Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF
ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel
Corporation in the U.S. and other countries.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the

applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Software

Performance optimization

Vtune & Advisor

Paulius Velesko
paulius.velesko@intel.com

Application Engineer

Sample Code

git clone https://github.com/pvelesko/nbody-demo.git

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://github.com/pvelesko/nbody-demo.git

Intel® Software Development Tools for Tuning

= Compiler Optimization Reports - Key to identify issues preventing automated
optimization

= |ntel® VTune™ Application Performance Snapshot - Overall performance
= Intel® Advisor - Core and socket performance (vectorization and threading)
" Intel® VTune™ Amplifier - Node level performance (memory and more)

= |ntel® Trace Analyzer and Collector - Cluster level performance (network)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Get the tools

Intel profiling tools are now FREE:

https://software.intel.com/en-us/vtune/choose-download

https://software.intel.com/en-us/advisor/choose-download

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/vtune/choose-download
https://software.intel.com/en-us/vtune/choose-download
https://software.intel.com/en-us/advisor/choose-download

Agenda

* Optimize
 Make it go fast

* \Vectorization

* Memory

e Make it scale
 MPI

* Profiling Al/ML
* Get the example code:

* git clone https://github.com/pvelesko/nbody-demo.git

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://github.com/pvelesko/nbody-demo
https://github.com/pvelesko/nbody-demo.git

Nbody demonstration

The naive code that could

Nbody gravity simulation

Let’s consider a distribution of point masses located atr_1,...,r_n and have massesm_1,....,m_n.

We want to calculate the position of the particles after a certain time interval using the Newton law
of gravity.

{

}i
Optimization Notice

public:

Particle(
void init
{
pos[0]
vel[O0]
acc[0]
mass

}

real_ type
real_ type
real_ type
real_ type

struct Particle

) { init();}
Q)

i pos[1]
; vel[l]
; acc[1]

0.
0.
0.
0.;
pos[31];
vel[3];

acc[3];
mass;

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

0.; pos[2]
0.; vel[2]
0.; acc[2]

. . .
Ne we e

for (1 = 0; i < n; i++){
for (3 = 0; j < mn; j++){
real type distance, dx, dy, dz;

real type distanceSqr 0.0;

real type distanceInv = 0.0;

// update acceleration

dx = particles[j].pos[0] - particles[i].pos[O0];

dx*dx + dy*dy + dz*dz + softeningSquared;
1.0 / sqrt(distanceSqr);

distanceSqr =

distancelInv =

particles[i].acc[0] += dx * G * particles[j].mass *
distancelInv * distanceInv * distancelnv;

particles[i].acc[l] += ..

particles[i].acc[2] += ..

Intel® Compiler Reports

Generating the compiler report

cd ./nbody-demo/ver0

vim ./GSimulation.cpp # find the compute loop
vim ./Makefile; # add -qopt-report=5 flag
make

vim ./GSimulation.optrpt # search for the line number

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserve d.
*Other names and brands may be claimed as the property of others.

Looking at the compiler report

LOOP BEGIN at GSimulation.cpp(127,20)
remark #15542: loop was not vectorized: inner loop was already vectorized
LOOP BEGIN at GSimulation.cpp(130,5)
remark #15542: loop was not vectorized: inner loop was already vectorized
LOOP BEGIN at GSimulation.cpp(132,7)

remark #25085:
remark #25085:
remark #25085:
remark #15415:
remark #15415:
remark #15415:
remark #15415:
remark #15415:
remark #15415:
remark #15305:
remark #15309:
remark #15417:
remark #15418:
remark #15417:
remark #15418:
remark #15417:
remark #15418:
remark #15417:
remark #15418:
remark #15300:
remark #15452:
remark #15475:
remark #15476:
remark #15477:
remark #15478:
remark #15487:
remark #15488:
LOOP END

Preprocess Loopnests:
Preprocess Loopnests:
Preprocess Loopnests:

vectorization support:
vectorization support:
vectorization support:
vectorization support:
vectorization support:
vectorization support:
vectorization support:
vectorization support:
vectorization support:
vectorization support:
vectorization support:
vectorization support:
vectorization support:
vectorization support:
vectorization support:
vectorization support:

Moving Out Load and Store [GSimulation.cpp(145,4) |

Moving Out Load and Store [GSimulation.cpp(146,4) |

Moving Out Load and Store [GSimulation.cpp(147,4)]

non-unit strided load was generated for the variable <this->particles->pos[j][0]>, stride is 10 [GSimulation.cpp(138,9
non-unit strided load was generated for the variable <this->particles->pos[j][1]>, stride is 10 [GSimulation.cpp(139,9
non-unit strided load was generated for the variable <this->particles->pos[j][2]>, stride is 10 [GSimulation.cpp(140,9
non-unit strided load was generated for the variable <this->particles->mass[j]>, stride is 10 [GSimulation.cpp(145,36
non-unit strided load was generated for the variable <this->particles->mass[j]>, stride is 10 [GSimulation.cpp(146,36
non-unit strided load was generated for the variable <this->particles->mass[j]>, stride is 10 [GSimulation.cpp(147,36
vector length 16

normalized vectorization overhead 0.356

number of FP up converts: single precision to double precision 1 [GSimulation.cpp(143,4)]

number of FP down converts: double precision to single precision 1 [GSimulation.cpp(143,4)]

number of FP up converts: single precision to double precision 6 [GSimulation.cpp(145,4)]

number of FP down converts: double precision to single precision 1 [GSimulation.cpp(145,4)]

number of FP up converts: single precision to double precision 6 [GSimulation.cpp(146,4)]

number of FP down converts: double precision to single precision 1 [GSimulation.cpp(146,4)]

number of FP up converts: single precision to double precision 6 [GSimulation.cpp(147,4)]

number of FP down converts: double precision to single precision 1 [GSimulation.cpp(147,4)]

)]
)]
)]
)]
)]
)]

LOOP WAS VECTORIZED
unmasked strided loads: 6
--- begin vector cost summary ---

scalar cost: 137
vector cost: 20.000

estimated potential speedup: 6.300

type converts: 23

--- end vector cost summary ---

Copyright ©

*Ot

2018, Intel Corporation. All rights reserved.

r names and brands may be claimed as the property of others.

The Basic Tuning Cycle

Validate Measure
Results Performance

Profile

Modify Code Application

Infinite cycle only broken by external
constraints (time, papers, releases ...)

Procedures for measuring performance and
validating results are critical

Automation and environment control are key
for consistency

Where do | start?
/soft/perftools/intel/advisor/advixe.qsub

/soft/perftools/intel/vtune/amplxe.qsub

amplxe.qgsub Script

* Copy and customize the script from /soft/perftools/intel/vtune/amplxe.qsub
* All-in-one script for profiling
* Job size - ranks, threads, hyperthreads, affinity Google vune af Y Q

All Shopping News Images Videos More Settings Tools

* Attach to a single, multiple or all ranks

About 575 results (0.33 seconds)

° B| na ry as a rg#l, in put as a rg#z VTune on XC40 | Argonne Leadership Computing Facility
https://www.alcf.anl.gov/user-guides/vtune-xc40 v
. . VTune is an advanced profiling tool which helps you to optimize your code on the KNL architecture. It
° qSUb amplxe.C]SUb ./yOUF_exe ./InpUtS/Inp allows you to track how well your code is threaded and ...

You've visited this page 5 times. Last visit: 4/29/19

* Binary and source search directory locations
* Timestamp + binary name + input name as result directory

* Save cobalt job files to result directory

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® Advisor

Intel® Advisor — Vectorization Optimization

et 22 [IR -

FILTER: [AllModules || AllSources ~|[Loops ~|[AllThreads ~| INTEL ADVISOR 2017
*Summary sSurveyReport aRzﬁnementchorE

Faster Vectorization Optimization: e —
= Vectorize where it will pay off most [

| FLops

| GFLops
3.158s[9.0% ||Vectorized..| 0.1871 |0.
@ 2Ineffi.. 2875 (NGRS Scalar 01361 0.0625 @ v

Vector
L Issues

Self Timev Type

=]
55 [loop in 5126 at loops90.£:447] @ 2Prov... 0.997s (B Scalar 03971 0.1667 @ vectorde...
H H H H H %1 [loop in 5343 at loops90.£:2300] @ 2 Assu... 0875s [BEH Scalar © vector de...
= Quickly ID what is blocking vectorization S e T s AT sTe T Ly
. . . . [loop in 5353 at loops90.£:2381] [] | @ 1Possi.. 0.719s @B Vectorized (.. 27710 01250 Avxe [3%% Ja7ex
[] T|ps for effect've Vecto nza‘“on B0 lloop in 3232 SompSparallel for... @ 3Prov... 0553 @ Scalr Versions 02881 02220 @ 1 vectord... .
< >

= Safely force compiler vectorization

= Optimize memory stride INTEI_ADVISUR
Roofline model analysis: Pt A

= Automatically generate roofline model

= Evaluate current performance

= |dentify boundedness

Add Parallelism with Less Effort, Less Risk and More Impact

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://intel.ly/advisor-xe

Typical Vectorization Optimization Workflow

There is no need to recompile or relink the application, but the use of -g is recommended.
Note: if you're using Theta run out of /projects rather than /home
1. Collect survey (overhead ~5%) advixe-cl -c survey
= Basic info (static analysis) - ISA, time spent, etc.
2. Collect Tripcounts and Flops (overhead 1-10x) advixe-cl -c tripcounts -flop
= |nvestigate application place within roofline model
= Determine vectorization efficiency and opportunities for improvement
3. Collect dependencies (overhead 5-1000x) advixe-cl -c dependencies
= Differentiate between real and assumed issues blocking vectorization

4. Collect Memory Access Patterns advixe-cl -c map

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Collect survey and tripcounts

cd /projects/intel/pvelesko/nody-demo/ver0
make

cp /soft/perftools/intel/advisor/advixe.qsub ./
qsub ./advixe.qsub ./nbody.x 2000 500

scp result back to your local machine
Text report can also be useful:

advixe-cl -R survey

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserve d.
*Other names and brands may be claimed as the property of others.

