
Argonne Leadership Computing Facility1

ALCF Data and Learning
Frameworks
Corey Adams, on behalf of the Datascience group
@ ALCF

Argonne Leadership Computing Facility1

Argonne Leadership Computing Facility2

Data Science at ALCF

Argonne Leadership Computing Facility2

Argonne Leadership Computing Facility3

Who Uses ALCF?
Allocation Distributions

50% INCITE
205 million node-
hours in CY2018

Up to 20% ASCR
Leadership Computing

Challenge

10% Director’s Discretionary
Leadership-class computing

DOE/SC capability
computing

Up to 20% Exascale
Computing Program

Dedicated to Open
Science.

Argonne Leadership Computing Facility4

datascience@alcf.anl.gov

Corey Adams Xiao-Yong Jin Murat Keceli Elise Jennings

Alvaro Vazquez

Mayagoitia

Tom Uram

Taylor Childers

Venkat VishwanathHimanshu Sharma

Prasanna
Balaprakash

Ganesh Sivaraman

Adrian Pope

Misha Salim Antonio Villarreal

Bethany Lusch

Murali Emani

Huihuo Zheng

mailto:datascience@alcf.anl.gov

Argonne Leadership Computing Facility5

ALCF Data Science Program (ADSP)
Targets Data & Learning Pillars

Data
• Deep learning
• Machine learning steering

simulations
• Parameter scans
• Materials design
• Observational signatures

• Data-driven models and
refinement for science using
ML/DL

• Hyperparameter optimization
• Pattern recognition
• Bridging gaps in theory

Learning

Big Data

• Experimental/observational data
• Image analysis
• Multidimensional structure discovery

• Complex and interactive workflows
• On-demand HPC
• Persistent data techniques

• Object store
• Databases

• Streaming/real-time data
• Uncertainty quantification
• Statistical methods
• Graph analytics

Argonne Leadership Computing Facility6

ADSP Allocation Program

• Allocation program for projects the push the limits for data-centric and data-intensive computing,
emphasizing techniques using machine learning, deep learning, and AI at scale.

• Current projects include science from :

• More information online: https://www.alcf.anl.gov/alcf-data-science-program
• Call is out now! ADSP Announcement

• Large Hadron Collider
• Material Sciences
• Cosmology
• Industry research

• Brain Connectomes and Brain Modelling
• Hyperparameter Searches
• Large Synoptic Survey Telescop
• APS Xray Sciences

https://www.alcf.anl.gov/alcf-data-science-program
https://www.alcf.anl.gov/articles/alcf-data-science-program-seeks-proposals-data-and-learning-projects-0

Argonne Leadership Computing Facility7

ALCF Datascience Group Supports …

• Software: optimized builds of important ML and DL software (tensorflow,
pytorch, horovod)

• Projects: datascience members work with ADSP projects, AESP projects, and
other user projects to help users deploy their science on ALCF systems

• Users: we are always interested to get feedback and help the users of big data
and learning projects, whether you’re reporting a bug or telling us you got great
performance.

Argonne Leadership Computing Facility8

Datascience software

Specifically optimized for KNL(CPU), with AVX512
• Using intel python 3.5 (based on intelpython35 module)
• GCC/7.3.0
• With –g, could be used for profiling
• Linked to MKL and MKL-DNN (home build)
• Dynamically linked to external libraries (be careful of your
LD_LIBRARY_PATH, PYTHONPATH)
• With MPI through Horovod

$ module avail datascience

---------------------- /soft/environment/modules/modulefiles ----------------------
datascience/craype-ml-1.1.2 datascience/pytorch-0.5.0-mkldnn
datascience/gcc-8.2.0 datascience/pytorch-1.0
datascience/horovod-0.13.11 datascience/tensorboard
datascience/horovod-0.14.1 datascience/tensorflow-1.4
datascience/horovod-0.15.2 datascience/tensorflow-1.6
datascience/keras-2.2.2 datascience/tensorflow-1.8
datascience/keras-2.2.4 datascience/tensorflow-1.10
datascience/mpi4py datascience/tensorflow-1.12

Argonne Leadership Computing Facility9

How to run datascience modules

Datascience modules are compiled for AVX512 vectorization and do not run on the login
nodes. Use qsub instead:

user@thetalogin6 : ~
$ module load datascience/tensorflow-1.12
Intel Python 3.5 version 2017.0.035 loaded

