
Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.

These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for

use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the

applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

1

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY

RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF

ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as

SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors

may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel
Corporation in the U.S. and other countries.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Paulius Velesko

paulius.velesko@intel.com

Application Engineer

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Sample Code

git clone https://github.com/pvelesko/nbody-demo.git

https://github.com/pvelesko/nbody-demo.git

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Intel® Software Development Tools for Tuning

§ Compiler Optimization Reports - Key to identify issues preventing automated
optimization

§ Intel® VTune™ Application Performance Snapshot - Overall performance

§ Intel® Advisor - Core and socket performance (vectorization and threading)

§ Intel® VTune™ Amplifier - Node level performance (memory and more)

§ Intel® Trace Analyzer and Collector - Cluster level performance (network)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

Get the tools

Intel profiling tools are now FREE:

https://software.intel.com/en-us/vtune/choose-download

https://software.intel.com/en-us/advisor/choose-download

https://software.intel.com/en-us/vtune/choose-download
https://software.intel.com/en-us/vtune/choose-download
https://software.intel.com/en-us/advisor/choose-download

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

Agenda

• Optimize

• Make it go fast
• Vectorization
• Memory

• Make it scale
• MPI

• Profiling AI/ML

• Get the example code:

• git clone https://github.com/pvelesko/nbody-demo.git

https://github.com/pvelesko/nbody-demo
https://github.com/pvelesko/nbody-demo.git

The naïve code that could

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

8

Nbody gravity simulation

forked from https://github.com/fbaru-dev/nbody-demo (Dr. Fabio Baruffa)

Let’s consider a distribution of point masses located at r_1,…,r_n and have masses m_1,…,m_n.

We want to calculate the position of the particles after a certain time interval using the Newton law

of gravity.

struct Particle
{
public:
Particle() { init();}
void init()
{
pos[0] = 0.; pos[1] = 0.; pos[2] = 0.;
vel[0] = 0.; vel[1] = 0.; vel[2] = 0.;
acc[0] = 0.; acc[1] = 0.; acc[2] = 0.;
mass = 0.;

}
real_type pos[3];
real_type vel[3];
real_type acc[3];
real_type mass;

};

for (i = 0; i < n; i++){ // update acceleration
for (j = 0; j < n; j++){
real_type distance, dx, dy, dz;
real_type distanceSqr = 0.0;
real_type distanceInv = 0.0;

dx = particles[j].pos[0] - particles[i].pos[0];
…

distanceSqr = dx*dx + dy*dy + dz*dz + softeningSquared;
distanceInv = 1.0 / sqrt(distanceSqr);

particles[i].acc[0] += dx * G * particles[j].mass *
distanceInv * distanceInv * distanceInv;

particles[i].acc[1] += …
particles[i].acc[2] += …

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

cd ./nbody-demo/ver0

vim ./GSimulation.cpp # find the compute loop

vim ./Makefile; # add -qopt-report=5 flag

make

vim ./GSimulation.optrpt # search for the line number

Generating the compiler report

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

LOOP BEGIN at GSimulation.cpp(127,20)
remark #15542: loop was not vectorized: inner loop was already vectorized
LOOP BEGIN at GSimulation.cpp(130,5)

remark #15542: loop was not vectorized: inner loop was already vectorized
LOOP BEGIN at GSimulation.cpp(132,7)

