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What is SYCL?

Single-source heterogeneous programming using STANDARD C++ 11

▪ Use C++ templates and lambda functions for host & device code

Aligns the hardware acceleration of OpenCL with direction of the C++ standard

C++ Kernel Language
Low Level Control

‘GPGPU’-style separation of 

device-side kernel source 

code and host code

Single-source C++
Programmer Familiarity
Approach also taken by 

C++ AMP and OpenMP

Developer Choice
The development of the two specifications are aligned so 

code can be easily shared between the two approaches
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Reactive to OpenCL Pros and Cons:

• OpenCL has a well-defined, 
portable execution model.

• OpenCL is too verbose for many 
application developers.

• OpenCL remains a C API and only 
recently supported C++ kernels.

• Just-in-time source compilation 
and disjoint source code is awkward 
and contrary to HPC usage models.

Proactive about Future C++:

• SYCL is based on purely modern 
C++ and should feel familiar to 
C++11 users.

• SYCL expected to run ahead of 
C++Next regarding heterogeneity 
and parallelism.  ISO C++ of 
tomorrow may look a lot like SYCL.

• Not held back by C99 or C++03 
compatibility goals.

Why SYCL?  Reactive and Proactive Motivation:
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Supported features

₊ templates

₊ classes

₊ operator overloading

₊ static polymorphism 

₊ lambdas

₊ pointer structure members (under 
USM)

₊ function pointers (in flight)

Unsupported features

₋ dynamic memory allocation

₋ dynamic polymorphism

₋ runtime type information

₋ exception handling 

₋ mutable static variables

SYCL C++ device code features



SYCL programming model
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Buffer Objects

Command Queue

Data Accessors

Kernel Code

SYCL vector addition example
#include <CL/sycl.hpp>

using namespace cl::sycl; 

int main () { 

…

// Device Buffers

buffer<float, 1> buf_a(array_a, range<1>(count));

buffer<float, 1> buf_b(array_b, range<1>(count));

buffer<float, 1> buf_c(array_c, range<1>(count));

queue myQueue;

myQueue.submit([&](handler& cgh) {

// Data accessors

auto a = buf_a.get_access<access::read>(cgh);

auto b = buf_b.get_access<access::read>(cgh);

auto c = buf_c.get_access<access::write>(cgh);

// Kernel

cgh.parallel_for<class vec_add>(count, [=](id<> i) 

{

c[i] = a[i] + b[i];

}

);

});

…

}

Application
scope

Kernel
scope

Command 
group scope
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SYCL Example: Graph of Asynchronous Executions

myQueue.submit([&](handler& cgh) {

auto A = a.get_access<access::mode::read>(cgh);

auto B = b.get_access<access::mode::read>(cgh);

auto C = c.get_access<access::mode::discardwrite>(cgh);

cgh.parallel_for<class add1>( range<2>{N, M},

[=](id<2> index) { C[index] = A[index] + B[index]; });

});

myQueue.submit([&](handler& cgh) {

auto A = a.get_access<access::mode::read>(cgh);

auto C = c.get_access<access::mode::read>(cgh);

auto D = d.get_access<access::mode::write>(cgh);

cgh.parallel_for<class add2>( range<2>{P, Q},

[=](id<2> index) { D[index] = A[index] + C[index]; });

});

myQueue.submit([&](handler& cgh) {

auto A = a.get_access<access::mode::read>(cgh);

auto D = d.get_access<access::mode::read>(cgh);

auto E = e.get_access<access::mode::write>(cgh);

cgh.parallel_for<class add3>( range<2>{S, T},

[=](id<2> index) { E[index] = A[index] + D[index]; });

});

add2

add3

add1

A B

A D

A E

C

D
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SYCL Example: Graph of Asynchronous Executions

myQueue.submit([&](handler& cgh) {

auto A = a.get_access<access::mode::read>(cgh);

auto B = b.get_access<access::mode::read>(cgh);

auto C = c.get_access<access::mode::discardwrite>(cgh);

cgh.parallel_for<class add1>( range<2>{N, M},

[=](id<2> index) { C[index] = A[index] + B[index]; });