Tensorflow version 1.12.0 loaded

$ which python
/opt/intel/python/2017.0.035/intelpython35/bin/python

$ python -c "import tensorflow as tf"
2019-04-18 19:53:59.152614: F tensorflow/core/platform/cpu_feature_guard.cc:37] The
TensorFlow library was compiled to use AVX512F instructions, but these aren't available on
your machine.
Aborted (core dumped)

#/bin/bash

#!/bin/bash
#COBALT -A <allocation>
#COBALT -n 128
#COBALT -q default --attrs mcdram=cache:numa=quad

Load the datascience modules:
module load datascience/tensorflow-1.12 datascience/horovod-0.15.2

Run your application:
aprun -n nproc -N nproc_per_node -cc depth -j 2 python script

Argonne Leadership Computing Facility10

Monitoring your training: Tensorboard
Monitoring neural network training is important for iterating on your models and networks. Tensorboard is the widely

adopted solution. Two pieces:

1. During training, store scalars, images, histograms, etc into a tensorboard file

1. It’s built into tensorflow: tensorboard

2. You can use tensorboardX to generate compatible files from non-tensorflow frameworks – you will need to pip install

this into your own python area.

2. In a different session, use tensorboard to generate an interactive web page to monitor your training.

[on theta login node:]
$ module load datascience/tensorboard

$ tensorboard --logdir /path/to/your/tensorboard/directory/
==
* ALCF Data and Learning Frameworks -- Tensorboard
* Please go to your browser http://localhost:PORTNUMBER
* if you have used ssh -XY PORTNUMBER:127.0.0.1:6006 user@theta.alcf.anl.gov
* Contact: Huihuo Zheng <huihuo.zheng@anl.gov> for any issues
==

TensorBoard 1.13.1 at http://thetalogin4:6006 (Press CTRL+C to quit)

[from a fresh shell on your laptop:]
$ ssh –L 6006:127.0.0.1:6006 [user]@theta.alcf.anl.gov

Then, point your laptop browser here: http://127.0.0.1:6006

https://www.tensorflow.org/guide/summaries_and_tensorboard
https://github.com/lanpa/tensorboardX

Argonne Leadership Computing Facility11

We also support … pip, conda

If you need more than just tensorflow/pytorch/numpy, you can usually meet your requirements by using pip or conda.
Some notes:

• Intel distributes intel optimized python, tensorflow, and pytorch via conda. If you use conda it’s highly
recommended you use the Intel channel for these packages.

• Conda is a good option for getting up-to-date builds of python/tensorflow/pytorch on Theta from Intel.
• How do you build a conda environment? Full documentation for Theta and in general.

conda install tensorflow -c intel

conda create -n IDP intelpython3_full -c intel

pip install intel-tensorflow

https://www.alcf.anl.gov/user-guides/conda
https://uoa-eresearch.github.io/eresearch-cookbook/recipe/2014/11/20/conda/

Argonne Leadership Computing Facility12

We also support … Singularity
Singularity is a standalone runtime environment for containerized, self-contained operating
systems. You can set up your own software at all levels (compiler, python, tensorflow) and use
optimized MPI libraries on the host system.

For some workflows, it is easiest to package all dependent software in an isolated container.
ALCF supports Singularity (not docker), documentation for Theta can be found here:
https://www.alcf.anl.gov/user-guides/singularity

Singularity can be a very useful tool if you need it, but there are some important notes:
• For optimal communication performance, you must use the right MPI libraries inside of your

container.
• Launch singularity from within your aprun command, not the other way around.

See the documentation for a complete walkthrough of how to build containers with all the best
practices.

https://www.alcf.anl.gov/user-guides/singularity

Argonne Leadership Computing Facility13

Machine Leaning on Theta

Argonne Leadership Computing Facility13

Argonne Leadership Computing Facility14

Machine Learning and HPC

Time to Solution (Training) – with scalable learning techniques, you can
process more images per second, reduce the time per epoch, and reach a
trained network faster.

Quality of Solution – with more compute resources available, you can perform
hyperparameter searches to optimize network designs and training schemes.
With powerful accelerators, you can train bigger and more computationally
intense networks.

Inference Throughput – with high bandwidth IO, it is easy to scale up the
throughput of inference techniques for deep learning.

