning, GTC, 2015
4

https://playground.tensorflow.org/
5

https://playground.tensorflow.org/

https://playground.tensorflow.org/
6

https://playground.tensorflow.org/

https://playground.tensorflow.org/
7

https://playground.tensorflow.org/

A scalable automated machine learning (AutoML)
package for developing deep neural networks

https://github.com/deephyper/deephyper

8

https://github.com/deephyper/deephyper

AutoML1

HPS2

NAS3

Machine
Learning

Deep
Learning

1Automated Machine Learning
2Hyperparameter Search
3Neural Architecture Search

DeepHyper

Hyperparameter
search

AMBS,
Hyperband,

DEAP, etc

Neural
architecture

search

Reinforcement,
Genetic, Random

Workflow

Balsam, Ray, MPI

9

The DeepHyper workflow

10

The DeepHyper workflow

Problem
setup

Definition
of metric
for model
selection

Automatic
search

Best candidates
are selected and

re-trained

Final model

Dataset

11

Problem setup

Training
60%

Validation
17%

Testing
33%

Dataset
100%

77%

load_data.py

def load_data():
…
Return Training, Validation

problem.py

Problem = HpProblem(seed=42)

Problem.add_hyperparameter(alpha, (0.0, 1.0))

Problem.add_starting_point(alpha=0.01)

12

Definition of metric for model selection

run.py

def run(configuration):
set_random_state(seed)
training, validation = load_data()
model = create_model(configuration)
model.fit(training)
score = model.evaluate(validation, metric)
objective = compute_objective(score)
return objective

13

Automatic search
How to choose my search?

HPS

if you have a reasonable
baseline model (NN or

scikit-learn based
models)

AutoML for scikit-learn

if you do not reasonable
baseline scikit-learn

model (such as random
forest, xgboost etc)

NAS

If you do not have a
reasonable NN model
(make sure it is NAS

compatible)

14

Automatic Search
How to scale or run my search?

How long the baseline
model run?

run the search on a single
machine such as my laptop.

run the search on a bigger
machine such as Theta or

Cooley.

AMBS

256 nodes in parallel per job is
the limit. With more nodes the

master node becomes a
bottleneck.

REGEVO

From 512 nodes in parallel the
per node utilization starts to
drop. Karger the node count

bigger the population size
should be.

PPO

1000 nodes in parallel is the
limit (Theta). Nodes and

agents should be set correctly.
Defined by the number of

nodes used by the master job.

RANDOM

find a way to discriminate
possible models in a shorter

time such as reducing the
training set size and the

number of epochs.

< 2 min.

< 20 min.

> 20 min.

15

Best candidates selection and retraining

With the « deephyper-analytics » commande line you can
analyze the results of your search. See if the outcome is

meaningful then rank the evaluated models and select the
top-k. In the case of neural networks you can launch a

post-training procedure to train the top-k models to their
limits with a greater number of epochs for instance.

16

Final model

You should not have used the « testing dataset » yet.
Evaluate the best model you have on it and you will have its

final performance.

17

Good Practices (alias Zen of DeepHyper)

1. Always have a baseline model before starting
using DeepHyper (see ”deephyper.baseline”)

2. Always try it on your local machine before
running experiments at scale

3. Always try it in debug queue before running
experiments at scale

18

I - General Hyperparameter Search
(HPS)

II - Hyperparameter Search for AutoML

III - Neural Architecture Search
(NAS)

19

I

General Hyperparameter Search
(HPS)

20

Lower-level problem: Training data

Upper-level problem: Validation data

Architecture space Hyperparameter space

21

A bilevel optimization framework

22

LCB(x,�) = µ(x)� � ⇥ �(x)

Bayesian optimization

23

Problem example

from deephyper.problem import HpProblem

Problem = HpProblem()
Problem.add_dim("epochs", (5, 500))
Problem.add_dim("nunits_l1", (1, 1000))
Problem.add_dim("nunits_l2", (1, 1000))
Problem.add_dim("activation_l1", ["relu", "elu", "selu", "tanh"])
Problem.add_dim("activation_l2", ["relu", "elu", "selu", "tanh"])
Problem.add_dim("batch_size", (8, 1024))
Problem.add_dim("dropout_l1", (0.0, 1.0))
Problem.add_dim("dropout_l2", (0.0, 1.0))

II

Hyperparameter Search for AutoML

24

25

Problem example

import numpy as np
from deephyper.search.hps.automl.classifier import autosklearn1

def load_data():
from sklearn.datasets import load_breast_cancer

X, y = load_breast_cancer(return_X_y=True)
print(np.shape(X))
print(np.shape(y))
return X, y

def run(config):
return autosklearn1.run(config, load_data)

26

Custom auto-sklearn?
import ConfigSpace as cs
from deephyper.problem import HpProblem