View Result

X-forwarding is not recommended.

Tar the result along with sources (if you want to be able to view them)
or
Generate a snapshot:

S advixe-cl --snapshot --pack --cache-sources --cache-binaries

then scp to your local machine

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Analyze Result - advixe_ver0

Summary - ISA
CPU Time - Total vs Self
Loops and Functions/Loops Only/Functions only
Top Down
helpful when same function is called in multiple places

Compute Perf - FLOPs Click me! Advisor snapshot

Roofline Ed

verQ.advixeexpz

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Summary Report

m C\Users\pauliusv\Desktop\webinar\advixe_ver0 - Intel Advisor — [} X

File View Help
‘M8 | % BT G2 | B @) StartSurvey Analysis < | <% | @ | @
‘Welcome e000 x

| @ | Elapsed time: 20365 | * | [N R] |- | FILTER| AllModules ~|[AllSources ~ //

B) Summary % Survey & Roofline ™i Refinement Reports A mmms

H Vectorization Advisor

Vectorization Advisor is a vectorization analysis toolset that lets you identify loops that will benefit most from vector parallelism
discover performance issues preventing from effective vectorization and characterize your memory vs. vectorization bottlenecks
with Advisor Roofline model automation

© Program metrics

Elapsed Time 29.36s » GFLOPS 1.86
Vector Instruction Set AVX512, AVX2, AVX » GINTOPS 0.03
Number of CPU Threads 1

© Performance characteristics

Metrics Total

Total CPU time 29.35s . 100%
Time in 2 vectorized loops 29.31s 99.9%
Time in scalar code 0.04s 0.1%

® Vectorization Gain/Efficiency

(® OP/S and Bandwidth

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Summary provides overall
performance characteristics

Top time consuming loops are listed
individually

Vectorization efficiency is based on
used ISA (in this case SSE2/SSE)

Note the warning regarding a higher
ISA (in this case -xMIC-AVX512)

Survey Report (Code Analytics Tab

a
X

[C:\Users\pauliusv\Desktop\webinar\advixe_ver0 - Intel Advisor -

e View Help Analytics tab contains a wealth
{08 [B Gz |B @ b StartSurvey Analysis < | < [& | ® . .
come <000 . of information
FILTER| Al Modules ~ |[Al Sources | [JEPRSR | Al Threads ~ [% customize view || a |

ary | @ Survey & Roofline % Refinement Reports INTEL ADVISOR2019

Elapsed time: 29.36s

A N] H
@ Performance CPU Time i Vectorized Loops Instruction Set Analysis I nstruction set
] Function Call Sites and Loops Type Why No Vectorization?
Issues Total Time | Self Time v VectorISA | Efficiency | Gain E... VL (Ve...| Traits
loop in at cpp:132] © 2 Possible ineffi... 29. 29.306sE0 (Body) AVX512 51% 823x 16 2-Source Permutes; Blends; Extracts; FMA; G ™ H H
= /Bloop in GSimulation:start at GSimulation.cpp:130] % 1 Data type conv... 20.342s @I 0036s| Scalar & inner loop was already v... 2-Source Permutes; Blends; Extracts; FMA; Gath Instruction mix
loop in GSimulation:start at GSimulation.cpp:153] 9 1 Possible ineffici.. 0.008s! 00085l Vectorized (Body) AVX512 161x 16 2-Source Permutes; Blends; FMA; Gathers; Mask
lloop in _libc_start_main at libc-start.c:186] 20350s @ 0000s| Scalar] i (
[loop in _libc_start_main at libc-start.c:173] 29.350s @HEEE 0.000s| Scalar Tra Its sq rt’ type
 [loop in GSimulation:start at GSimulation.cpp:127] % 1 Data type conv... 29350s@MED 0.000s| Scalar & inner loop was already v... Appr. Reciprocals(AVX-512ER); Divisions; Expot conversions, un pa CkS)
)
= Vector efficiency
< > = Floating point statistics
4 Source ‘ Top Down | Code Analytics | Assembly |) i | & Why No i
Loop in GSimulation-start at GSimulation.cpp:132 Average Trip Counts: 125 ® GFLOPS: 1.86 ® .
GINTOPS: 0.03 And explanations on how they
29.306s AVX-512 Mask Usage: 96%1
Vectorzed (Body) Totl me are measured or calculated -
Roofline ®
AVX512ER_512; 29.306s ot
N o & X Code Optimizations
AVXS512F_512 Selftime 2 o D Veclor FIA Peak Compiler- Intel(R) C++ Intel(R) 64 Compiler for applications running on Intel(R) 64 €Xpan d th € bOX or h over over
Instruction Set 3 Version: 19.0.5.281 Build 20190815 th t k
Compiler estimated gain: 6.31x
¥ Dynamic Instruction Mix Summary . Vectorization/Optimization report by Compiler: no messages e q u eS Io nm a r S .
» Memory 30% (4250000000, 34) D e
» Compute 32% (4500000000, 36) (D 2= -
> Mixed 2% (250000000, 2) | 104 12.19 GFLOPS ('6.6x)
Other 36% (5000000000, 40) (NEND
CPU Total Time .
2.34447e-07s 0.00003s oot 1.86 GFLOPS
Per lteration | Per Instance v\go%” s 1.29 FLOP/Byte
\B?“
FLOP/Byte (Aritmeso nensiy) o

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Survey Report (Source Tab)

TSV o oo | v | A TR R 15 i | IR Notice the following:
ELA 18

IVISUR
Summary % Survey & Roofline | ™ Refinement Reports

v & Higher instruction set architecture (ISA) available {20f2 o Xy o Higher ISA available
Consider recompiling your application using a higher ISA.
P Vectorized Loops FLOPS D u i
8 +| [=] Function Call Sites and Loops JEIETITE Self Time v | Total Time | Type Why No Vectorization? - . T Type conversion
= Issues Vector ... | Efficiency GainE... VL (Ve... | Self GFLOPS
=N+ [loop in GSimulati t at GSimulation.cpp:138] & 1 Data type con... 90.600s @ 90.600s @l Vectorized (Body) sse2 [91% |18x 2 0.993 = Use of square root
4O [loop in GSimulation:start at GSimulation.cpp:136] 0.020s| 90.620s GEE Scalar @ inner loop was already v... 0.150@
s f _start 0.000s! 90.620s @ Function
% f main 0.000s| 90.620s @D Function i All of these elements may
< § GSimulation:start 0.000s! 90.620s @I Function
T T —— —— r— — v1 affect performance
< >« >
! Source | Top Down | Code Analyti | Assembly |v=— dations | & Why No Vectorization?
Line Source Total Time | % Loop/Function Time % Traits |
I35 — fUL (IOC S—%; SS-gTT_uSTepS(/; ST I
134 {
135 t=0 += time.start();
136 @ for (i = 0; i < n; i++)// update acceleration
137 {
138 B for (j = 0; j < n; j+H) 1.020s 90.600s M=

[loop in GSimulation::start at GSimulation.cpp:138]

Vectorized SSE; SSE2 loop processes Float32; Float64; Inté4 data type(s) and includes Square Roots; Type Convers

No loop tran rmations applied

Selected (Total Time): 1.020s v
< >

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Cache-Aware Roofline Model (CARM) Analysis

EI Elapsed time: 29.36s FILTER:I All Modules VH All Sources VH Loops And Functions v|| All Threads VI Iﬁ* CustomizeViewll Q I

Summary % Survey & Roofline | ®i Refinement Reports INTEL ADVISOR 2019
=Nk Q ey v ‘ Cores: 1 9 v HY Default: FLOAT v |515 Compare v H / Guidance v ‘ =
2 1001 @
3 3

(o] .

0 -

s .