Accelerate and improve an application’s:

High Performance Computing can
improve all aspects of training and
inference in machine learning.

Argonne Leadership Computing Facility15

Machine Learning and HPC – KNL Nodes
Single Node Performance Matters!

Running a model on an HPC node is often not like a
standard GPU – many configuration parameters matter,
not all models have the same optimum parameters.

Intel KNL != Nvidia GPU, so there are some configurations
that are new/different for good performance.

intra_op_parallelism_threads: Nodes that can use
multiple threads to parallelize their execution will schedule
the individual pieces into this pool.
inter_op_parallelism_threads: All ready nodes are
scheduled in this pool.

config = tf.ConfigProto()
config.intra_op_parallelism_threads = num_intra_threads
config.inter_op_parallelism_threads = num_inter_threads
tf.Session(config=config)

https://www.tensorflow.org/guide/
performance/overview

Argonne Leadership Computing Facility16

Performance Setting Guidelines
Performance with Tensorflow on KNLs requires management of many parameters at both build
and run time.

Intel Performance Guidelines: https://software.intel.com/en-us/articles/maximize-tensorflow-
performance-on-cpu-considerations-and-recommendations-for-inference

ALCF Performance Guidelines: https://www.alcf.anl.gov/user-guides/machine-learning-tools

Key Takeaways:
• Set OMP_NUM_THREADS=[number of physical cores = 64 on Theta]
• Set KMP_BLOCKTIME=0 (sometimes =1 can be better for non-CNN)
• (tensorflow only) Set intra_op_parallelism_threads == OMP_NUM_THREADS == number of

physical cores == 64
• (tensorflow only) Set inter_op_parallelism_threads for your application. 0 will default to the

number of cores, the optimal value can be different for different applications. Run some tests!

https://software.intel.com/en-us/articles/maximize-tensorflow-performance-on-cpu-considerations-and-recommendations-for-inference
https://www.alcf.anl.gov/user-guides/machine-learning-tools

Argonne Leadership Computing Facility17

PyTorch on Theta
• PyTorch is an open source deep neural network framework similar to Tensorflow

• Available on theta via the datascience modules or by intel’s conda channel

• Compatible with horovod, though also has distributed tools built in
• Torch native distributed learning tools are untested on Theta, we suggest horovod.

• Intel has worked to optimize pytorch, the optimizations are in the main branch of torch but
require building from source (datascience module does this) or using intel conda channels.

• Intel has some suggestions for pytorch performance:
• https://software.intel.com/en-us/articles/intel-and-facebook-collaborate-to-boost-pytorch-cpu-

performance
• https://software.intel.com/en-us/articles/how-to-get-better-performance-on-pytorchcaffe2-with-

intel-acceleration

https://pytorch.org/
https://software.intel.com/en-us/articles/intel-and-facebook-collaborate-to-boost-pytorch-cpu-performance

Argonne Leadership Computing Facility18

KMP_BLOCKTIME

KMP_AFFINITY=granularity=fine,verbose,compact,1,0 Intel Affinity Guidelines

KMP_BLOCKTIME=0 is optimal for KNL Nodes

https://software.intel.com/en-us/articles/tips-to-improve-performance-for-popular-deep-learning-frameworks-on-multi-core-cpus

Argonne Leadership Computing Facility19

Machine Learning and HPC – KNL Nodes
Batch Size can be important

Batch Size Dependence

Inception3

Resnet50

Alexnet
Bigger batch size often yields more
images/second throughput (though not
always), but the downside is always
more seconds/global step at a large
batch size.

Have to balance throughput vs. number
of iterations in a fixed wallclock time.

Argonne Leadership Computing Facility20

mpi4py and h5py on Theta
• mpi4py is python wrapper for mpi, with compatibility for general python objects (slow) and

numpy objects (fast)
• Support for many mpi operations:

• Point to point communication
• Collectives
• Scatter/gather

• Compatible with horovod
• Use functions with Uppercase syntax (Send, Receive, Scatterv, Gatherv) for numpy objects
• Use functions with lowercase syntax (send, receive, scatter, gather) for generic python

objects
• Available with modules (module load datascience/mpi4py)

• h5py is the hdf5 python wrapper and also supports parallel hdf5, using mpi4py
• Need parallel hdf5 libraries to use this
• module load miniconda-2.7/conda-4.4.10-h5py-parallel

https://mpi4py.readthedocs.io/en/stable/tutorial.html
https://mpi4py.readthedocs.io/en/stable/intro.html
http://docs.h5py.org/en/stable/mpi.html

Argonne Leadership Computing Facility21

Distributed Learning
Machine learning is a very important workflow for current and future supercomputing systems.
How can you accelerate learning with more computing power?