remark #25085: Preprocess Loopnests: Moving Out Load and Store [GSimulation.cpp(145,4)]
remark #25085: Preprocess Loopnests: Moving Out Load and Store [GSimulation.cpp(146,4)]
remark #25085: Preprocess Loopnests: Moving Out Load and Store [GSimulation.cpp(147,4)]
remark #15415: vectorization support: non-unit strided load was generated for the variable <this->particles->pos[j][0]>, stride is 10 [GSimulation.cpp(138,9)]
remark #15415: vectorization support: non-unit strided load was generated for the variable <this->particles->pos[j][1]>, stride is 10 [GSimulation.cpp(139,9)]
remark #15415: vectorization support: non-unit strided load was generated for the variable <this->particles->pos[j][2]>, stride is 10 [GSimulation.cpp(140,9)]
remark #15415: vectorization support: non-unit strided load was generated for the variable <this->particles->mass[j]>, stride is 10 [GSimulation.cpp(145,36)]
remark #15415: vectorization support: non-unit strided load was generated for the variable <this->particles->mass[j]>, stride is 10 [GSimulation.cpp(146,36)]
remark #15415: vectorization support: non-unit strided load was generated for the variable <this->particles->mass[j]>, stride is 10 [GSimulation.cpp(147,36)]
remark #15305: vectorization support: vector length 16
remark #15309: vectorization support: normalized vectorization overhead 0.356
remark #15417: vectorization support: number of FP up converts: single precision to double precision 1 [GSimulation.cpp(143,4)]
remark #15418: vectorization support: number of FP down converts: double precision to single precision 1 [GSimulation.cpp(143,4)]
remark #15417: vectorization support: number of FP up converts: single precision to double precision 6 [GSimulation.cpp(145,4)]
remark #15418: vectorization support: number of FP down converts: double precision to single precision 1 [GSimulation.cpp(145,4)]
remark #15417: vectorization support: number of FP up converts: single precision to double precision 6 [GSimulation.cpp(146,4)]
remark #15418: vectorization support: number of FP down converts: double precision to single precision 1 [GSimulation.cpp(146,4)]
remark #15417: vectorization support: number of FP up converts: single precision to double precision 6 [GSimulation.cpp(147,4)]
remark #15418: vectorization support: number of FP down converts: double precision to single precision 1 [GSimulation.cpp(147,4)]
remark #15300: LOOP WAS VECTORIZED
remark #15452: unmasked strided loads: 6
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 137
remark #15477: vector cost: 20.000
remark #15478: estimated potential speedup: 6.300
remark #15487: type converts: 23
remark #15488: --- end vector cost summary ---

LOOP END

11

Looking at the compiler report

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

Infinite cycle only broken by external
constraints (time, papers, releases …)

Procedures for measuring performance and
validating results are critical

Automation and environment control are key
for consistency

Where do I start?

/soft/perftools/intel/advisor/advixe.qsub

/soft/perftools/intel/vtune/amplxe.qsub

The Basic Tuning Cycle

Measure
Performance

Profile
ApplicationModify Code

Validate
Results

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

amplxe.qsub Script

• Copy and customize the script from /soft/perftools/intel/vtune/amplxe.qsub

• All-in-one script for profiling

• Job size - ranks, threads, hyperthreads, affinity

• Attach to a single, multiple or all ranks

• Binary as arg#1, input as arg#2

• qsub amplxe.qsub ./your_exe ./inputs/inp

• Binary and source search directory locations

• Timestamp + binary name + input name as result directory

• Save cobalt job files to result directory

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Advisor – Vectorization Optimization

Roofline model analysis:
§ Automatically generate roofline model

§ Evaluate current performance

§ Identify boundedness

http://intel.ly/advisor-xeAdd Parallelism with Less Effort, Less Risk and More Impact

Faster Vectorization Optimization:
§ Vectorize where it will pay off most
§ Quickly ID what is blocking vectorization
§ Tips for effective vectorization
§ Safely force compiler vectorization
§ Optimize memory stride

15

http://intel.ly/advisor-xe

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Typical Vectorization Optimization Workflow

There is no need to recompile or relink the application, but the use of -g is recommended.

Note: if you’re using Theta run out of /projects rather than /home

1. Collect survey (overhead ~5%) advixe-cl -c survey

§ Basic info (static analysis) - ISA, time spent, etc.

2. Collect Tripcounts and Flops (overhead 1-10x) advixe-cl -c tripcounts -flop

§ Investigate application place within roofline model

§ Determine vectorization efficiency and opportunities for improvement

3. Collect dependencies (overhead 5-1000x) advixe-cl -c dependencies

§ Differentiate between real and assumed issues blocking vectorization

4. Collect Memory Access Patterns advixe-cl -c map

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Collect survey and tripcounts

cd /projects/intel/pvelesko/nody-demo/ver0

make

cp /soft/perftools/intel/advisor/advixe.qsub ./

qsub ./advixe.qsub ./nbody.x 2000 500

scp result back to your local machine

Text report can also be useful:

advixe-cl -R survey

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
18

View Result

X-forwarding is not recommended.

Tar the result along with sources (if you want to be able to view them)

or

Generate a snapshot:

$ advixe-cl --snapshot --pack --cache-sources --cache-binaries

then scp to your local machine

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

19

Analyze Result - advixe_ver0

Summary - ISA

CPU Time - Total vs Self

Loops and Functions/Loops Only/Functions only

Top Down

helpful when same function is called in multiple places

Compute Perf - FLOPs

Roofline

Click me! Advisor snapshot

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

Summary provides overall
performance characteristics

Top time consuming loops are listed
individually

Vectorization efficiency is based on
used ISA (in this case SSE2/SSE)

Note the warning regarding a higher
ISA (in this case -xMIC-AVX512)

Summary Report

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
21

Survey Report (Code Analytics Tab)