});

myQueue.submit([&](handler& cgh) {

auto A = a.get_access<access::mode::read>(cgh);

auto D = d.get_access<access::mode::read>(cgh);

auto E = e.get_access<access::mode::discardwrite>(cgh);

cgh.parallel_for<class add2>( range<2>{P, Q},

[=](id<2> index) { E[index] = A[index] + D[index]; });

});

myQueue.submit([&](handler& cgh) {

auto C = c.get_access<access::mode::read>(cgh);

auto E = e.get_access<access::mode::read>(cgh);

auto F = f.get_access<access::mode::discardwrite>(cgh);

cgh.parallel_for<class add3>( range<2>{S, T},

[=](id<2> index) { F[index] = C[index] + E[index]; });

});

add2

add3

add1

A B A D

F

C

• SYCL queues are out-of-order by default – data dependencies order kernel executions
• Will also be able to use in-order queue policies to simplify porting 
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SYCL execution model
1,2,3-D index space (NDRange)

▪ Work item – single element of the index space

▪ Kernel is invoked for each work item in the NDRange

– API to query coordinates within NDRange to 
partition data or specialize execution

2 levels of grouping

▪ Work group ~ “Block” in CUDA. A team of work-items. 
Can be 3D

▪ Sub-group (Intel vendor extension) ~ “Warp” in CUDA

– Always 1D (along lowest dim)

– Work items might execute in lock-step

– Might make IFP with respect to each other

Grouping helps scaling. A grouping level may define

▪ Synchronization domain – barriers across work items 
within the group

▪ Memory scoping – memory shared/accessible only by 
work items within the group

▪ Group-wide operations
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Memory Model Highlights: memory kinds

Global memory

▪ accessible to all work-items in all work-groups. Read/write, may be cached, persistent across 
kernel invocations

Constant memory

▪ a region of global memory that remains constant during the execution of a kernel. The host 
allocates and initializes memory objects placed into constant memory.

Local Memory 

▪ shared between work-items in a single work-group and inaccessible to work-items in other 
work-groups. Example: SLM on Gen

Private Memory

▪ is a region of memory private to a work-item. Variables defined in one work-item’s private 
memory are not visible to another work-item. Example: Register File on Gen

12



Memory Model Highlights: buffers and images

On host they exist as real objects and can map to multiple device objects

On device – accessors of appropriate kind are used

Buffers – “usual memory”

▪ element can be of any std layout and trivially copyable type, can get a raw device 
pointer in device code

Images – “image memory”

▪ limited set of formats for image elements following popular GPU image formats

▪ “Special memory” - can’t get a plain pointer to contents in device code

▪ if mapped to GPU H/W, access can go through faster caches than with buffers.
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Parallelism: forms of parallel_for

Simplest – no work groups, flat work-item id

cg.parallel_for<class K>(range<1>(numWIs), [=](id<1> index) {

acc[index] = 42.0f;

});

Full – work-item id hierarchical, group operations available

cg.parallel_for<class K>(nd_range(range(numWGs), range(wgSize)), [=](nd_item<1> it) {

acc[it.get_global()] = 42.0f;

it.barrier(access::fence_space::global);

});

Single task – execute kernel in one work-item

cg.single_task<class K>([=]() { acc[0] = 43.0f; });
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Hierarchical parallelism

Hierarchical parallelism (HP) –
explicit scopes of parallel code, 
unlike OpenCL or CUDA

▪ Data and code semantics vary 
depending on scope

▪ Maps more to OpenMP, where 
scopes are explicit as well

Hierarchy levels:

▪ Current SYCL has 2: work group and 
work item

▪ Future SYCL may generalize to more 
levels

myQueue.submit([&](handler & cgh) {
// Issue 64 work-groups of 8 work-items each
cgh.parallel_for_work_group<class example_kernel>(
range<3>(4, 4, 4), range<3>(2, 2, 2), [=](group<3> myGroup) {
// [workgroup code]
int myLocal; // this variable is shared between workitems;

// will be instantiated for each work-item separately
private_memory<int> myPrivate(myGroup);

// Issue parallel work-items. The number issued per work-group is determined
// by the work-group size range of parallel_for_work_group. In this case,
// 8 work-items will execute the parallel_for_work_item body for each of the
// 64 work-groups, resulting in 512 executions globally/total.
myGroup.parallel_for_work_item([&](h_item<3> myItem) {
//[work-item code]
myPrivate(myItem) = 0;

});