LT ?
SP Véetor Add Peak: 38.12 GFLOPS-
-7 Vector FMA Peak: 38.1 GFLOPS

2

DP Vector Add Peak: 19.05 GFLOPS

?
Scalar Add Peak: 2.23 GFLOPS

4

0.1 4 = .

lemory Compute bound

FLOP/Byte (Arithmetic Intensity)
T

T T T

0.01 R 01 1 10
. Physical Cores: 64 @ App Threads: 1 @ Self Elapsed Time: 29.262 s Total Elapsed Time: 29.262 s

zation Notice
Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Follow recommendations and re-test

In this new version (ver2 in github
sample) we introduce the following
changes:

= Consistently use float types to avoid
type conversions in GSimulation.cpp

= Recompile to target Intel® Xeon Phi
7230 with -xMIC-AVX512
Note changes in survey report:

= Reduced vectorization efficiency
(harder with 512 bits)

= Type conversions gone

= Gathers/Blends point to memory
issues and vector inefficiencies

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

[Summary

@ Survey & Roofline | ™ Refinement Reports

Pl Vectorized Loops
[*8 | [+| -] Function Call Sites and Loops SECmance Self Time v | Total Time Type Why No Vectorization?
- Issues Vector... | Efficiency | GainE... VL (Ve..
Z [loop in GSi at GSi cpp:138] 2 ient gat... 10.080s @ 10.080s @M Vectorized (Body) AVX5.. [[63% |10.05x 16

2O [loop in GSimulation:start at GSimulation.cpp:136] @ 1 Opportunity for... 0.060s| 10.140s @D Scalar @ inner loop was already v...

i § _start 0.000s! 10.140s @D Function

4 § main 0.000s! 10.140s @I Function

4 § GSimulation:start 0.000s! 10.140s @I Function

2O [loop in GSimulation:start at GSimulation.cpp:133] @ 1 Data type conv... 0.000s| 10.140s B Scalar @ inner loop was already v...

< >«
Source | Top Down | Code Analytics | ly | ¥ R & Why No Vec

Loop in GSimulation: start at GSimulation.cpp:138 Average Trip Counts: 125 @ GFLOPS: 2.09325
10.080s AVX-512 Mask Usage: 37
Vectorized (Body) Total time
LN 5
AVX512ER_512: 10.080s Traits ® Sstatic Instruction Mix
- Self ti Square Roots
AVX512F_512 serime a Memory-22 Compute:21 Mixed -2 Other
Instruction Set Gathers 12 Number of Vector Registers: 26
-

¥ Static Instruction Mix Summary
» Memory 39% (22) (D
» Compute 37% (21) D
> Mixed 4% (2)0
Other 21% (12) @B
4 Dynamic Instruction Mix Summary

63% Vectorization Efficiency

10.05x

©

Vectorization Gain

 Irregular Memory Access Patterns May Decrease Perfor
L See Recomr Tab

Blends
-
 Irregular Memory Access Patterns May Decrease Perfor
St See Rec lions Tab

FMA
2-Source Permutes

Mask Manipulations

B/ FLoP

Self €
2.09:
1.700

Analyze Result - advixe_ver2

Roofline -
Change in Ol (due to FP converts)
Jump in FLOPs

Memory Access

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Vectorization: gather/scatter operation

The compiler might generate gather/scatter instructions for loops automatically vectorized where
memory locations are not contiguous

ctruct Particle AoS - array SoA - structure
{ of structures of arrays
publ ic: /L;Iemory Memory
real_ type pos[3]; E p.pos_x[i]
real_ type vel[3]; E p.pos x[i+1]
real_ type acc[3]; o
real type mass; a p.pos_x[i+2]
} 7 E, p.pos_x[i+3]
- P.pos_x[i+4]
struct ParticleSoA
{ g p.pos_x[i+5]
publ ic: E p.pos_x[i+6]
oo . . . a P.pos_x[i+7] 1
real type *pos_x,*pos_y,*pos_z; o \ - e,
real type *vel _x,*vel_y,*vel_z; 'E Vector p.pos_x[i+8] Vector
real type *acc_x,*acc_y;*acc_z = Register Register
real type *mass;
}i 0 0 4

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Memory access pattern analysis g 11] B

How should | access data ?

For B, 1 cache line load computes 4 DP

Unit stride access are faster

for (i=0; i<N; i++) B ‘...i...
A[i] = B[i]*d

For B, 2 cache line loads compute 4 DP with
reconstructions

Constant stride are more complex

for (i=0; i<N; i+=2)
A[i] = B[i]*d

Non predictable access are
usually bad

for (i=0; i<N; i++)
A[i] = B[C[i]]*d

For B, 4 cache line loads compute 4 DP with
reconstructions, prefetching might not work

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Follow recommendations and re-test

In this new version (ver3 in github
sample) we introduce the following
change:

= Change particle data structures
from AOS to SOA

Note changes in report:

= Performance is lower

= Main loop is no longer
vectorized

= Assumed vector dependence
prevents automatic
vectorization

B) Summary % Survey & Roofline ™1 Refinement Reports

¥ Performance

Vectorized Loops Pl|FLops ()

Pl
jofl |[+| =] Function Call Sites and Loops Self Time » | Total Time Type Why No Vectorization?
2 Issues Vector... GainE... | VL (Ve...| Self GFLOPS ¢
,%‘ = O [loop in GSi i tat cpp:151] ¢ 1 dep... 46.360s @ 46.360s @ Scalar & vector dependence pre... 11220 ¢
Scalar loop. Not vectorized: vector dep Scalar loop. Not vectorized: vector dependence prevents vectorization
No loop transformations applied No loop transformations applied
" 5O [loop in GSimulation:start at GSimulation.cpp:171] @ 1 Assumed depe.. 0.040s| 0.040s| Scalar & vector dependence preve... 047508 C
« f _start 0.000s! 46.400s @ Function
3 § main 0.000s! 46,4005 @I Function
4 § GSimulation:start 0.000s| 46.400< M Function cY
< >|< >
Source | Top Down ‘ Code Analytics ’ ly | @ Why No
A
Loop in GSimulation:start at GSimulation.cpp:151 Average Trip Counts: 2000 ® GFLOPS: 1.12166 ®
46.360s AVX-512 Mask Usage: 100
Scalar Total time
; ion Mi () Code Optimizations
ge‘f‘?eos Static Instruction Mix Compiler: Intel(R) C++ Intel(R) 64 Compiler for applications
elrtime Memory:8 Compute: 11 Mixed ‘11 Other running on Intel(R) 64,
4 Number of Vector Registers: 21 Version: 18.0.0.128 Build 20170811
V¥ Static Instruction Mix Summary’
» Memory 24% (8) @D
> Compute 32% (11) G
> Mixed 32% (11) GHED
Other 12% (4) @
» Dynamic Instruction Mix Summary
Traits ®

Sauare Roots. FMA |

Next step is clear: perform a Dependencies analysis

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Suggested solutions

Memory Access Patterns Report | Dependencies Report ‘ ¥ Recommendations

All Advisor-detectable issues: C++ | Fortran

Recommendation: Resolve dependency

The Dependencies analysis shows there is a real (proven) dependency in the loop. To fix: Do one of the following:

o If there is an anti-dependency, enable vectorization using the directive #pragma omp simd
safelen(length) , where length is smaller than the distance between dependent iterations in
anti-dependency. For example:

fpragma omp simd safelen(4)
for (1 = 0; 1 < n - 4; 1 += 4)
{

al[i + 4] = a[i] * c;

ISSUE: PROVEN (REAL) DEPENDENCY
PRESENT

The compiler assumed there is an
anti-dependency (Write after read - WAR) or
true dependency (Read after write - RAW) in the
loop. Improve performance by investigating the
assumption and handling accordingly.

Resolve dependency

o If there is a reduction pattern dependency in the loop, enable vectorization using the directive #pragma omp simd reduction(operator:1list) . For example:

fpragma omp simd reduction (+:sumx)
for (k = 0;k < size2; k++)
{

sumx += x[k]*b[k];

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Analyze Result - advixe_ver4

Vectorization time back to normal

Reduced execution time

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

(1 =0; 1 <n; 1++)

alignment

Advisor Roofline — How much further can we go?

Performance Metrics Summary ~

__assume_aligned(particles-
__assume_aligned(particles-
__assume_aligned(particles-
__assume_aligned(particles->acc_y,

)
alignment)
alignment)
alignment)
alignment)

'
’
’
’
’
’

__assume_aligned(particles->acc_z, alignment)
__assume_aligned(particles->mass, alignment);

real_type ax_i = particles->acc_x[1];
real_type ay 1 = particles->acc_yl[1];
real_type az_1i = particles->acc_z[1];

(3 ;] < n; J+E)
{

real_type dx, dy, dz;
real_type distanceSqr
real_type distanceInv

particles->pos_x[j] - particles->pos_x[1i];
particles->pos_y[j] - particles->pos_yl[1i]
] -

particles->pos_z[j] - particles->pos_z[1i];

distanceSqr =_d=*0 Y™y + dz*dz + softeningSquared;
distanceInv J stanceSqr);
* * particles->mass[j] * distanceInv * distanceInv * distanceInv;
* particles->mass[j] * distanceInv * distanceInv * distanceInv;
* particles->mass[j] * distanceInv * distanceInv * distancelnv;
particles ax_1;

particles K ay_1i;
particles-»acc_z[1] = az_1;

3
FMA Ratio =— = 109
atio 29)0

Peak = SP Vector ADD * (1+ FMA Ratio)

Peak =40 * (1 +0.1) = 44 GFLOPS

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

hQ Cores:[1 v | @

[loop in GSimulation::

Performance: 17.67 G

L1 Arithmetic Intensity: 0.

|l Self Time: 2.580 s

= el 18
Current % of Peak =— = 40%

Why only 40%?
* Vectorization Efficiency
* Long Latency/Complex Operations

0.01 0.1 1
Physical Cores: 64 e App Threads: 1 e

FLOP/Byte (Arithmetic Intensity)

10

Vectorization Efficiency?

