Argonne 4

NATIONAL LABORATORY

Using and Scaling Python

William Scullin

Assistant Computational Scientist
Leadership Computing Facility
Argonne National Laboratory

ALCF Simulation, Data, and Learning Workshop
October 2, 2018

www.anl.gov

“People are doing high performance
computing with Python... how do we
stop them?”

- Senior Performance Engineer

2 Argonne Leadership Computing Facility Argonne *

So what are the Top Ten Languages of 2018, as ranked for the typical IEEE

n member and Spectrum reader?
Why This talk?
L Spectrum Ranking

Language Rank Types

« Python is popular LORE, L9 5
2. B+ 08 (997

* It's the de facto language for data science 3. Java ®0 s
. . g 4. C 0L® 967

« Used for a large number of scientific workflows ;. &0 s
* It's not uncommon for prototyping or even ki e =
implementing production scientific software o Jvasort @0 626

9. Go @& o 76.4

« We tend to see a lot of practices and mistakes =~ = . BB
that strongly impact the performance of user -
Python codes

code¢ :va\

3 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

Why Python?

* |f you like a programming paradigm, it's supported

« Most functions map to what you know already

« Easy to combine with other languages

« Easy to keep code readable and maintainable

« Lets you do just about anything without changing languages
* The price is right - no license management

« Code portability

* Fully Open Source

* Very low learning curve

« Commercial support options are available
« Comes with a highly enthusiastic and helpful community

4 Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAAAA

Why Not Python?

5

Performance is often a secondary concern for developers and distributions
* Most developers aren’t in HPC environments

* Most developers aren’t in science environments

Many tools were designed to work best in generic environments

Language maintainers favor consistency over compatibility

Backwards compatibility is seldom guaranteed

Low learning curve

It's easy to develop a code base that works, but won't scale

Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

Python 2 or 3? Use Python 3.

Python 3 is the future — and the future is here

All major libraries now work under Python 3.5+

Almost all popular tools work with Python 3.5+

Python 3's loader and more of the interpreter’s internals are written in Python
Python 2 development has effectively stopped

6 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

Python at ALCF

« Every system we run is a cross-compile environment except Cooley
« pip/distutils/setuptools/anaconda don’t play well with cross-compiling
Blue Gene/Q Python is manually maintained:
 Instructions on use are available in: /soft/cobalt/examples/python
* Modules built on request, but BG/Q is end-of-life
X86 64 offers us a lot more options:
 Miniconda
* Intel Python - managed and used via Conda
« ALCF Python managed via Spack and loadable via modules
* Bring your own Python
» We prefer users to install their own environments
Users will need to set up their environment to use the Cray MPICH compatibility
ABI and strictly build with the Intel MPI wrappers:
http://docs.cray.com/books/S-2544-704/S-2544-704.pdf

7 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

http://docs.cray.com/books/S-2544-704/S-2544-704.pdf

Python at ALCF

e Conda-based options:
e T[heta Miniconda
module avail 2>&1 | grep miniconda

miniconda-2.
miniconda-2.
miniconda-2.
miniconda-2.
miniconda-2.

miniconda-3

miniconda-3.
miniconda-3.

miniconda-3.

7/conda-4.
7/conda-4.
7/conda-4.
7/conda-4.
7/conda-4.
.6/conda-4.
6/conda-4.
6/conda-4.

6/conda-4.

mmhhmmhhh

.10
.10-h5py-parallel
.10-10gin

.4

.4-1og1in

.10

.10-10gin

.4

.4-1og1in

e Intel Python - managed and used via Conda

e Anaconda

8 Argonne Leadership Computing Facility

8

AAAAAAAAAAAAAAAAAA

Python at ALCF

e Built-from-source Python
o ALCF Python managed via Spack and loadable via modules:

module load alcfpython/2.7.14-20180131

* A module that loads modules for NumPy, SciPy, MKL, h5py, mpi4py...
 Built via Spack to emphasize performance, reproducibility, and Cray

compatibility

» Use of virtualenv is recommended - do not mix conda and virtualenv!
« We'll build any package with a Spack spec on request

9

9 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

Where do We want to spend our time?

