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Overview



Accelerating Data Analytics + AI Solutions At Scale

Distributed, High-Performance

Deep Learning Framework 
for Apache Spark*

https://github.com/intel-analytics/bigdl

Analytics + AI Platform 

Distributed TensorFlow*, Keras*, 
PyTorch* and BigDL on Apache Spark*

https://github.com/intel-analytics/analytics-zoo

AI on 

*Other names and brands may be claimed as the property of others.

software.intel.com/bigdl
https://github.com/intel-analytics/analytics-zoo


Real-World ML/DL Applications Are 
Complex Data Analytics Pipelines

“Hidden Technical Debt in Machine Learning Systems”,
Sculley et al., Google, NIPS 2015 Paper



End-to-End Big Data Analytics and AI Pipeline

Production 
Data pipeline

Prototype on laptop
using sample data

Experiment on clusters
with history data

Production deployment w/ 
distributed data pipeline 

• “Zero” code change from laptop to distributed cluster

• Directly access production data (Hadoop/Hive/HBase) without data copy

• Easily prototype the end-to-end pipeline

• Seamlessly deployed on production big data clusters

Seamless Scaling from Laptop to Production with   



BigDL
Bringing Deep Learning To Big Data Platform

https://github.com/intel-analytics/BigDL

Spark Core

SQL SparkR Streaming

MLlib GraphX

ML Pipeline

DataFrame

https://bigdl-project.github.io/

• Distributed deep learning framework for Apache Spark

• Make deep learning more accessible to big data users
and data scientists
• Write deep learning applications as standard Spark programs
• Run on existing Spark/Hadoop clusters (no changes needed)

• Feature parity with popular deep learning frameworks
• E.g., Caffe, Torch, Tensorflow, etc.

• High performance (on CPU)
• Powered by Intel MKL and multi-threaded programming

• Efficient scale-out
• Leveraging Spark for distributed training & inference

https://github.com/intel-analytics/BigDL
https://bigdl-project.github.io/


Analytics Zoo

BERT

Recommendation

tfpark: Distributed TF on Spark

nnframes: Spark Dataframes & ML
Pipelines for Deep Learning

Distributed Keras w/ autograd on Spark

Distributed Model Serving
(batch, streaming & online)

Image Classification Object Detection

image 3D image

Transformer

text

Seq2Seq

Use case 

Model

Feature Engineering

High Level 
Pipelines

Backend/
Library

Anomaly Detection Text Classification

Time series

Text Matching

End-to-End, Unified Analytics + AI Platform for Big Data

https://github.com/intel-analytics/analytics-zoo

OpenVINO

BigDLKerasTensorFlow

MKLDNN

Apache Spark Apache Flink

Intel® Optane™ DCPMM DL Boost (VNNI)

NLP Architect

https://github.com/intel-analytics/analytics-zoo


Build end-to-end deep learning applications for big data
• Distributed TensorFlow on Spark
• Keras API (with autograd & transfer learning support) on Spark
• nnframes: native DL support for Spark DataFrames and ML Pipelines

Productionize deep learning applications for big data at scale
• Plain Java/Python model serving APIs (w/ OpenVINO support)
• Support Web Services, Spark, Flink, Storm, Kafka, etc.

Out-of-the-box solutions
• Built-in deep learning models, feature engineering operations, and reference 

use cases

Analytics Zoo
End-to-End, Unified Analytics + AI Platform for Big Data



Distributed TF & Keras on Spark

• Data wrangling and 

analysis using PySpark

• Deep learning model 

development using 

TensorFlow or Keras

• Distributed training / 

inference on Spark 

#pyspark code

train_rdd = spark.hadoopFile(…).map(…)

dataset = TFDataset.from_rdd(train_rdd,…)

#tensorflow code

import tensorflow as tf

slim = tf.contrib.slim

images, labels = dataset.tensors

with slim.arg_scope(lenet.lenet_arg_scope()):

logits, end_points = lenet.lenet(images, …)

loss = tf.reduce_mean( \

tf.losses.sparse_softmax_cross_entropy( \

logits=logits, labels=labels))

#distributed training on Spark

optimizer = TFOptimizer.from_loss(loss, Adam(…))

optimizer.optimize(end_trigger=MaxEpoch(5))

Write TensorFlow code inline in PySpark program 



Spark Dataframe & ML Pipeline for DL

#Spark dataframe transformations

parquetfile = spark.read.parquet(…)

train_df = parquetfile.withColumn(…)

#Keras API

model = Sequential()

.add(Convolution2D(32, 3, 3, activation='relu', input_shape=…)) \

.add(MaxPooling2D(pool_size=(2, 2))) \

.add(Flatten()).add(Dense(10, activation='softmax')))

#Spark ML pipeline

Estimater = NNEstimater(model, CrossEntropyCriterion()) \

.setLearningRate(0.003).setBatchSize(40).setMaxEpoch(5) \

.setFeaturesCol("image")

nnModel = estimater.fit(train_df)



Spark Dataframe & ML Pipeline for DL
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.add(Flatten()).add(Dense(10, activation='softmax')))

#Spark ML pipeline

Estimater = NNEstimater(model, CrossEntropyCriterion()) \
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Distributed Model Serving

HDFS/S3

Kafka

Flume

Kinesis

Twitter

Analytics 
Zoo 

Model

Analytics 
Zoo 

Model

Distributed model serving in Web Service, Flink, Kafka, Storm, etc. 
• Plain Java or Python API, with OpenVINO and DL Boost (VNNI) support