Image from Uber’s Horovod: https://eng.uber.com/horovod/

Argonne Leadership Computing Facility22

What is Distributed Learning?

Data Parallel learning – with N nodes, replicate your model on each node.
After the forward and backward computations, average the gradients across all
nodes and use the averaged gradients to update the weights. Conceptually, this
multiplies the minibatch size by N.

Model Parallel Learning – for models that don’t fit on a single node, you can
divide a single model across multiple locations. The design of distributing a
model is not trivial, but tools are emerging.

Both (“Mesh” training) – Using n nodes for a single model, and N = k*n nodes
for distributed training, you can achieve accelerated training of extremely large
or expensive models.

The backpropagation algorithm is unchanged at it’s heart.

Argonne Leadership Computing Facility23

Data Parallel Learning

Image from Uber’s Horovod: https://eng.uber.com/horovod/

Each Model gets unique
input data and performs
calculations
independently.

All nodes communicate to average gradients.

Each Node gets it’s own
copy of the model.

Training Process

Model Gradients Averaged
Gradients

IO/Storage

Training Process

Model Gradients Averaged
Gradients

Training Process

Model Gradients Averaged
Gradients

Argonne Leadership Computing Facility24

Data Parallel Learning

Image from Uber’s Horovod: https://eng.uber.com/horovod/

Each Model gets unique
input data and performs
calculations
independently.

All nodes communicate to average gradients.

Each Node gets it’s own
copy of the model.

Training Process

Model Gradients Averaged
Gradients

IO/Storage

Training Process

Model Gradients Averaged
Gradients

Training Process

Model Gradients Averaged
Gradients

Scaling Challenges

IO requires organization
to ensure unique
batches.
IO contention with
many nodes requires
parallel IO solutions

Computation stalls during communication:
keeping the communication to computation
ratio small is important for effective scaling.

Initialization must be
identical or synchronized,
and
checkpointing/summary
information must be
managed with just one
node.

Argonne Leadership Computing Facility25

Data Parallel Learning

ResNet50 on
Theta

Argonne Leadership Computing Facility26

Data Parallel Learning
Horovod

Initialize horovod (hvd.init()).

Wrap the optimizer in hvd.DistributedOptimizer.

– This uses the underlying optimizer for gradient calculations, and performs an averaging
of all gradients before updating.

– Can adjust the learning rate to account for a bigger batch size.

Initialize the networks identically, or broadcast one network’s weights to all others.

Ensure snapshots and summaries are only produced by one rank.

Horovod focuses on handling collective communication so you don’t have to, but lets you
use all of the tools of your favorite framework. Compatible with mpi4py.

The simplest technique for data parallel learning

Horovod is an open source data
parallel training software compatible
with many common deep learning
frameworks.

Meet Horovod
Github

https://github.com/horovod/horovod

Argonne Leadership Computing Facility27

Horovod Example Code

Tensorflow
import tensorflow as tf
import horovod.tensorflow as hvd
layers = tf.contrib.layers
learn = tf.contrib.learn
def main():

Horovod: initialize Horovod.
hvd.init()
Download and load MNIST dataset.
mnist = learn.datasets.mnist.read_data_sets('MNIST-data-%d' % hvd.rank())
Horovod: adjust learning rate based on number of GPUs.
opt = tf.train.RMSPropOptimizer(0.001 * hvd.size())
Horovod: add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)
hooks = [

hvd.BroadcastGlobalVariablesHook(0),
tf.train.StopAtStepHook(last_step=20000 // hvd.size()),
tf.train.LoggingTensorHook(tensors={'step': global_step, 'loss': loss},

every_n_iter=10),
]
checkpoint_dir = './checkpoints' if hvd.rank() == 0 else None
with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,

hooks=hooks,
config=config) as mon_sess

Argonne Leadership Computing Facility28

Horovod Example Code

Keras
import keras
import tensorflow as tf
import horovod.keras as hvd
Horovod: initialize Horovod.
hvd.init()
Horovod: adjust learning rate based on number of GPUs.
opt = keras.optimizers.Adadelta(1.0 * hvd.size())
Horovod: add Horovod Distributed Optimizer.
opt = hvd.DistributedOptimizer(opt)
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=opt,
metrics=['accuracy'])

callbacks = [
Horovod: broadcast initial variable states from rank 0 to all other processes.
hvd.callbacks.BroadcastGlobalVariablesCallback(0),