DI ERC O Vectorized] © Not Vectorized | e I

Summary % Survey & Roofline '®}) Refinement Reports

-)) Vectorized Loops
=] Function Call Sites and Loops

El@ [loop in GSimulation::start at GSim
« (D [loop in GSimulation::start at GSimulati

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Complex Operations?

Performance Metrics Summary ~ ormance Metrics Summary ~

A Q |Cores:| 1 v e L |Cores:| 1 ~ e
Q [o
9 a
100 g 8
80.05 GFL
AT 38,57 GFLOP:
10
ed Time: 2,580
2.580 s
>
1.

v . 14
FLOP/Byte (Arithmetic Intensity) |-01 FLOP/Byte (Arithmetic Intensity)
T T r r T T
0.01 0.1 1 10 0.01 0.1 1 10
Physical Cores: 64 @ App Threads: 1 @ Phvsical Cores: 64 @ App Threads: 1 @

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Memory Performance

;1< n; 1+4)

__assume_aligned(particles->

__assume_aligned(particles

__assume_aligned(particles

__assume_aligned(particles

__assume_aligned(particles

__assume_aligned(particles
(

__assume_aligned(particles->

real_type ax_1
real_type ay 1
real_type az_1i

;] < n; JH)

real_type dx, dy, dz;
real_type d;stanceSqr =
real_type distance -

particlesf>pos_x[j]
particlest>pos_yl[j]
particles\¢pos_z[j]

distancesqr
distancelInv

ax_i+= dx * * particles
ay 1 += dy * G * particle
az_1 +=dz * G *

}

particles-»acc_x[1] = ax_1;
particles->acc_y[1] = ay_1;
particles->acc_z[1] = az_1;

Optimization Notice

particles-

alignment)
alignment)
alignment)
alignment)
)
)

’
’
’
’
’

~-acc_y, alignment
alignment
alignment);

’

particles\¢

’

particles £
particles{>
particles-

dx*dx + dy*dy + dz*dz + softeningSquared;
/ sqrtf(distanceSqr)

distanceInv * distanceInv *
* distanceInv * distanceInv *
* distanceInv * distanceInv *

distanceInv;
distancelInyv;

>mass[]] distanceInv;

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Maximum N before we lose caching?
KNL L1-32kB L2-1MB (1 tile/2cores)
32k/(4*4) = 2k (L1)

1MB/(7*4) = 35.7k(L2)

GFLOPsvs N

80
70
60
50
40
30
20
10

1000
1500
2000
2500
30000
35000
40000
50000

60000

65000

Intel® VTUNE™ Amplifier

Intel® VTune™ Amplifier

VTune Amplifier is a full system profiler

= Accurate

= Low overhead

= Comprehensive (microarchitecture, memory, IO, treading, ...)
= Highly customizable interface

= Direct access to source code and assembly

= User-mode driverless sampling

= Event-based sampling

Analyzing code access to shared resources is critical to achieve good performance on
multicore and manycore systems

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Predefined Collections

Many available analysis types:

= uarch-exploration General microarchitecture exploration
" hpc-performance HPC Performance Characterization

" memory-access Memory Access

= disk-io Disk Input and Output

= concurrency Concurrency

= gpu-hotspots GPU Hotspots

= gpu-profiling GPU In-kernel Profiling

= hotspots Basic Hotspots

= |ocksandwaits Locks and Waits Python Support

= memory-consumption Memory Consumption
= system-overview System Overview

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Collect uarch-exploration

cd /projects/intel/pvelesko/nody-demo/ver7
vim Makefile # edit to add -dynamic
cp /soft/perftools/intel/advisor/amplxe.qsub ./

vim amplxe.qgsub # edit collection to “uarch-exploration’

qsub ./advixe.qsub ./nbody.x 2000 500

scp result back to your local machine

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserve d.
*Other names and brands may be claimed as the property of others.

VIUNE M e IsTIuy s — o~

Btz b BRSO :
© is Target | A Analysis Type

Algorithm Analysls HPC Performance Characterization 2a]

Basic Hotspots

Advanced Hotspots

Analyze important aspects of your application performance, including CPU utilization with additional details on OpenMP efficiency analysis,
memory usage, and FPU utilization with vectorization information.

Locks and Waits For vectorization optimization data, such as trip counts, data dependencies, and memory access patterns, try Intel Advisor. It identifies the loops
that will benefit the most from refined vectorization and gives tips for improvements.

The HPC Performance Characterization analysis type is best used for analyzing intensive compute applications. Learn more (F1)

Concurrency

Memory Consumption

A Vectorization analysis is limited for this platform. Only metrics based on binary static analysis such as vector instruction set will be available.

Ce te-Intensive A Analysis

CPU sampling interval, ms

Microarchitecture Analysis [!
A
General Exploration Copy C d Line to Clipb " . x
M Ac
S/ Command line:
TSX Exploration - — -
Jsoft/compilers/inteltune_amplifier_2018.1.0.535340/bin64/amplxe-cl -collect hpc-
TSX Hotspots performance -app-working-dir fusr/bin -- Is
SGX Hotspots
* Platform Analysis [
CPU/GPU Concurrency
System Overview
GPU Hotspots @ I ,C|—I
opy ose
GPU In-kernel Profiling
Disk Input and Output [Use -collect-with action
Hide knobs with default values
Custom Analysis -
<oy = -
*Other names and brands may be claimed perty of others.

Hotspots analysis for nbody demo (ver7: threaded

* qgsub amplxe.gsub ./your_exe ./inputs/inp

W Ew > DOE| @ [wekome vtuneres X =
& Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ INTELVTUNE AMPLIFIER 2018
¢ ElCollectionLog © Analysis Target A AnalysisType & Summary @ Bottom-up & Caller/Callee ® Top-downTree “Platform . . |
Elapsed Time : 1.037s
CPU Time ?: 21.420s
Effective Time ”: 2.280s

Spin Time 18.660s ®
mt or Serial Spi g 17.319s &
0s

1342s

0.480s
64
0Os

OpenMP Analysis. Collection Time : 1.037
Serial Time (outside parallel regions) : 0.733s (70.7%) &
Top Serial Hotspots (outside parallel regions)

Parallel Region Time : 0.304s (29.3%)

Top Hotspots
CPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage
value

1000ms

800ms

Elapsed Time
Target Ltilization

600ms

400ms

200ms

n
Oms T T T T T T

Simultaneously Utilized Logical CPUs

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

OpenMP Region Duration Histogram
This histogram shows the total number of region instances in your application executed with a specific duration. High number of slow instances may signal a performance
bottieneck. Explore the data provided in the Bottom-up, Top-down Tree, and Timeline panes to identify code regions with the slow duration

OpenMP Region: | startSompSparallel 64@unknown:146:182 -
500

&
8
Instance Count

0.002 0.027

Duration Type (sec)

Lots of spin time indicate issues with load balance and synchronization

Given the short OpenMP region duration it is likely we do not have
sufficient work per thread

Let’s look a the timeline for each thread to understand things better...

Bottom-up Hotspots view

& Basic Hotspots Hotspots by CPU Usage viewpoint (change) @

4 Bl Collection Log @ Analysis Target A Analysis Type & Summary & Bottom-up & Caller/Callee & Top-down Tree 2 Platform [GSimulation...

P

Grouping: | Module / Function Call Stack v|[&][Q][2]|[cPuTime
CPUTime ¥ C T | Viewing < 10f1 » selected stack
Module / Function / Call Stack Effective Time by Utiization Bl s Tove | overnena vene 2 Module 100.0% (2.260s of 2.260s)
Oide @Poor Ok @ideal @ Over | nbody.xIGSimulation- startSomp
» libiomp5.so 0s 18.660s 0.320s . libiomp5.s0![OpenMP dispatche.
v nbody.x 2260s (I 0.160s { libiomp5.s0![OpenMP fork]+0x1
2260s 0s | nbody.x [ESINTENTIREERRIITEEN nbody.x!GSimulation: start+0x69.
» GSimulation:start 0s 0.160s nbody.x GSimulation: start(void) nbody.x!main+0x86 - main.cpp:43
» [Unknown])20s |)s S nbody.x!_start+0x28 - start.S:118
< >[< >
O+ w e 0s 01s . 11. F.y, || Ruler Area:
£ [J = OpenMP Barrier-
£| OMP Worker Thread #60 (TI D e
OMP Worker Thread #56 (T1 [Thead]
OMP Worker Thread #50 (TI. W
OMP Worker Thread #55 (TI #a CPU Time
OMP Worker Thread #54 (TI # Spin and Overhea
OMP Worker Thread #49 (TI... | LIRSICRU Sampic
OMP Worker Thread #58 (TI.. | 0 CPU Usage
OMP Worker Thread #59 (T1
OMP Worker Thread #61 (T
OMP Worker Thread #52 (TI
OMP Worker Thread #41 (Tl
OMP Worker Thread #47 (T1
OMP Worker Thread #35 (T1
FILTER 1000% 5 | [AnyProcess | Thiead | Any Thread ~ || Any Module |1 Any Utiizatio ~ | S|] Only user functions | Show inline functic ~ | Functions only ~

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

There is not enough work per thread
in this particular example.