Problem = HpProblem(seed=45)

classifier = Problem.add_hyperparameter(
name="classifier",
value=["RandomForest", "Logistic", "AdaBoost", "KNeighbors", "MLP", "SVC", "XGBoost"],

)

n_estimators
n_estimators = Problem.add_hyperparameter(

name="n_estimators", value=(1, 2000, "log-uniform")
)

cond_n_estimators = cs.OrConjunction(
cs.EqualsCondition(n_estimators, classifier, "RandomForest"),
cs.EqualsCondition(n_estimators, classifier, "AdaBoost"),

)

Problem.add_condition(cond_n_estimators)
…

Documentation of ConfigSpace: automl.github.io/ConfigSpace

https://automl.github.io/ConfigSpace

27

Model selection advice
from sklearn.model_selection import Kfold
from deephyper.search.nas.model.preprocessing import minmaxstdscaler

kf = KFold(n_splits=10, random_state=42, shuffle=True)
cross_score = []

for train_index, valid_index in kf.split(X):
X_train, X_valid = X[train_index], X[valid_index]
y_train, y_valid = y[train_index], y[valid_index]

sm = SMOTE(random_state=seed, k_neighbors=smote_k_neighbors, n_jobs=4)
X_train, y_train = sm.fit_resample(X_train, y_train)

scaler = minmaxstdscaler()
X_train = scaler.fit_transform(X_train)
X_valid = scaler.transform(X_valid)
…
score = model.evaluate(X_valid, metric)
cross_scores.append(score)
…
return mean(cross_scores)

Avoid lucky findings

For unbalanced
classes

Distributed
computation on

CPU

28

Visualize your results #1
Visual Studio Code + Rainbow CSV

29

Visualize your results #2
Visual Studio Code + SandDance

30

Visualize your results #3
Visual Studio Code + SandDance

III

Neural Architecture Search
(NAS)

31

𝑂𝑢𝑡𝑝𝑢𝑡!

𝐼𝑛𝑝𝑢𝑡!

𝑂!!; … ; 𝑂"!
!

𝑂!#; … ; 𝑂""
#

𝑂!$; … ; 𝑂"#
$

𝑂!%; … ; 𝑂"$
%

𝑂!&; … ; 𝑂"%
&

The NAS Search Space
A discrete space embedded as a directed

graph where each nodes represents a
choice between differents operations.

32

𝑂𝑢𝑡𝑝𝑢𝑡!

𝐼𝑛𝑝𝑢𝑡!The NAS Search Space
A discrete space embedded as a directed

graph where each nodes represents a
choice between differents operations.

33

𝑂𝑢𝑡𝑝𝑢𝑡!

𝐼𝑛𝑝𝑢𝑡!

𝑫𝒆𝒏𝒔𝒆(𝟏𝟎,! 𝒓𝒆𝒍𝒖!) 1

The NAS Search Space
A discrete space embedded as a directed

graph where each nodes represents a
choice between differents operations.

34

𝑂𝑢𝑡𝑝𝑢𝑡!

𝐼𝑛𝑝𝑢𝑡!

𝐷𝑒𝑛𝑠𝑒(10,! 𝑟𝑒𝑙𝑢!)

𝑪𝒐𝒏𝒄𝒂𝒕(𝑪𝒐𝒏𝒏𝒆𝒄𝒕 𝑰𝟎, 𝑵𝟎) 0

The NAS Search Space
A discrete space embedded as a directed

graph where each nodes represents a
choice between differents operations.

35

𝑂𝑢𝑡𝑝𝑢𝑡!

𝐼𝑛𝑝𝑢𝑡!

𝐷𝑒𝑛𝑠𝑒(10,! 𝑟𝑒𝑙𝑢!)

𝐶𝑜𝑛𝑐𝑎𝑡(𝐶𝑜𝑛𝑛𝑒𝑐𝑡 𝐼", 𝑁")

𝑫𝒆𝒏𝒔𝒆(𝟓, ′𝑰𝒅′) 1

The NAS Search Space
A discrete space embedded as a directed

graph where each nodes represents a
choice between differents operations.

36

𝑂𝑢𝑡𝑝𝑢𝑡!

𝐼𝑛𝑝𝑢𝑡!

𝐷𝑒𝑛𝑠𝑒(10,! 𝑟𝑒𝑙𝑢!)

𝐶𝑜𝑛𝑐𝑎𝑡(𝐶𝑜𝑛𝑛𝑒𝑐𝑡 𝐼", 𝑁")

𝐷𝑒𝑛𝑠𝑒(5, ′𝐼𝑑′)

𝑪𝒐𝒏𝒄𝒂𝒕(𝑪𝒐𝒏𝒏𝒆𝒄𝒕 𝑵𝟎, 𝑵𝟏) 1

The NAS Search Space
A discrete space embedded as a directed

graph where each nodes represents a
choice between differents operations.

37

𝑂𝑢𝑡𝑝𝑢𝑡!

𝐼𝑛𝑝𝑢𝑡!