]
Horovod: save checkpoints only on worker 0 to prevent other workers from corrupting them.
if hvd.rank() == 0:

callbacks.append(keras.callbacks.ModelCheckpoint('./checkpoint-{epoch}.h5’))
model.fit(x_train, y_train, batch_size=batch_size,

callbacks=callbacks,
epochs=epochs,
verbose=1, validation_data=(x_test, y_test))

Argonne Leadership Computing Facility29

Horovod Example Code

Pytorch
import torch.nn as nn
import horovod.torch as hvd
hvd.init()
train_dataset = datasets.MNIST('data-%d' % hvd.rank(), train=True, download=True,

transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))

]))
train_sampler = torch.utils.data.distributed.DistributedSampler(

train_dataset, num_replicas=hvd.size(), rank=hvd.rank())
train_loader = torch.utils.data.DataLoader(

train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs)
Horovod: broadcast parameters.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
Horovod: scale learning rate by the number of GPUs.
optimizer = optim.SGD(model.parameters(), lr=args.lr * hvd.size(),

momentum=args.momentum)!
Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters())

Argonne Leadership Computing Facility30

Effects of Distributed Learning

Increased Batch size means improved estimate of gradients.

– Scale by N nodes? Sqrt(N)?

– Scale in a layerwise way? See paper: Layerwise Adaptive Rate Scaling (LARS)

Increased learning rate can require warm up iterations.

– See paper: Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour

Bigger minibatch means less iterations for the same number of epochs.

– May need to train for more epochs if another change is not made like boosting the learning rate.

https://arxiv.org/pdf/1708.03888.pdf
https://arxiv.org/pdf/1708.03888.pdf

Argonne Leadership Computing Facility31

Mesh Learning

Why might you need a Mesh?

• Memory limitations due to CNN size (number of parameters)

• Memory limitations due to input size (massive images, 3D volumes, etc)

Mesh Scaling is not trivial:

• Computations need to be distributed in an intelligent way to prevent idle nodes

• Communication needs to happen frequently during both the forward/backward pass

• Message passing organization details arise from forward/backward small-group

communications and multi-group communications

Expect mesh scaling to get easier over the next few years (or wait for bigger, more
powerful nodes?)

When data-parallel isn’t enough…

Tensorflow Mesh

https://github.com/tenso
rflow/mesh

https://github.com/tensorflow/mesh

Argonne Leadership Computing Facility32

Measuring Performance for
Machine Learning Workflows

Argonne Leadership Computing Facility32

Argonne Leadership Computing Facility33

Performance Measurements – Deep
Learning

Deep Learning workflows typically are diverse in requirements:

• Start in python

• Call upon IO libraries to read all or part of a dataset

• Feed data into an optimized (compared to python) library for ML/DL algorithms

• Use Horovod to communicate between nodes and average gradients

Many different pieces benefit from different profiling techniques:

• Timing based profiling (global_step/second, images/second)

• Python line based profiling (cProfile)

• Advanced Profiling Tools (Vtune, Advisor)

How to measure performance for tensorflow/pytorch?

Argonne Leadership Computing Facility34

Time Stamp “Profiling”

train Step 363 metrics: loss: 2.21, accuracy: 0.961 (1.5e+01s / 0.066 IOs / 3.0)
train Step 364 metrics: loss: 2.14, accuracy: 0.962 (1.6e+01s / 0.053 IOs / 3.2)
train Step 365 metrics: loss: 2.09, accuracy: 0.96 (1.5e+01s / 0.053 IOs / 3.0)
train Step 366 metrics: loss: 2.1, accuracy: 0.963 (1.5e+01s / 0.06 IOs / 3.0)