Double click on line to access source
and assembly.

Notice the filtering options at the
bottom, which allow customization of
this view.

Next steps would include additional
analysis to continue the optimization
process.

Intel VTune Amplifier - m] X
& s G B O welcome x
INTELVTUNE A}
Grouping:: Function / Call Stack v
Function / Call Stack CPUTime ¥V ! Module I Function (Full) Source File Start Address I ~
» vdpowr_ 18.664s libmkl_intel_Ip64.s0 vdpowr_ 0x695310
) aa 10.495s distress aa aux.f90 Ox41ecic
) aa 9.674s distress |aa aux.f90 Ox41ec9a
» invariants 9.055s distress invariants aux.f90 0x41d550
» __libm_csqrt_ex 7.792s libimf.so __libm_csqrt_ex Oxc7a50
) spinoru 7.779s distress spinoru aux.f90 0x41e9e0
» ktjet 7.137s distress ktjet analysis.f90 0x420ae0 -
> __svml_log8_mask_b3 6.056s distress __svml_log8_mask_b3 0x532f50
» breit2lab 2.096s distress breit2lab PS.f90 0x4602d0
» getljet 1.857s distress getljet analysis.f90 0x421830
» me0_gqlqlgg 1.814s distress me0_qlqlgg amplitudes.f90 0x4408d0
) __libm_acos_I9 1.688s libimf.so __libm_acos_I9 Oxedd80
» analyzejet 1.658s distress analyzejet analysis.f90 0x422050
» ds_gl_s_nnlo_gcd_g 1.605s | distress | ds_gl_s_nnlo_qgcd_g | sub.f90 0x4694e0
» csart 1.384s | libimf.so csart 0x1d430 v
< PAIRY >
O: o = w p0s 20s 40s 60s 80s 100s 120s 140s |Thread "|)
g distress (TID: 55598) [ERunning
‘,-E_ WwaCPU Time
#Spin and Overhead ...
[] ®CPU Sample
CPU Utilization
WaCPU Time
aSpin and Overhead -

CPU Utilization

f;‘t’:” ’;7”;‘ o o Any Thread || Any Module || Any Utilizatii v~ User functions +1 | | Show inline funct ~

n/t_GD| 42
—

Intel VTune Amplifier - m] X

Z & b s B = O wWelcome x

INTELVTUNEA!

Grouping:f Function / Call Stack

Function / Call Stack CPUTime ¥V »/ Module Function (Full) Source File Start Address 2
13.1% | libmkl_intel_Ip64.so vdpowr_ 0x695310

) aa 7.4% distress aa aux.f90 Ox41ecic
) aa 6.8% distress aa aux.f30 Ox41ec9a
b invariants T 64% distress invariants auxfoo 0x41d550
» __libm_csqrt_ex 5.5% libimf.so __libm_csqrt_ex Oxc7a50
) spinoru 5.5% distress spinoru aux.f90 0x41e9e0
» ktjet 5.0% distress ktjet analysis.f90 0x420ae0 -
> __svml_log8_mask_b3 4.3% distress __svml_log8_mask_b3 0x532f50 i
» breit2lab 1.5% distress breit2lab PS.f90 0x4602d0
» getljet 1.3% distress getljet analysis.f90 0x421830
» me0_gqlqlgg 1.3% distress me0_qlqlgg amplitudes.f90 0x4408d0
) __libm_acos_I9 1.2% libimf.so __libm_acos_I9 Oxedd80
» analyzejet 1.2% distress analyzejet analysis.f90 0x422050
» ds_gl_s_nnlo_gcd_g 1.1% distress ds_qgl_s_nnlo_qcd_g sub.f90 0x4694e0
» csart 1.0% libimf so |esart ' 0x1d430 v
< PAIRY >
O: o = w p0s 20s 40s 60s 80s 100s 120s 140s |Thread "|)
g distress (TID: 55598) [ERunning
‘,-E_ WwaCPU Time
#Spin and Overhead ..

[] ®CPU Sample

CPU Utilization
WaCPU Time
#Spin and Overhead ..

CPU Utilization

f;‘t’:” ’;7”;‘ o o Any Thread || Any Module || Any Utilizatii v~ User functions +1 | | Show inline funcf

n/t_GD| 43
—

Copyright ©

*Othe

Intel VTune Amplifier

E&F P b= 0

Welcome

Grouping:: Source Function / Function / Call Stack

Source Function / Function / Call Stack CPUTime ¥ [»/| Module Function (Full) Source File Start Address
) aa 14.2% aa aux.fo0 0
» vdpowr_ 13.1% vdpowr_ 0
) invariants 6.4% invariants aux.f90 0
b __libm_csqrt_ex 5.5% __libm_csqrt_ex 0
» spinoru 5.5% spinoru aux.fo0 0
» ktjet 5.0% ktjet analysis.f90 0
» __svml_log8_mask_b3 4.3% __svml_log8_mask_b3 0
» subgcd 3.2% subqcd amplitudes.f90 0
» breit2lab 1.6% breit2lab PS.f90 0
» hamp_glqlggb_1 1.4% hamp_qlqlggb_1 amplitudes.f90 0
» getljet 1.3% getljet analysis.f90 0
» me0_qlqlgg 1.3% me0_qlqlgg amplitudes.f90 0
» __libm_acos_I9 1.2% __libm_acos_I9 0
) analyzejet 1.2% analyzejet analysis.f90 0
» hamp alalaab 2 1.1% hamp alalaab 2 amplitudes.f30 0

<

>

<

>

Thread

O: o = w p0s 20s 40s 60s 80s 100s 120s 140s
distress (TID: 55598)

CPU Utilization

(Y) Y

Any Thread | | Any Module v || Any Utilizati -

User functions +1 | | Show inline funcf

[Thread v|
[ERunning
WuCPU Time
#Spin and Overhead ..
0 ®CPU Sample

CPU Utilization
WaCPU Time
Spin and Overhead ..

n/t_GD| 44
—

Intel VTune Amplifier

S SN (| =G|

Welcome

Grouping:| Source Function / Function / Call Stack

Source Function / Function / Call Stack

CPUTime Vv [»!

Module

Function (Full)

Source File

Start Address

spinoru 0

» invariants 9.0% invariants aux.f90 0
» getpdfs 8.3% getpdfs fitpdf.f90 0
> ktjet 6.9% ktjet analysis.fS0 0
» me0_gqlqlgg 6.1%: me0_qglglgg amplitudes.fS0 0
» __svml_log8_mask_b3 5.9% __svml_log8_mask_b3 0
» breit2lab 2.5% breit2lab PS.f90 0 -
> dli2 2.4% dli2 lis.f90 0 i
» getljet 1.8% getljet analysis.f90 0
» analyzejet 1.6% analyzejet analysis.fS0 0
» me0_glqlqgb_f3 1.6% me0_qlqlqgb_f3 amplitudes.f90 0
» ds_gl_s_nnlo_qgcd_g 1.6% ds_ql_s_nnlo_qgcd_g sub.f90 0
» me0_glqlqgb_f4 1.3% me0_qlqlqgb_f4 amplitudes.f90 0
» ps4 1.3% ps4 PS.f90 0
» for costr 1.3% for costr 0 v
< PAIRY >

O: o = w p0s 20s 40s 60s 80s 100s 120s 140s |Thread "|)
'§ distress (TID: 55598) [ERunning
E WwaCPU Time

#Spin and Overhead ...

CPU Utilization

Copyright ©) Y
*Other nam

Any Thread | |[98.9%] distres: v | | Any Utilizatic v

User functions+1 v | |Hide inline functic -

[] ®CPU Sample

CPU Utilization
WaCPU Time
Spin and Overhead ..