𝐷𝑒𝑛𝑠𝑒(10,! 𝑟𝑒𝑙𝑢!)

𝐶𝑜𝑛𝑐𝑎𝑡(𝐶𝑜𝑛𝑛𝑒𝑐𝑡 𝐼", 𝑁")

𝐷𝑒𝑛𝑠𝑒(5, ′𝐼𝑑′)

𝑰𝒅𝒆𝒏𝒕𝒊𝒕𝒚

𝐶𝑜𝑛𝑐𝑎𝑡(𝐶𝑜𝑛𝑛𝑒𝑐𝑡 𝑁", 𝑁$)

0

The NAS Search Space
A discrete space embedded as a directed

graph where each nodes represents a
choice between differents operations.

38

𝑂𝑢𝑡𝑝𝑢𝑡!

𝐼𝑛𝑝𝑢𝑡!

𝐷𝑒𝑛𝑠𝑒(10,! 𝑟𝑒𝑙𝑢!)

𝐶𝑜𝑛𝑐𝑎𝑡(𝐶𝑜𝑛𝑛𝑒𝑐𝑡 𝐼", 𝑁")

𝐷𝑒𝑛𝑠𝑒(5, ′𝐼𝑑′)

𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦

𝐶𝑜𝑛𝑐𝑎𝑡(𝐶𝑜𝑛𝑛𝑒𝑐𝑡 𝐼", 𝑁$)

Decisions Summary

1
0
1
1
0

The NAS Search Space
A discrete space embedded as a directed

graph where each nodes represents a
choice between differents operations.

39

𝑂𝑢𝑡𝑝𝑢𝑡!

𝐼𝑛𝑝𝑢𝑡!

NAS Workflow

𝑂𝑢𝑡𝑝𝑢𝑡!

𝐼𝑛𝑝𝑢𝑡!

𝐷𝑒𝑛𝑠𝑒(10,! 𝑟𝑒𝑙𝑢!)

𝐶𝑜𝑛𝑐𝑎𝑡(𝐶𝑜𝑛𝑛𝑒𝑐𝑡 𝐼", 𝑁")

𝐷𝑒𝑛𝑠𝑒(5, ′𝐼𝑑′)

𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦

𝐶𝑜𝑛𝑐𝑎𝑡(𝐶𝑜𝑛𝑛𝑒𝑐𝑡 𝑁", 𝑁$)

Decisions

Model Loading

Data Loading
• feature engineering
• pre-processing

Model Evaluation
• Training

Feedback

40

Reinforcement
Learning

41

Aging
Evolution

42

CANcer Distributed Learning Environment
(CANDLE)

Combo
Given combination drug
screening results on NCI60
cell lines predict the growth
percentage from the cell
line molecular features and
the descriptors of both
drugs.

Uno
Predict tumor dose response
across multiple data sources.

NT3
Classify RNA-seq gene
expression profiles into
normal or tumor tissue
categories.

43

CANcer Distributed Learning Environment
(CANDLE)

Combo Uno NT3

44

Cell rnaseq
input:
output:

(942,)
(942,)

Dense
input:
output:

(942,)
(1000,)

Drug descriptors
input:
output:

(2048,)
(2048,)

Dense
input:

output:
(2048,)
(1000,)

Drug fingerprints
input:
output:

(5270,)
(5270,)

Dense
input:

output:
(5270,)
(1000,)

Dose 1
input:

output:
(1,)
(1,)

Concatenate
input:
output:

[(1000,), (1,), (1000,), (1000,)]
(3001,)

Dense
input:
output:

(1000,)
(1000,)

Dense
input:
output:

(1000,)
(1000,)

Dense
input:
output:

(1000,)
(1000,)

Dense
input:
output:

(1000,)
(1000,)

Dense
input:
output:

(1000,)
(1000,)

Dense
input:

output:
(1000,)
(1000,)

Dense
input:
output:

(3001,)
(1000,)

Dense
input:
output:

(1000,)
(1000,)

Add
input:
output:

[(1000,), (1000,)]
(1000,)

Dense
input:
output:

(1000,)
(1000,)

Add
input:
output:

[(1000,), (1000,)]
(1000,)

Dense
input:
output:

(1000,)
(1,)

Uno

Prédire la réponse de la tumeur au dosage
d’une molécule/médicament (eng: drug) à
partir de plusieurs données:
- Séquence ARN
- Dosage de la molécule
- Descripteur de la molécule
- Empreinte de la molécule

45

46

Best models found

47

281474976710656 possibilities

6.541611696775362e-09% explored

18413 unique models

256 nodes

6 hours

~50 selected
48

49

DOE Early Career Research Program, ASCR

Argonne Leadership Computing Facility

Laboratory Directed Research and Development (LDRD)

Acknowledgements

Thank you!

https://deephyper.readthedocs.io

50

https://deephyper.readthedocs.io/