Timing printouts are the first stop for understanding performance of training algorithms for deep learning. From one of
my own applications, I catch time stamps for:
• forward/backward pass of the network
• time required for IO
• time required to synchronize gradients across nodes:

Pros Cons
• Very easy using datetime.datetime.now()
• Trivial to analyze in the log files
• Can give a good top-level, cross

software/system comparison using
images/second or global-step/second for the
entire application

• System Independent (laptop vs. HPC node, etc)

• Not useful for finding hotspots, only for
monitoring know blocks of easily separable code

• Overly coarse and useless for optimizations,
only for monitoring for problems

Argonne Leadership Computing Facility35

Tensorboard Profiling
For Tensorflow applications, you can visualize tensorflow application performance for each node of your graph using
tensorboard, as well chrome traces.

Pros Cons
• Gives a good idea of what nodes in your graph

are most resource intensive (memory usage,
computation time)

• Pretty easy to setup and use via
tf.train.ProfilerHook

• Can be difficult to analyze graphical form in
tensorboard, compared to sorted lists of
operations in other profilers

• Doesn’t reveal hardware utilization metrics or
performance.

• Profiling only available for tensorflow

https://www.tensorflow.org/api_docs/python/tf/train/ProfilerHook

Argonne Leadership Computing Facility36

Python cProfile
For the diverse set of workflows you need to stitch together with python, it can be very
useful to use python’s built in profiling module cProfile:

Generates a list of function calls, time spent, number of calls, etc. Lots of open source
tools for interpreting and analyzing the results, such as here, here, and here

python –m cProfile –o cprofile_data.prof script.py

>>> import pstats
>>> p = pstats.Stats("cprofile_data.prof")
>>> p.sort_stats("time").print_stats(3)
Fri Apr 5 20:13:02 2019 cprofile_data

1431679 function calls (1401373 primitive calls) in 673.782 seconds

Ordered by: internal time
List reduced from 3212 to 3 due to restriction <3>

ncalls tottime percall cumtime percall filename:lineno(function)
50 258.029 5.161 258.029 5.161 {method 'run_backward' of 'torch._C._EngineBase' objects}

2050 176.755 0.086 176.755 0.086 {built-in method
sparseconvnet.SCN.SubmanifoldConvolution_updateOutput}

32/31 88.808 2.775 88.909 2.868 {built-in method _imp.create_dynamic}

https://julien.danjou.info/guide-to-python-profiling-cprofile-concrete-case-carbonara
https://jiffyclub.github.io/snakeviz/
https://github.com/ymichael/cprofilev

Argonne Leadership Computing Facility37

Python cProfile

Pros Cons
• It’s open source, native python, extremely easy

to use.
• A lot of tools available for results interpretation.

• Doesn’t go beyond python lines.
• Despite available tools, relatively high effort

required to make sense of the results.

Argonne Leadership Computing Facility38

Application Performance Snapshot
APS generates a highlevel performance snapshot of your application. Easy to run:

Results can be viewed in a single html file, or via command line:

Summary information

HW Platform : Intel(R) Processor code named Knights Landing
Logical core count per node: 256
Collector type : Driverless Perf system-wide counting
Used statistics : aps_results

|
| Your application might underutilize the available logical CPU cores
| because of insufficient parallel work, blocking on synchronization, or too much I/O. Perform function or source
line-level profiling with tools like Intel(R) VTune(TM) Amplifier to discover why the CPU is underutilized.

CPU Utilization: 6.50%
| Your application might underutilize the available logical CPU cores because of
| insufficient parallel work, blocking on synchronization, or too much I/O.
| Perform function or source line-level profiling with tools like Intel(R)

source /opt/intel/vtune_amplifier/apsvars.sh
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/vtune_amplifier/lib64/
export PMI_NO_FORK=1

aps --result-dir=aps_results/ python /full/path/to/script.py

Argonne Leadership Computing Facility39

Application Performance Snapshot

• Very easy to use

• Tracks important hardware metrics:

• Thread Load Balancing

• Vectorization

• CPU Usage

Pros Cons

• Only high level information – but then again, that

is the design of this tool.