OpenVINO Support for Model Serving

from zoo.common.nncontext import init_nncontext

from zoo.feature.image import ImageSet

from zoo.pipeline.inference import InferenceModel

sc = init_nncontext("OpenVINO Object Detection Inference Example")

images = ImageSet.read(options.img_path, sc,

resize_height=600, resize_width=600).get_image().collect()

input_data = np.concatenate([image.reshape((1, 1) + image.shape) for image in images], axis=0)

model = InferenceModel()

model.load_tf(options.model_path, backend="openvino", model_type=options.model_type)

predictions = model.predict(input_data)

# Print the detection result of the first image.

print(predictions[0])

Transparently support OpenVINO in model serving, 
which deliver a significant boost for inference speed



• Distributed PyTorch on Spark

• Ray on Spark
• Run Ray programs directly on standard Hadoop/YARN clusters

• AutoML support
• Automatic feature generation, model selection and hyper-parameter tuning for 

time series prediction

• Cluster serving
• Distributed, real-time (streaming) model serving with simple pub-sub interface

Upcoming Analytics Zoo 0.6 Release



Use Cases



http://mp.weixin.qq.com/s/xUCkzbHK4K06-v5qUsaNQQ
https://software.intel.com/en-us/articles/building-large-scale-image-feature-extraction-with-bigdl-at-jdcom

• Reuse existing Hadoop/Spark clusters for deep learning with no changes (image search, IP protection, etc.)

• Efficiently scale out on Spark with superior performance (3.83x speed-up vs. GPU severs) as benchmarked by JD

Object Detection and Image Feature Extraction at 
JD.com

http://mp.weixin.qq.com/s/xUCkzbHK4K06-v5qUsaNQQ
https://software.intel.com/en-us/articles/building-large-scale-image-feature-extraction-with-bigdl-at-jdcom


NLP Based Customer Service Chatbot for Microsoft Azure

https://software.intel.com/en-us/articles/use-analytics-zoo-to-inject-ai-into-customer-service-platforms-on-microsoft-
azure-part-1
https://www.infoq.com/articles/analytics-zoo-qa-module/

https://software.intel.com/en-us/articles/use-analytics-zoo-to-inject-ai-into-customer-service-platforms-on-microsoft-azure-part-1
https://www.infoq.com/articles/analytics-zoo-qa-module/


Product Recommendations in Office Depot

https://conferences.oreilly.com/strata
/strata-ca-
2019/public/schedule/detail/73079

https://conferences.oreilly.com/strata/strata-ca-2019/public/schedule/detail/73079


Computer Vision Based Product Defect Detection in Midea

https://software.intel.com/en-us/articles/industrial-inspection-platform-in-midea-and-kuka-using-distributed-
tensorflow-on-analytics

https://software.intel.com/en-us/articles/industrial-inspection-platform-in-midea-and-kuka-using-distributed-tensorflow-on-analytics


Recommender AI Service in MasterCard

https://software.intel.com/en-us/articles/deep-learning-with-analytic-zoo-optimizes-mastercard-recommender-ai-
service

https://software.intel.com/en-us/articles/deep-learning-with-analytic-zoo-optimizes-mastercard-recommender-ai-service


Particle Classifier for High Energy Physics in CERN

https://db-blog.web.cern.ch/blog/luca-canali/machine-learning-pipelines-high-energy-physics-using-apache-spark-bigdl

https://databricks.com/session/deep-learning-on-apache-spark-at-cerns-large-hadron-collider-with-
intel-technologies

Deep learning pipeline 
for physics data

Model serving using 
Apache Kafka and Spark

https://db-blog.web.cern.ch/blog/luca-canali/machine-learning-pipelines-high-energy-physics-using-apache-spark-bigdl
https://databricks.com/session/deep-learning-on-apache-spark-at-cerns-large-hadron-collider-with-intel-technologies


Unsupervised Time Series Anomaly Detection for Baosight

https://software.intel.com/en-us/articles/lstm-based-
time-series-anomaly-detection-using-analytics-zoo-
for-apache-spark-and-bigdl

https://software.intel.com/en-us/articles/lstm-based-time-series-anomaly-detection-using-analytics-zoo-for-apache-spark-and-bigdl


Technology End UsersCloud Service Providers

*Other names and brands may be claimed as the property of others. 

software.intel.com/AIonBigData
Not a full list



More Information

• Analytics Zoo repo: https://github.com/intel-analytics/analytics-zoo/

• Tech Report: https://arxiv.org/abs/1804.05839

• AAAI 2019 Tutorial: https://jason-dai.github.io/aaai2019/

• CVPR 2018 Tutorial: https://jason-dai.github.io/cvpr2018/

• More presentations: https://analytics-zoo.github.io/master/#presentations/

https://github.com/intel-analytics/analytics-zoo/
https://arxiv.org/abs/1804.05839
https://jason-dai.github.io/aaai2019/
https://jason-dai.github.io/cvpr2018/
https://analytics-zoo.github.io/master/#presentations/


Unified Analytics + AI Platform 

Distributed TensorFlow*, Keras*, PyTorch* & BigDL on Apache Spark*

https://github.com/intel-analytics/analytics-zoo

*Other names and brands may be claimed as the property of others.

End-to-End Big Data and AI Pipelines
Seamless Scaling from Laptop to Production

https://github.com/intel-analytics/analytics-zoo
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