Analytics tab contains a wealth
of information

§ Instruction set

§ Instruction mix

§ Traits (sqrt, type
conversions, unpacks)

§ Vector efficiency

§ Floating point statistics

And explanations on how they
are measured or calculated -
expand the box or hover over
the question marks.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

Survey Report (Source Tab)

Notice the following:

§ Higher ISA available

§ Type conversion

§ Use of square root

All of these elements may
affect performance

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
23

Cache-Aware Roofline Model (CARM) Analysis

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
24

In this new version (ver2 in github
sample) we introduce the following
changes:

§ Consistently use float types to avoid
type conversions in GSimulation.cpp

§ Recompile to target Intel® Xeon Phi
7230 with -xMIC-AVX512

Note changes in survey report:
§ Reduced vectorization efficiency

(harder with 512 bits)
§ Type conversions gone

§ Gathers/Blends point to memory
issues and vector inefficiencies

Follow recommendations and re-test

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

25

Analyze Result - advixe_ver2

Roofline -

Change in OI (due to FP converts)

Jump in FLOPs

Memory Access

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

26

Vectorization: gather/scatter operation
The compiler might generate gather/scatter instructions for loops automatically vectorized where
memory locations are not contiguous

struct Particle
{
public:
...
real_type pos[3];
real_type vel[3];
real_type acc[3];
real_type mass;

};

struct ParticleSoA
{
public:
...
real_type *pos_x,*pos_y,*pos_z;
real_type *vel_x,*vel_y,*vel_z;
real_type *acc_x,*acc_y;*acc_z
real_type *mass;

};

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Memory access pattern analysis
How should I access data ?

Unit stride access are faster

Constant stride are more complex

Non predictable access are
usually bad

27

for (i=0; i<N; i++)
A[i] = B[i]*d

B

For B, 1 cache line load computes 4 DP

B

For B, 2 cache line loads compute 4 DP with
reconstructions

for (i=0; i<N; i+=2)
A[i] = B[i]*d

for (i=0; i<N; i++)
A[i] = B[C[i]]*d

B

For B, 4 cache line loads compute 4 DP with
reconstructions, prefetching might not work

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
28

In this new version (ver3 in github
sample) we introduce the following
change:

§ Change particle data structures
from AOS to SOA

Note changes in report:
§ Performance is lower

§ Main loop is no longer
vectorized

§ Assumed vector dependence
prevents automatic
vectorization

Follow recommendations and re-test

Next step is clear: perform a Dependencies analysis

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
29

Suggested solutions

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

30

Analyze Result - advixe_ver4

Vectorization time back to normal

Reduced execution time

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
31

Advisor Roofline – How much further can we go?

!"# $%&'(= 3
29 = 10%

Peak = SP Vector ADD * (1+ FMA Ratio)
Peak = 40 * (1 + 0.1) = 44 GFLOPS

012234& % (5 63%7 = 18
44 = 40%

Why only 40%?
• Vectorization Efficiency
• Long Latency/Complex Operations
• Poor Cache Utilization

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
32

Vectorization Efficiency?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
33

Complex Operations?

!"##$%& % () *$+, = 31
44 = 70%!"##$%& % () *$+, = 18

44 = 40%

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Maximum N before we lose caching?
KNL L1-32kB L2-1MB (1 tile/2cores)
32k/(4*4) = 2k (L1)
1MB/(7*4) = 35.7k(L2)

Memory Performance

34

0
10
20
30
40
50
60
70
80

10
00

15
00

20
00

25
00

30
00

0

35
00

0

40
00

0

50
00

0

60
00

0

65
00

0

GFLOPs vs N

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
36

Intel® VTune™ Amplifier

VTune Amplifier is a full system profiler

§ Accurate

§ Low overhead

§ Comprehensive (microarchitecture, memory, IO, treading, …)

§ Highly customizable interface

§ Direct access to source code and assembly

§ User-mode driverless sampling

§ Event-based sampling

Analyzing code access to shared resources is critical to achieve good performance on
multicore and manycore systems

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
37

Predefined Collections

Many available analysis types:

§ uarch-exploration General microarchitecture exploration
§ hpc-performance HPC Performance Characterization
§ memory-access Memory Access
§ disk-io Disk Input and Output
§ concurrency Concurrency
§ gpu-hotspots GPU Hotspots
§ gpu-profiling GPU In-kernel Profiling
§ hotspots Basic Hotspots
§ locksandwaits Locks and Waits
§ memory-consumption Memory Consumption
§ system-overview System Overview
§ …