// Implicit work-group barrier

// Carry myPrivate value across loops + “flexible range” for workitems
myGroup.parallel_for_work_item(range<3>(7, 7, 7), [&](h_item<3> myItem) {
//[work-item code]
output[myItem.get_global_id()] = myPrivate(myItem);

});
//[workgroup code]

});
});
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Hierarchical parallelism (logical view)

▪ Fundamentally top down expression of parallelism

▪ Many embedded features and details, not covered here

parallel_for_work_group (…) {
…
parallel_for_work_item (…) {

…
}

}



SYCL vs. CUDA VS. OpenCL
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SYCL OpenCL CUDA

NDRange Grid

Work group Block

Subgroup (ext) Warp

Work item Thread

USM (ext) SVM UM

Auto kernel dependence mgmt. via 
accessors and buffers

- Semi-auto (CUDA Graph)

Hierarchical parallelism - -

C++ in kernel code experimental C++ in kernel code

Support for any device - (Nvidia only)

Kernel as a lambda experimental experimental (--expt-extended-lambda)
“-“ means “not supported”



OpenCL interop

SYCL spec requires devices to interoperate with OpenCL and provides APIs

▪ kernel functions can be defined by traditional OpenCL C kernels

▪ equivalent OpenCL object can be retrieved from (almost) any SYCL object

– allowing using it with OpenCL API functions

▪ SYCL objects feature constructors which take OpenCL objects

– however in some cases the developer is responsible for maintaining lifetime 
consistency between OpenCL objects and SYCL objects.
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Intel’s SYCL implementation
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Intel SYCL Github project & links

SYCL github project – SYCL 1.2.1 + extensions:

▪ Repo: https://github.com/intel/llvm branch : sycl

▪ Supports CPU, Intel GPU (Gen8+), Intel FPGA (Arria 10) and Host devices. Any 
OpenCL 2.0-compatible device should work too.  Contact your Intel rep for details 

regarding supported hardware.

▪ Getting started guide 
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedWithSYCLCompiler.md

Khronos SYCL resources: https://www.khronos.org/sycl/resources

The latest SYCL language specification: 
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf

20

https://github.com/intel/llvm
https://securewiki.ith.intel.com/pages/viewpage.action?pageId=681642854
https://www.khronos.org/sycl/resources
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
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Intel extensions to SYCL 

▪ Unified Shared Memory (USM). Major productivity tool to avoid manual memory management.

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/USM.adoc

▪ NDRange subgroups. A performance tool for manual device code vectorization.

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/SubGroupNDRange/SubGroupNDRange.md

▪ Ordered queue. cl::sycl::queue is out-of-order. cl::sycl::ordered_queue may simplify usage and 
porting to SYCL from CUDA and OpenCL.

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/OrderedQueue/OrderedQueue.adoc

▪ Unnamed lambdas. -fsycl-unnamed-lambda makes class X in parallel_for<class X> optional. This 
enables, for example, implementing Kokkos parallel_for construct via SYCL’s parallel_for.

▪ NDRange reduction. API for generic reduction across NDRange.

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/Reduction/Reduction.md

▪ Function Pointers (in flight). SPIRV extension for now, language extension will follow.

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/SPIRV/SPV_INTEL_function_pointers.asciidoc

https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/USM.adoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/SubGroupNDRange/SubGroupNDRange.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/OrderedQueue/OrderedQueue.adoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/Reduction/Reduction.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/SPIRV/SPV_INTEL_function_pointers.asciidoc
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Intel SYCL Extension: USM

A pointer has the same representation and refers to the same location on all devices 
under USM. Automatic data movement between host and devices, direct pointer usage 
w/o accessors, device memory over-subscription.

4 Levels:

▪ Explicit. Explicit allocation of device memory and data copying. Device memory not 
accessible on host.

▪ Restricted. Adds allocation of host and shared memory. No explicit data copying in 
shared memory, but no concurrent access from host and device.

▪ Concurrent. Adds concurrent access to shared memory. Optionally allows device 
memory oversubscription.

▪ System. Does not require use of special allocator - malloc’ed memory is covered by 
USM. Allows oversubscription.