Argonne Leadership Computing Facility40

Intel Vtune – Advanced Hotspots

source /opt/intel/vtune_amplifier/apsvars.sh
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/vtune_amplifier/lib64/
export PMI_NO_FORK=1

amplxe-cl -collect advanced-hotspots -finalization-mode=none -r vtune-result-
dir_advancedhotspots/ python /full/path/to/script.py

Vtune advanced hotspots can give a very useful report of what your CPUs are doing, how effectively the are running,
etc. Slightly more involved to use:

You don’t have to, but should run the finalization after the run completes (do this from the login nodes):

source /opt/intel/vtune_amplifier/apsvars.sh
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/vtune_amplifier/lib64/
export PMI_NO_FORK=1

amplxe-cl -finalize -search-dir / -r vtune-result-dir_advancedhotspots

source /opt/intel/vtune_amplifier/apsvars.sh
amplxe-gui vtune-result-dir_advancedhotspots

Argonne Leadership Computing Facility41

Intel Vtune – Advanced Hotspots

• You can see the activity of each thread, and the
functions that cause it.

• Give a bottom up and top down view, very useful
for seeing which functions are hotspots and
which parts of your workflow are dominant.

• Allows line by line analysis of source code.

Pros Cons
• Doesn’t keep information at python level.
• If your workflow uses JIT, you can lose almost

all useful information.
• Understanding the information present takes

some practice.

source /opt/intel/vtune_amplifier/apsvars.sh
amplxe-gui vtune-result-dir_advancedhotspots

Run the GUI to view
your results:

Argonne Leadership Computing Facility42

Intel Vtune – Hotspots
Vtune hotspots is similar to advanced hotspots but keeps python information – very very useful for profiling.

Pros Cons
• Similar benefits as hotspots
• Additionally, allows you to track activity from

python code
• Same finalization techniques and gui as

advanced hotspots

• Will not run with more than a few threads,
making it impossible to profile the “real”
application.

source /opt/intel/vtune_amplifier/apsvars.sh
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/intel/vtune_amplifier/lib64/
export PMI_NO_FORK=1

amplxe-cl -collect hotspots -finalization-mode=none -r vtune-result-dir_hotspots/

Argonne Leadership Computing Facility43

Intel Vtune – Hotspots

Argonne Leadership Computing Facility44

Profiling Example – Tensorflow FFTs
One user reported very very slow performance with tensorflow on Theta, even though they were using all of the
optimized settings. Using vtune hotspots and advanced hotspots, we discovered (for a shortened run):
• 31% of the application time was spent doing FFTs with tensorflow
• 10% was spent creating tensorflow traces
• 8% was computing loss functions.
• 25% was spent creating and optimizing the tensorflow graph (measured for a short run, this is a smaller fraction for

production runs)

Talking with Intel engineers revealed that the most important hotspot (FFT) was underperforming on Theta by up to
50x compared with the optimized FFT in Numpy.

For this workflow, replacing tensorflow with numpy FFT + autograd for gradient calculations made a huge impact in their
performance.

Argonne Leadership Computing Facility45

Profiling Example – Tensorflow CNN
A user reported seeing a significant degradation in performance with tensorflow when going from single
image to multi-image batches.

Batch Size 1 showed decent
balance between threads,
even if utilization was lower
than ideal.

Argonne Leadership Computing Facility46

Profiling Example – Tensorflow CNN
A user reported seeing a significant degradation in performance with tensorflow when going from single
image to multi-image batches.

Batch Size 2

Batch Size 3

Batch Size 4

Argonne Leadership Computing Facility47

Profiling Example – Tensorflow CNN
As seen above, the parallelization of operations broke when batch size was increased beyond 1.

Appeared to be a bug in tf1.12 on CPUs, but resolved in tf1.13:

Th
ro

ug
hp

ut
 (f

ov
/s

ec
)

Argonne Leadership Computing Facility48

• The ALCF Datascience group supports a variety of machine learning and deep
learning workflows for performant computing.

• You should tell us if your workflow doesn’t fit into our supported tools, we
want to know!

• Machine Learning and Deep Learning is an extremely important workflow for
current and future HPC.

• Tools for parallelization are good and getting better.
• Modern frameworks (TF, torch) are big and difficult to squeeze for peak

performance without systematic study and profiling.
• Profiling of complex workflows glued together with python are becoming more

common, expect profiling tools to adapt to this as well.

Conclusions

Argonne Leadership Computing Facility49

Thank you!

Questions?

Reach out to me:
corey.adams@anl.gov

Argonne Leadership Computing Facility49