Python Support

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
38

Collect uarch-exploration

cd /projects/intel/pvelesko/nody-demo/ver7

vim Makefile # edit to add -dynamic

cp /soft/perftools/intel/advisor/amplxe.qsub ./

vim amplxe.qsub # edit collection to “uarch-exploration”

qsub ./advixe.qsub ./nbody.x 2000 500

scp result back to your local machine

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
39

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
40

Hotspots analysis for nbody demo (ver7: threaded)

Lots of spin time indicate issues with load balance and synchronization

Given the short OpenMP region duration it is likely we do not have
sufficient work per thread

Let’s look a the timeline for each thread to understand things better…

• qsub amplxe.qsub ./your_exe ./inputs/inp

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
41

There is not enough work per thread
in this particular example.

Double click on line to access source
and assembly.

Notice the filtering options at the
bottom, which allow customization of
this view.

Next steps would include additional
analysis to continue the optimization
process.

Bottom-up Hotspots view

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
42

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
43

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
44

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
45

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
46

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
47

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
48

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
49

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
50

Viewing the result

• Text file reports:

• amplxe-cl -help report How do I create a text report?

• amplxe-cl -help report hotspots What can I change

• amplxe-cl -R hotspots -r ./res_dir -column=? Which columns are available?

• Ex: Report top 5% of loops, Total time and L2 Cache hit rates

• amplxe-cl -R hotspots -loops-only

-limit=5 -column=“L2_CACHE_HIT, Time Self (%)”

• Vtune GUI

• unset LD_PRELOAD; amplxe-gui

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
51

Using Vtune to check for bottlenecks

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

S 2k 2.5k 30k 35k 50k 60k
L1 Hit % 100% 63.9% 62.4% 48.5% 57.5% 60.2%

L2 Hit % 0% 100% 100% 100% 99.2% 98.8%

L2 Hit
Bound %

0% 100% 100% 100% 100% 100%

L2 Miss
Bound %

0% 0% 0% 0% 28.6% 36.2%

52

Microarchitecture Exploration - Caches

53

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
54

Python

Profiling Python is straightforward in VTune™ Amplifier, as long as one does the
following:

§ The “application” should be the full path to the python interpreter used

§ The python code should be passed as “arguments” to the “application”

In Theta this would look like this:

aprun -n 1 -N 1 amplxe-cl -c hotspots -r res_dir \
-- /usr/bin/python3 mycode.py myarguments

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice
55

Naïve implementation of the calculation of

a covariance matrix

Summary shows:

§ Single thread execution

§ Top function is “naive”

Click on top function to go to Bottom-up

view

Simple Python Example on Theta

aprun -n 1 -N 1 amplxe-cl -c hotspots -r vt_pytest \
-- /usr/bin/python ./cov.py naive 100 1000

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
56

Bottom-up View and Source Code

Inefficient array multiplication found quickly
We could use numpy to improve on this

Note that for mixed Python/C code a Top-Down view can often be helpful to drill down into the C kernels

Performance overview at you fingertips

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

VTune™ Amplifier’s Application Performance Snapshot

High-level overview of application performance

§ Identify primary optimization areas

§ Recommend next steps in analysis

§ Extremely easy to use

§ Informative, actionable data in clean HTML report

§ Detailed reports available via command line

§ Low overhead, high scalability

58

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
59

Usage on Theta

Launch all profiling jobs from /projects rather than /home

No module available, so setup the environment manually:

$ module load vtune

$ export PMI_NO_FORK=1

Launch your job in interactive or batch mode:

$ aprun -N <ppn> -n <totRanks> [affinity opts] aps ./exe

Produce text and html reports:

$ aprun -report ./aps_result_ ….

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

APS HTML Report

60

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Fixes

No call stack information - check that finalization

Incompatible database scheme - make sure the same version of vtune

Vtune sampling driver.. using perf - use latest vtune/ driver needs a rebuild

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Advisor

add `--no-auto-finalize` to the aprun

followed by `advixe-cl R survey …` without
aprun will cause to finalize on the momnode
rather than KNL.

You can also finalize on thetalogin:

cd your_src_dir;

export SRCDIR=`pwd | xargs realpath`

advixe-cl -R survey --search-dir src:=${SRCDIR}
..

Vtune

add `--finalization-mode=none` to aprun

followed by `amplxe-cl -R hotspots …` without
aprun will cause to finalize on momnode rather
than KNL

You can also finalize on thetalogin:

cd your_src_dir;

export SRCDIR=`pwd | xargs realpath`

amplxe-cl -R hotspots --search-dir src:=${SRCDIR}
..