Explicit & Restricted are supported today.
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Intel SYCL Extension: USM – Simple Example

…
float* a = (float*) sycl::malloc_shared(100*sizeof(float), dev, ctxt);
float* b = (float*) sycl::malloc_shared(100*sizeof(float), dev, ctxt);

for (int i = 0; i < 100; i++) {
a[i] = func();

}

q.submit([&](handler &cgh) {
cgh.parallel_for<class foo>([=](id<1> i) {

b[i] = 3.14 * a[i];
});});

q.wait();

for (int i = 0; i < 100; i++) {
… = b[i];

}
…

▪ No accessors, direct pointer usage in the 
kernel

▪ Special malloc will not be needed in higher 
USM levels
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Intel SYCL Extension: NDRange subgroup

A tool for manual code vectorization. No new scope like 
parallel_for_work_item today – future SYCL will likely add.
SIMD loop approximate example:

cgh.parallel_for<class X>(..., [&](nd_item item)
{

sub_group sg = item.get_sub_group();
for (int v = sg.get_local_id(); v < N; v += sg.get_local_range()) {
// use v to index access to per SIMD-lane data
... sg.subgroup_api_call(...); ...

}
});

APIs
▪ local id and range, barrier, any, all, broadcast, reduce, *scan, shuffle*, load, store
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Intel SYCL Features

Offline compilation (aka Ahead-Of-Time). Produce native device code at compile 
time. Intel GPU, CPU and Intel FPGA are supported.

Windows support. Quality already close to Linux.

Separate compilation and linking. Allows the device program to span multiple 
separately compiled translation units. Interface to build systems remains almost as 
simple as w/o offload through “fat” objects and “fat” binaries.

Static device code libraries. Intel SYCL can aggregate host + device code into “fat” 
static libraries.

Device code distribution per modules. Compiler can auto-split device code into 
multiple modules to reduce JITting time and binary size (in flight)

Generic pointers. Not visible to the user. Makes it possible to reuse existing C++ 
libraries in SYCL device code. Requires SPIRV BEs to support generic AS. Language 
changes are coming too, maybe part of future SYCL spec.

Gcc or 3rd party compiler as a host compiler (in flight)



Intel SYCL Features: Separate Compilation

llvm-link

src1.cpp

.bc

src2.cpp

.bc

linked .bc

llvm-spirv

SPIRV image

Fat binary

.bc

device 
library

Device compiler 
Middle End

clang-offload-wrapper

Host compiler
Integration 

header generator

header1.h

header2.h

ld

.o .o

Device bin .o

SYCL RT headers

.lib .so

host libraries

Device bin
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SPIRV Back End

Device exe

JIT compilation

AOT compilation

$ clang++ -fsycl \

src1.cpp src2.cpp -lOpenCL

$ clang++ \

-fsycl-targets=spir64_gen-… \

src1.cpp src2.cpp -lOpenCL

Note: the simplest scenario is shown, 
when compilation and linkage are 1 
invocation
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General Optimization Tips for Intel GPU
Topic Tips

EU utilization Make sure the ND range is big enough to engage all H/W threads, vectorization multiplies the 
minimum required by vector length.

Divergent code Avoid it if possible replacing with min/max or compute a predication flag. 

Load balancing Make sure all instances of the kernel execute roughly the same time, otherwise the slowest 
will keep the device under-utilized.

Conditional 
execution

Avoid boundary condition checking in the code via handling it outside the kernel. Data 
structures can be padded.

Dynamic local 
indexing

Compiler can generate much better code for small local array access if indices are constant 
or can be known at compile time after unrolling. Avoid data-dependent indexing

Loops Compiler reduces control flow overhead by unrolling simple loops and inlining simple 
functions. Avoid complicated loops and functions

Small kernels It is profitable to make kernel code small enough to fit into the instruction cache. On the 
other hand, must do enough work to amortize offload overhead.