Functionsonly v

ntel | 45
—

Intel VTune Amplifier - m] X

g & b

& db = @ Welcome amplxe distress 9-04-10-20- =
YT

1
. il BNl RVIV

INTELVTUNE

Grouping:| Source Function / Function / Call Stack

Source Function/ Function / Call Stack
[Loop at line 264 in spinoru]

CPUTime Vv [»

23.8%

Module

Function (Full)
[Loop at line 264 in spinoru]

Source File
aux.f90

(@]

MBI

Start Address

) [Loop at line 141 in nnlobeami] 19.3% [Loop at line 141 in nnlobeami] beamintegrand.f90 0
) [Loop at line 2499 in dxsec_gql_nnlor] 11.1% [Loop at line 2499 in dxsec_gl_nnlor] xsec.f90 0
) [Loop at line 112 in vegas] 10.6% [Loop at line 112 in vegas] vegas.f90 0
) [Loop at line 2750 in dxsec_gl_nnlov_a] 3.2% [Loop at line 2750 in dxsec_gl_nnlov_a] xsec.f90 0
) [Loop at line 60 in ktjet] 3.1% [Loop at line 60 in ktjet] analysis.f90 0
) [Loop at line 1778 in ds_q|_s_nnlo_gcd_g 2.9% [Loop at line 1778 in ds_gl_s_nnlo_qgcd_g] sub.f90 0
) [Loop at line 181 in invariants] 2.6% [Loop at line 181 in invariants] aux.fo0 0
) [Loop at line 180 in invariants] 2.1% [Loop at line 180 in invariants] aux.fo0 0
) [Loop at line 2055 in ds_ql_s_nnlo_gcd_fi 2.0% [Loop at line 2055 in ds_gl_s_nnlo_qgcd_f2] sub.f80 0
) [Loop at line 43 in ktjet] 2.0% [Loop at line 43 in ktjet] analysis.f90 0
) [Loop at line 1986 in ds_gl_s_nnlo_qcd_f 1.8% [Loop at line 1986 in ds_gl_s_nnlo_qgcd_f1] sub.f90 0
) [Loop at line 1882 in ds_ql_s_nnlo_qcd 1.8% [Loop at line 1882 in ds_gl_s_nnlo_qgcd_g] sub.f90 0
) [Loop at line 1846 in ds_gl_s_nnlo_gcd 1.8% [Loop at line 1846 in ds_gl_s_nnlo_qgcd_g] sub.f90 0
» ILoop at line 1812 inds al s nnlo acd Al 1.7% [Loob at line 1812 inds al s nnlo acd al sub.f30 0 . v
O: s = o ¥ m 20s 40s 60s 80s 100s 120s 140s |Thread V|)
§ distress (TID: 55598) [ERunning
‘E WwaCPU Time
#Spin and Overhead ...

[] ®CPU Sample

CPU Utilization
WaCPU Time
Spin and Overhead ..

CPU Utilization

Copyright ©

n/t—GD| 46
—

X

*Other nam

Any Thread v | 1[98.9% distres v | | Any Utilizatic ~

User functions+1 v | | Show inline functi v

Intel VTune Amplifier

Grouping:| Call Stack

Welcome

Top-down Tree

Function Stack CPU Time: Total ¥ | CPU Time: Self ' Module | Function (Full) | SourceFile | StartAddress | ~
v Total 100.0% Os
v [Outside any loop] 99.9% 0.020s | | [Outside any loop] v 0
v [Loop at line 100 in vegas] 99.6% Os distress [Loop at line 100 in vegas] vegas.f90 0x4162c8
+ [Loop at line 112 in vegas] 99.6% 1.531s distress [Loop at line 112 in vegas] vegas.f30 0x416641
v [Loop at line 112 in vegas] 98.2% 13.427s distress [Loop at line 112 in vegas] vegas.f90 0x4166f1
v [Loop at line 2499 in dxsec_ql_ 36.9% 15.606s distress [Loop at line 2499 in dxsec_gl... xsec.f90 0x49ba17
v [Loop at line 263 in spinoru] 24.2% 1.422s distress [Loop at line 263 in spinoru] aux.fo0 Ox41ecd6 -
23.2%| 32.939s | distress [Loop at line 264 in spinoru] aux.f90 Ox41edcf i
» [Loop at line 258 in spinoru] 1.1% 0.498s distress [Loop at line 258 in spinoru] aux.f0 Ox41ea94
) [Loop at line 260 in spinoru] 0.4% 0.324s distress [Loop at line 260 in spinoru] aux.f90 Ox41ec41
) [Loop at line 2487 in LHAPD 0.1% 0.048s libLHAPDF.so [Loop at line 2487 in LHAPDF:... stl_algo.h 0x669¢c9
» [Loop at line 1169 in LHAPD 0.1% 0.036s libLHAPDF.so [Loop at line 1169 in LHAPDF:... stl_tree.h 0x66960
» [Loop at line 139 in nnlobeami] 19.1% Os distress [Loop at line 139 in nnlobeami] beaminteg... 0x4310f9
) [Loop at line 43 in ktjet] 6.4% 2.808s distress [Loop at line 43 in ktjet] analysis.f80 0x420c70
2 » ILoob at line 2750 in dxsec u)l - 3.8% 4.494s distress [Loob at line 2750 in dxsec al... xsec.f90 0x49d2b2 . v
O: o = w p0s 20s 40s 60s 80s 100s 120s 140s | Thread "|)
§ distress (TID: 55598) [ERunning
‘E WwaCPU Time
#Spin and Overhead ...

[] ®CPU Sample

CPU Utilization
WaCPU Time
Spin and Overhead ..

Copyright ©
*Other nam

CPU Utilization

Y

B’

Any Thread | | AnyModule | | Any Utilizatic v

User functions +1 v

Show inline functi v

@| 47
—

%G »

mplifie

& D amplxe_distress__2019-04-10-20-23
Hotspots Hotspots by CPU Utilization + @

=3 = Welcome

HPC Performance Characterization

O

INTELVTUNE AMPLIFIER 20]5

Analysis Configur ottom-up Caller/Callee = Top-down Tree Platform aux.f90 x aux.fo0 x : P
Grouping:| Call Sta Hotspots by CPU Utilization \VH Ed L
_ _ al v > [CPUTime: Self » Modue | Function (Full) | SourceFile | StartAddress | ~
Total Threading Efficiency 100.0% 0s
[Outside any loop] 99.9% 0.020s [Outside any loop] 0
[Loop at line 100 in vegas] 99.6% Os distress [Loop at line 100 in vegas] vegas.fo0 0x4162c8
[Loop at line 112 in vegas] 99.6% 1.531s distress [Loop at line 112 in vegas] vegas.f90 0x416641
[Loop at line 112 in vegas] 98.2% 13.427s distress [Loop at line 112 in vegas] vegas.f90 0x4166f1
[Loop at line 2499 in dxsec_ql_ 36.9% 15.606s distress [Loop at line 2499 in dxsec_qgl... xsec.f90 0x49ba17
[Loop at line 263 in spinoru] 24.2% 1.422s distress [Loop at line 263 in spinoru] aux.fo0 Ox41ecd6
[Loop at line 264 in spinor 23.2% 32.939s distress [Loop at line 264 in spinoru] aux.f90 0x41edcf
[Loop at line 258 in spinoru] 1.1% 0.498s distress [Loop at line 258 in spinoru] aux.f0 Ox41ea94
[Loop at line 260 in spinoru] 0.4% 0.324s distress [Loop at line 260 in spinoru] aux.f90 O0x41ec41
[Loop at line 2487 in LHAPD 0.1% 0.048s libLHAPDF.so [Loop at line 2487 in LHAPDF:... stl_algo.h 0x669c9
[Loop at line 1169 in LHAPD 0.1% 0.036s libLHAPDF.so [Loop at line 1169 in LHAPDF:... stl_tree.h 0x66960
[Loop at line 139 in nnlobeami] 19.1% Os distress [Loop at line 139 in nnlobeami] beaminteg... 0x4310f9
[Loop at line 43 in ktjet] 6.4% 2.808s distress [Loop at line 43 in ktjet] analysis.f90 0x420c70
< [Loob at line 2750 in dxsec a)l 3.8% 4.494s distress [Loopb at line 2750 in dxsec al... xsec.f90 0x49d2b2 v
o+ A e e R M [Tihvead 7]
£ waCPU Time
#Spin and Overhead ..

[] ®CPU Sample

CPU Utilization
WaCPU Time
#aSpin and Overhead -

CPU Utilization

Copyright ©
*Other nam

FILTER 100.0% X | IAny Process v| |AnyThread v] IAny Module

v| |Any Utilizati(v| | |Userfunctions+1

v| IShowinIinefunctivI ILoopsonly

Intel VTune Amplifier@jlselogin1 B D)

Z &% r & B = O | welcome x || roo0hpc x =

Grouping:| Function / Call Stack ' I @

» » Back-End Bound
Function / Call Stack ﬁm ¥ | CPlRate Front-End Bound Bad Speculation Memory Latency Mer
L1 Hit Rate L2 Hit Rate L2 Hit Bound L2 Miss Bound UTLB Overhead Split Loads

09 15.2% %| __97.9%| 100.0% %

» bicub_interpol2_aio_vec 11.1% 1.488 36.4% 0.9% 97.8% 100.0% 7.2% 0.0% 0.3% 0.0%

» efield_gk_elec2_vec 10.9% 1.850 29.2% 1.0% 85.2% 100.0% 31.0% 0.0% 2.7% 0.0%

» derivs_elec_vec 8.7% 2.241 57.9% 0.2% 86.2% 100.0% 28.7% 0.0% 0.3% 0.0% | {
» field_following_pos2_vec 5.7% 0.969 43.6% 1.8% 94.3% 100.0% 33.3% 0.0% 0.2% 0.0%| H
) i_interpol_ider0_aio_vec 5.3% 1.896 12.0% 0.0% 89.5% 100.0% 11.8% 0.0% 0.5% 0.0%

» field_vec 4.8% 2.413 57.1% 0.0% 89.9% 100.0% 23.6% 0.0% 0.0% 0.0%

» derivs_single_with_e_eles 3.0% 1.734 55.5% 0.0% 88.5% 100.0% 34.4% 0.0% 0.8% 0.0%

» fld_vec_modulefield_follo 3.0% 1.189 34.9% 6.7% 74.0% 100.0% 73.0% 0.0% 0.9% 0.0%

» bvec_interpol_vec 2.9% 1.131 38.8% 0.0% 91.2% 100.0% 36.2% 0.0% 0.0% 0.0%

» pushe_single_vec 2.3% 1.943 43.9% 1.5% 71.3% 100.0% 54.7% 0.0% 1.1% 5.1%
Hternol ider0 aio vec o o 0.0% 0.0% 1.4% 0.0%

O: dp == o ir0s . 183.876s [200s @ |Thread =

B| OMP Master Thread #0 (... ¥ [@Running
g -
€| OMP Worker Thread #1 (... 7 ¥/ @aCPU Time
OMP Worker Thread #2 (... ¥ CPU Time
#aCPU Time

OMP Worker Thread #3 (...