Speeding up finalization

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
65

Managing overheads

Advisor Dependencies and MAP analyses can have huge overheads

If able, run on reduced problem size. Advisor just needs to figure out the execution flow.

Only analyze loops/functions of interest:

https://software.intel.com/en-us/advisor-user-guide-mark-up-loops

https://software.intel.com/en-us/advisor-user-guide-mark-up-loops

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
67

Vtune

• What’s my cache hit ratio?

• Which loop/function is consuming most
time overall? (bottom-up)

• Am I stalling often? IPC?

• Am I keeping all the threads busy?

• Am I hitting remote NUMA?

• When do I maximize my BW?

Advisor

• Which vector ISA am I using?

• Flow of execution (callstacks)

• What is my vectorization efficiency?

• Can I safely force vectorization?

• Inlining? Data type conversions?

• Roofline

When do I use Vtune vs Advisor?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
68

VTune Cheat Sheet
Compile with –g -dynamic

amplxe-cl –c hpc-performance –flags -- ./executable

• --result-dir=./vtune_output_dir

• --search-dir src:=../src --search-dir bin:=./

• -knob enable-stack-collection=true –knob collect-memory-
bandwidth=false

• -knob analyze-openmp=true

• -finalization-mode=deferred if finalization is taking too long on KNL

• -data-limit=125 ß in mb

• -trace-mpi for MPI metrics on Theta

• amplxe-cl –help collect survey

https://software.intel.com/en-us/vtune-amplifier-help-amplxe-
cl-command-syntax

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
69

Advisor Cheat Sheet
Compile with –g -dynamic

advixe-cl –c roofline/depencies/map –flags -- ./executable

• --project-dir=./advixe_output_dir

• --search-dir src:=../src --search-dir bin:=./

• -no-auto-finalize if finalization is taking too long on
KNL

• --interval 1 (sample at 1ms interval, helps for profiling
short runs)

• -data-limit=125 ß in mb

• advixe-cl -help

https://software.intel.com/en-us/advisor-help-lin-command-
line-interface-reference

Introducing the Cache-Aware Roofline Model

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Platform peak FLOPs
How many floating point operations per second

Theoretical value can be computed by specification
Example with 2 sockets Intel® Xeon® Processor E5-2697 v2
PEAK FLOP = 2 x 2.7 x 12 x 8 x 2 = 1036.8 Gflop/s

More realistic value can be obtained by running Linpack
=~ 930 Gflop/s on a 2 sockets Intel® Xeon® Processor E5-2697 v2

71

Number of sockets

Core Frequency

Number of cores

Number of single precision
element in a SIMD register

1 port for addition, 1 for multiplication

Gflop/s= "#$ % &'()*+," &-./
&'()*+," 01 ∗ .3

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Optimization Notice

Platform PEAK bandwidth
How many bytes can be transferred per second

Theoretical value can be computed by specification
Example with 2 sockets Intel® Xeon® Processor E5-2697 v2

PEAK BW = 2 x 1.866 x 8 x 4 = 119 GB/s

More realistic value can be obtained by running Stream
=~ 100 GB/s on a 2 sockets Intel® Xeon® Processor E5-2697 v2

72

Number of sockets

Memory Frequency

Byte per channel

Number of mem channels

Gflop/s= "#$ % &'()*+," &-./
&'()*+," 01 ∗ .3

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Drawing the Roofline

73

Gflops/s

AI [Flop/Byte]
8.7

1036

2 sockets Intel® Xeon® Processor E5-2697 v2
Peak Flop = 1036 Gflop/s
Peak BW = 119 GB/sGflop/s= "#$ % &'()*+," &-./

&'()*+," 01 ∗ .3

Compute bound

Memory BW bound

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

L1 Bandwidth

L2 Bandwidth

DRAM Bandwidth

FMA Peak

Vector Add Peak

Scalar Add Peak

74

Cache-Aware Roofline
Next Steps

If under or near a memory
roof…

If just above the
Scalar Add Peak

If Under the Vector Add Peak

If under the
Scalar Add Peak…

FLOPS

Arithmetic Intensity

• Try a MAP analysis.
Make any appropriate
cache optimizations.

• If cache optimization is
impossible, try
reworking the
algorithm to have a
higher AI.

Check “Traits” in the Survey to see if FMAs are used.
If not, try altering your code or compiler flags to
induce FMA usage.

Check vectorization
efficiency in the Survey.
Follow the recommendations
to improve it if it’s low.

Check the Survey Report to
see if the loop vectorized. If
not, try to get it to vectorize
if possible. This may involve
running Dependencies to see
if it’s safe to force it.