Data blocking Reduce global memory accesses by prior fetching frequently accessed data into a small local 
array. Compiler will try to allocate it on registers.
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BACKUP



Fat CPU 
binary

SpirV
Device 
code

Device compiler

SYCL Compiler Architecture
Single host + multiple device compilers

3rd-party host compiler can be used

▪ Integration header with kernel details

Support for JIT and AOT compilation

Support for separate compilation and linking

SYCL
Sources

SYCL
FE

Host compiler

AOT 
compilation

SPIR-V

LLVMIR

LLVM IR 
to SPIR-V

Device 
code

SYCL offload runtime

SPIR-V
Back End

JIT 
compilation

LoopNest
materializer

Loop Opt

SYCL headers 
over OpenCL*

SYCL headers 
over OpenMP

Vectorizer

Scalar
Opt

Integration
header

.bc & Integrated
Back Ends

SPIR-V
Back Ends

Single 
CPU 

binary OpenMP-based SYCL 
host device runtime

Host Device 
Back End

MT+SIMD path

* OpenCL dependence is to be moved under the Plugin Interface 29

SYCL host device 
runtime

Component TBD component



SYCL Runtime Architecture
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SYCL
application

SYCL
runtime

PI plugin

Native runtime
& driver

Device

SYCL runtime library

Scheduler
Device 

mgr
Program  & 
kernel mgr

SYCL API

Memory 
mgr

CPU

TBB RT

SYCL host / host device

SPIR-VDevice X exe

Host device 
RT interace

PI/OpenCL plugin

OpenMP RT

SYCL Runtime Plugin Interface (PI)

Device Z

OpenCL Runtime

…

PI types & services Device binary mgmt

DeviceX native RT

PI/X RT plugin

Device Y

Other 
layers

Device X

PI discovery 
& plugin infra

Modular architecture

Plugin interface to support 
multiple back-ends

Support concurrent offload to 
multiple devices

Support for device code 
versioning

▪ Multiple device binaries in a single 
fat binary



SYCL Runtime Plugin Interface
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libsycl.so
OCL ICD like discovery logic

PI_deviceX_plugin.so PI_OpenCL_plugin.so

libOpenCL.so

libdeviceX_rt.so libOCL_Y_rt.so libOCL_Z_rt.solibOCL_CPU_rt.so

dlopen dlopen

dlopen

Khronos ICD-compatible OpenCL installation “Custom” OpenCL installationNon-OpenCL runtime

Defines a programming model atop OpenCL 
concepts & model

Abstracts away the device layer from the SYCL 
runtime

▪ Allows implementations for multiple devices co-
exist



Convert OpenMP offload to SYCL offload
#pragma omp declare target
const float coeffs[] = {
0.2f, 0.3f, 0.3f, 0.0f,
0.1f, 0.5f, 0.5f, 0.0f,
0.3f, 0.1f, 0.1f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f };

#pragma omp end declare target

#pragma omp declare target
static void sepia_impl(const float* src, float* dst, int i) {
for (int j = 0; j < 4; ++j) {

float w = 0.0f;
for (int k = 0; k < 4; ++k) {

w += coeffs[4 * j + k] * src[i + k];
}
dst[i + j] = w;

}
}
#pragma omp end declare target

void Sepia::execute_offload(float* image) {
float* src_image = this->src_image;

#pragma omp target map(to: src_image[0:IMG_SIZE*4]) \
map(from: image[0:IMG_SIZE*4])

#pragma omp parallel for
for (int i = 0; i < IMG_SIZE * 4; i += 4) {

sepia_impl(src_image, image, i);
}

} 

static void sepia_impl(float *src, float *dst, int i) {
const float coeffs[] = {
0.2f, 0.3f, 0.3f, 0.0f,
0.1f, 0.5f, 0.5f, 0.0f,
0.3f, 0.1f, 0.1f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f };

i *= CHANNELS_PER_PIXEL;
for (int j = 0; j < 4; ++j) {
float w = 0.0f; 
for (int k = 0; k < 4; ++k) { 

w += coeffs[4 * j + k] * src[i + k];
}
dst[i + j] = w;

}
}
void Sepia::execute_offload(float* image) {

MyGpuSelector sel(pattern);
queue q(sel);
buffer<float, 1> image_buf(src_image, range<1>(IMG_SIZE));
buffer<float, 1> image_buf_exp(image, range<1>(IMG_SIZE));
q.submit([&](handler& cgh) {
auto src = image_buf.get_access<sycl_read>(cgh);
auto dst = image_buf_exp.get_access<sycl_write>(cgh); 
cgh.parallel_for<class s>(range<1>(IMG_SIZE), [=](id<1> i) {

sepia_impl(src.get_pointer(), dst.get_pointer(), i.get(0));
});

});
}

32



1D Parallelism example – loose mapping to OpenMP

collapse(n) can be used to express 
n-dimensional ||sm in OpenMP
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