OMP Worker Thread #17 ... paused
OMP Worker Thread #55 ...
OMP Worker Thread #52 ...
CPU Time]
(v} Y i

Viewing the result

e Text file reports:
 amplxe-cl -help report How do | create a text report?
 amplxe-cl -help report hotspots What can | change
* amplxe-cl -R hotspots -r ./res_dir -column=? Which columns are available?

e Ex: Report top 5% of loops, Total time and L2 Cache hit rates
* amplxe-cl -R hotspots -loops-only
-limit=5 -column="“L2_CACHE_HIT, Time Self (%)”
* Vtune GUI
 unset LD_PRELOAD; amplxe-gui

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

: Using result path "~ /gpfs/jlse-fso/users/pvelesko/nbody-demo/verS/amplxe_knl_nodiv_66k*
Executing actions 75 % Generating a report Elapsed Time: 280.549s

ockticks: 405,093,000,000
Instructions Retired: 342,199,000,000
CPI Rate: 1.184
MUX Reliability: ©.992
Front-End Bound: 1.5% of Pipeline Slots
ITLB Overhead: 0.0% of Clockticks

L]
BACLEARS: 0.1% of Clockticks
MS Entry: 0.0% of Clockticks
ICache Line Fetch: 1.6% of Clockticks

Speculation: 0.2% of Pipeline Slots

Branch Mispredict: 0.2% of Clockticks

SMC Machine Clear: 0.0% of Clockticks

MO Machine Clear Overhead: 0.6% of Clockticks

Back-End Bound: 56.2% of Pipeline Slots
| A significant proportion of pipeline slots are remaining empty. When

operations take too long in the back-end, they introduce bubbles in the

pipeline that ultimately cause fewer pipeline slots containing useful

work to be retired per cycle than the machine is capable of supporting

This opportunity cost results in slower execution. Long-latency

operations like divides and memory operations can cause this, as can too
m . P many operations being directed to a single execution port (for example,
General Exploration Microarchitecture mare mLEipLy aperations arriving in the back-end per cycle than the

execution unit can support).

Memory Latency
. . . . L1 Hit Rate: 60.2%

Ana|ys|s Conﬂgura“on Collection L(g Summ The L1 cache is the first, and shortest-latency, level in the
memory hierarchy. This metric provides the ratio of demand load
requests that hit the L1 cache to the total number of demand load

"~ . . . ” k requests.

arouping: Function / Call Stac bit Rote: o850

Hit Bound: 100.0% of Clockticks

Issue: A significant portion of cycles is being spent on data

Function / Call Stack fetches that miss the L1 but hit the L2. This metric includes A Specu|ation : Back-End Bound Re tirinq

coherence penalties for shared data.

GSimulation::start s 0.1% 41.3% 58.6%

1. If contested accesses or data sharing are indicated as likely
. . . issues, address them first. Otherwise, consider the performance "
apic_timer_interrupt tuning applicable to an L2-missing workload: reduce the data 0.0 4
- - working set size, improve data access locality, consider blocking
or partitioning your working set so that it fits into the L1, or

native_write_msr_safe bettarlexploitihardwaraprafatchars? nn ¢

2. Consider using software prefetchers, but that they can
interfere with normal loads, potentially increasing latency, as
well as increase pressure on the memory system.

= = — 2 Miss Bound: 36.2% of Clockticks
Issue: A high number of CPU cycles 1s being spent waiting for L2
Grouping: Function / Call Stack

load misses to be serviced.

Tips:

1. Reduce the data working set size, improve data access
locality, blocking and consuming data in chunks that fit into the
L2, or better exploit hardware prefetchers.

Function / Call Stack 2. GETEAtEr ieiTE SOEETD prelEieiens B that they can Me mory Late ncy
increase latency by interfering with normal loads, as well as '
L2 Hit Bound

increase pressure on the memory system.

|
UTLB Overhead: 4.6% of Clockticks
SIMD Compute-to-L1 Access Ratio: 1.490
Gslmululm "tm SIMD Compute-to-L2 Access Ratio: 4.003
| This metric provides the ratio of SIMD compute instructions to
| the total number of memory loads that hit the L2 cache. On this
lanicr navt Adaardlina | platform, it is that this ratio is large to ensure
| efficient usage of compute resources.

Contested Accesses (Intra-Tile): 0.0%
Page Walk: 4.9% of Clockticks
Memory Reissues
split Loads: 0.0%
Split Stores: 0.0%
Loads Blocked by Store Forwarding: 0.0%
Retiring: 4%.1x of Pipeline 210{5 feick
VPU Utilization: 99.9% of Clockticks
Optimization Notice Divider: 6.0% of Clockticks

Copyright © 2018, Intel Corporation. All rights reserved. MS Assists: 0.1% of Clockticks
FP Assists: 0.0% of Clockticks

*Other names and brands may be claimed as the property of others. Total Thread Count: 1

Microarchitecture Exploration - Caches

L1 Hit % 100% 63.9% 62.4% 48.5% 57.5% 60.2%
L2 Hit % 0% 100% 100% 100% 99.2% 98.8%
L2 Hit 0% 100% 100% 100% 100% 100%
Bound %
L2 Miss 0% 0% 0% 0% 28.6% 36.2%
Bound %

Optimization Notice

Software

Profiling PYThon & ML

applications

Python

Profiling Python is straightforward in VTune™ Amplifier, as long as one does the
following:

= The “application” should be the full path to the python interpreter used

= The python code should be passed as “arguments” to the “application”

In Theta this would look like this:

aprun -n 1 -N 1 amplxe-cl -c hotspots -r res dir \
-- /usr/bin/python3 mycode.py myarguments

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Simple Python Example on Theta

aprun -n 1 -N 1 amplxe-cl -c hotspots -r vt pytest \
-- /usr/bin/python ./cov.py naive 100 1000

& Basic Hotspots Hotspots by CPU Usage viewpoint (change) ©
7 DCollectionLog O Analysis Target A AnalysisType & Summary & Bottom-up @ Caller/Callee @ Top-down Tree ':Platform (3 cov.py

Elapsed Time : 209.598s

Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Function Module CPU Time

¥ covpy 113533s
covpy 91.587s
own module] 1.460s
frame(s)] 1.260s
covpy 0.588s

CPU Usage Histogram

INTELVTUNE AMPLIFIER 2018

This histogram displays a percentage of the wall time the specific number of CPUs were running simuttaneously. Spin and Overhead time adds to the Idie CPU usage value:

% 100 150 200

Simultaneously Utiized Logical CPUs

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Naive implementation of the calculation of
a covariance matrix

Summary shows:
= Single thread execution
= Top function is “naive”

Click on top function to go to Bottom-up
view

Bottom-up View and Source Code

@ Basic Hotspots Hotspots by CPU Usage viewpoint (change) ©
4 CCollectionlog O Analysis Target A Analysis Type & Summary @ Bottom-up @ Caller/Callee & Top-down Tree ' Platform [3 covpy

Grouping:| Module / Function / Call Stack v(&|[Q
CPUTime v _
Module / Function / Call Stack B Module
e S e e | Somine | Oveens e
v covpy 2037285 (S 2280s 0s
¥ naive 111.873s 1.660s 0s covpy naive(fullArray)
v main 110.833s 1,660 0s covpy main()
1108135 1.660s | 05| covpy <moduie>
» B main — <module> — _star covpy main()
» B naive — main — <module> | 1.040s 0s 0s covpy naive(fullArray)
» <genexpr> 90.967s (D 0620s 0s covpy naive@<genexpr>
» <module> 0.588s 0s 0s covpy <module>
» main 0.300s 0s 0s covpy main()
» [Unknown] 2720s | 0s 0s
» libc-dynamic so
» python2.7
» libpin3dwarf so
» acvdonc cn
> < >

Thread

Inefficient array multiplication found quickly
We could use numpy to improve on this

o: + -

[2018
7 -

o~
CPU Time
~ | Viewing < 10f1 + selected stack(s)
100.0% (112.473s of 112.473s)
covpylnaive - covpy
covpylmain+0x42 - covpy 200
covpyl<module>+0x221 - covpy.
python2.7!_start+0x28 - [unknow.

Thread
[l Running
e CPU Time
s Spin and Overhead Ti
@ CPU Sample

OREC

&l Basic Hotspots Hotspots by CPU Usage viewpoint (change) @
< EJCollection Log @ Analysis Target A Analysis Type 3 Summary & Bottom-up & Caller/Callee & Top-down Tree =

Assembly % & ¥ Q Assembly grouping: Function Range / Basic Block / Address

CPU Time:
e Source Effective Time by U
Line y Utili
Bidie @roor Mok W ide:
59
60 # calculate norm arrays and populate norm arrays dict
61 for i in range (numCols):
62 normArrays.append (np.zeros ((numRows, 1), dtype=float))
63 for j in range (numRows): |
64 normArrays[i) [j]=fullArray(:, i][j)-np.mean(fullArray[:, i 6.3%-
65
66
67 # calculate covariance and populate results array
68 for i in range (numCols):
69 for § in range (numCols): |
70 result(i,j] = sum(p*q for p,q in zip(
n normArrays(i],normArrays(3j]))/ (numRows)
72
73 end = time.time()
74 print('overall runtime = ' + str(end - start))

Note that for mixed Python/C code a Top-Down view can often be helpful to drill down into the C kernels

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® VtunE™ Application

Performance Snapshot

Performance overview at you fingertips

VTune™ Amplifier’s Application Performance Snapshot

High-level overview of application performance

= |dentify primary optimization areas

= Recommend next steps in analysis

= Extremely easy to use

= |nformative, actionable data in clean HTML report
= Detailed reports available via command line

= Low overhead, high scalability

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Usage on Theta

Launch all profiling jobs from /projects rather than /home
No module available, so setup the environment manually:
$ module load vtune
$ export PMI NO FORK=1
Launch your job in interactive or batch mode:
$ aprun -N <ppn> -n <totRanks> [affinity opts] aps ./exe

Produce text and html reports:

$ aprun -report ./aps result ...

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

APS HTML Report

Application: heart_demo
Report creation date: 2017-08-01 12:08:48

umber of rarks: 144 Your application is MPI bound.

anks per noge:

Opemfp threads per rank: 2 This may be caused by high busy wait time inside the library (imbalance), non-
HW Platform: intel(R) Xeon(R) Processor code named Eroadwell-£P optimal communication schema or MPI library settings. Use MPI profiling tools

Logical Core Count per node: 72 like Intel® Trace Analyzer and Collector to explore performance bottlenecks.

121.39s i

MPI Time 53.74%K <10%

043% <10%

1470% <20%
0.30%K >50% |
0.00% <10%

50.98 0.68

SP FLOPS CPl —
(MAX 0.81, MIN 0.65)

MPI Time OpenMP_Imbalance Memory.Stalls FPU Utilization

53.74%K of Elapsed Time 0.43% of Elapsed Time 14.70% of pipeline slots 0.30%K~

65.23 0.52s;

(65.239) (0.529) Cache Stalls SP FLOPs per Cycle
MPIImbalance 12.84% of cycles 0.08 Out of 32.00
11.03% of Elapsed Time i
(13 3’9 :) P M-ng-W--EQ-QtQ-UﬂI- DRAM Stalls Vector Capacity Usage

: . . Resident: 0.18% of cycles 25.84%K

TOP 5 MPI Functions % Per node: .)

Waitall 3735 Peak: 786.96 MB NUMA FP Instruction Mix

Isend 648 Average: 687.49 MB 31.79% of remote accesses % of Packed FP Instr.: 3.54%
- Per rank:

Barrier 5.52 27.62 MB

Irecv 3.70 Average: 38.19 MB

Scatterv 0.00 V'r;”a': ;

er node:
.07
Peak: 9173.34 MB 007M
Average: 9064.92 MB FP Arith/Mem Wr Instr. Ratio
- Per rank: 0.30r
0.00%

Peak: 566.52 MB

Average 002 01 MB

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Common issues

Fixes

No call stack information - check that finalization
Incompatible database scheme - make sure the same version of vtune

Vtune sampling driver.. using perf - use latest vtune/ driver needs a rebuild

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Tips and tricks

Speeding up finalization

Advisor Vtune

add "--no-auto-finalize™ to the aprun add "--finalization-mode=none’ to aprun
followed by "advixe-cl R survey ... without followed by "amplxe-cl -R hotspots ..." without
aprun will cause to finalize on the momnode aprun will cause to finalize on momnode rather
rather than KNL. than KNL

You can also finalize on thetalogin: You can also finalize on thetalogin:

cd your_src_dir; cd your_src_dir;

export SRCDIR="pwd | xargs realpath’ export SRCDIR="pwd | xargs realpath’

advixe-cl -R survey --search-dir src:=S{SRCDIR} = amplxe-cl -R hotspots --search-dir src:=S{SRCDIR}

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Managing overheads

Advisor Dependencies and MAP analyses can have huge overheads

If able, run on reduced problem size. Advisor just needs to figure out the execution flow.

Only analyze loops/functions of interest:

https://software.intel.com/en-us/advisor-user-guide-mark-up-loops

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/advisor-user-guide-mark-up-loops

When do | use Vtune vs Advisor?

Vtune

What’s my cache hit ratio?

Which loop/function is consuming most
time overall? (bottom-up)

Am | stalling often? IPC?
Am | keeping all the threads busy?
Am | hitting remote NUMA?

When do | maximize my BW?

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Advisor

Which vector ISA am | using?

Flow of execution (callstacks)

What is my vectorization efficiency?
Can | safely force vectorization?
Inlining? Data type conversions?

Roofline

VTune Cheat Sheet

Compille with —-g —-dynamic

amplxe-cl —-c hpc-performance -flags -- ./executable

* -—--result-dir=./vtune output dir

e --search-dir src:=../src --search-dir bin:=./

* -knob enable-stack-collection=true —-knob collect-memory-

bandwidth=false
* -knob analyze-openmp=true
* —-finalization-mode=deferred if finalization i1s taking too long on KNL
e -data-limit=125 <€ in mb
* —-trace-mpi for MPI metrics on Theta

* amplxe-cl —-help collect survey

Optimization Notice https://software.intel.com/en-us/vtune-amplifier-help-amplxe-

Copyright © 2018, Intel Corporation. All rights reserved.

cl-command-syntax
*Other names and brands may be claimed as the property of others. Yy

Advisor Cheat Sheet

Compile with —-g —-dynamic

advixe-cl -c roofline/depencies/map -flags -- ./executable
* --project-dir=./advixe output dir
e —--search-dir src:=../src —--search-dir bin:=./

* —-no-auto-finalize if finalization is taking too long on
KNL

e —-interval 1 (sample at 1lms interval, helps for profiling
short runs)

e —data-limit=125 € in mb

e advixe-cl -help

Optimization Notice https://software.intel.com/en-us/advisor-help-lin-command-

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

line-interface-reference

How much further can we

go?

Introducing the Cache-Aware Roofline Model

Platform peak FLOPs

How many floating point operations per second

Gflop/s= min {@f orm PE@

Platform BW = Al

Theoretical value can be computed by specification
Example with 2 sockets InteI® Xeon® Processor E5-2697 v2

PEAK FLOP = 2 X X 12 x x 2=1036.8 Gflop/s
Number of sockets / Number of cores 1 port for addition, 1 for multiplication
Core Frequency Number of single precision

element in a SIMD register

More realistic value can be obtained by running Linpack
=~ 930 Gflop/s on a 2 sockets Intel® Xeon® Processor E5-2697 v2

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Platform PEAK bandwidth

How many bytes can be transferred per second

Platform PEAK
Platform BW » Al

Gflop/s= min

Theoretical value can be computed by specification
Example with 2 sockets Intel® Xeon® Processor E5-2697 v2
PEAKBW=2 x 1866 x 8 x 4_=119GB/s

— N

Number of sockets Byte per channel

M F
emory rrequency Number of mem channels

More realistic value can be obtained by running Stream
=~ 100 GB/s on a 2 sockets Intel® Xeon® Processor E5-2697 v2

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Drawing the Roofline

Platform PEAK

Gflop/s= min {Platform BW x Al

2 sockets Intel® Xeon® Processor E5-2697 v2
Peak Flop = 1036 Gflop/s
Peak BW = 119 GB/s

a

1036 j==c e ccccc e e e e e ===
Gflops/s

Memory BW bound

Compute bound

v

8.7

Al [Flop/Byte]

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Cache-Aware Roofline
Next Steps If Under the Vector Add Peak

If just above the
Scalar Add Peak

Check “Traits” in the Survey to see if FMAs are used.

If e d iler flags t Check vectorization
. not, try aftering your code or compiler flags to efficiency in the Survey.
induce FMA usage.

If under or near a memory FIRT Follow the recommendations
roof... A to improve it if it’s low.

FMA Peak

V‘tor Add Peak
‘ If under the
Scalar Add Peak...

Check the Survey Report to
see if the loop vectorized. If
not, try to get it to vectorize
if possible. This may involve
running Dependencies to see
if it’s safe to force it.

* Try a MAP analysis.
Make any appropriate
cache optimizations.

* If cache optimization is
impossible, try
reworking the
algorithm to have a
higher Al.

Scalar Add Peak

>

Arithmetic Intensity

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Software