Vectorization

MPI, OpenMP, OpenACC, or
Threads

10 Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAAAA

How does CPython work?

11

Python 2.7.13 (default, Apr 23 2017, 16:50:50)
[GCC 4.2.1 Compatible Apple LLVM 7.3.0 (clang-703.0.31)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> def area_circle(r):
pi=3.14159
area=pixrxkxx2
return area

>>> import dis
>>> dis.dis(area_circle. func_code)

2 ® LOAD_CONST 1 (3.14159)
3 STORE_FAST 1 (pi)
3 6 LOAD_FAST 1 (pi)
9 LOAD_FAST 0 (r)
12 LOAD_CONST 2 (2)
15 BINARY_POWER
16 BINARY_MULTIPLY
17 STORE_FAST 2 (area)
4 20 LOAD_FAST 2 (area)

23 RETURN_VALUE

>>> I

Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAAAA

How does CPython work?

>>> def area_circles(R):
A=[]
for r in R:
A.append(area_circle(r))
return A

>>> dis.dis(area_circles.func_code)

2 @ BUILD_LIST 0
3 STORE_FAST 1 (A)
3 6 SETUP_LOOP 33 (to 42)
9 LOAD_FAST 0 (R)
12 GET_ITER
>> 13 FOR_ITER 25 (to 41)
16 STORE_FAST 2 (r)
4 19 LOAD_FAST 1 (A)
22 LOAD_ATTR ® (append)
25 LOAD_GLOBAL 1 (area_circle)
28 LOAD_FAST 2 (r)
31 CALL_FUNCTION 1
34 CALL_FUNCTION 1
37 POP_TOP
38 JUMP_ABSOLUTE 13
>> 41 POP_BLOCK
5 >> 42 LOAD_FAST 1 (A)
45 RETURN_VALUE

>>> I

12 Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAAAA

How does CPython work?

>>> def area_circles_1lc(R):
return [area_circle(r) for r in R]

>>> dis.dis(area_circles_1lc.func_code)

2 @ BUILD_LIST 0
3 LOAD_FAST 2 (R)
6 GET_ITER
>> 7 FOR_ITER 18 (to 28)

8
10 STORE_FAST 1 (r)
13 LOAD_GLOBAL @ (area_circle)
16 LOAD_FAST 1 (r)
19 CALL_FUNCTION 1
22 LIST_APPEND 2
25 JUMP_ABSOLUTE 7
>> 28 RETURN_VALUE
>>> |

13 Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAAAA

Threads and CPython: A Word on the GIL

To keep memory coherent, Python only allows a single thread to run in the
interpreter's memory space at once. This is enforced by the Global Interpreter
Lock, or GIL.

The GIL isn't all bad. It:

* |Is mostly sidestepped for I/O (files and sockets)

« Makes writing modules in C much easier

* Makes maintaining the interpreter much easier

« Makes for any easy topic of conversation

* Encourages the development of other paradigms for parallelism

 |s almost entirely irrelevant in the HPC space as it neither impacts MPI or
threading within compiled modules

For the gory details, see David Beazley's talk on the
GIL: https://www.youtube.com/watch?v=fwzPF2JLoeU

14 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

Takeaways on CPython

« CPython is a Read—Eval-Print Loop (REPL) environment.
* There is no look-ahead to enable optimizations.
* There is no automatic parallelism.
« Everything is evaluated piece-wise and sequentially.
« CPython was written for safety and ease of maintenance, not performance:
o Russell Power and Alex Rubinsteyn wrote in their paper “How fast can we
make interpreted Python?”:

“In the general absence of type information, almost every instruction must be
treated as INVOKE_ARBITRARY_METHOD.”

« While you can improve pure Python performance through language features
running in CPython, it won'’t deliver the efficiency of compiled code.

15

15 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

http://arxiv.org/pdf/1306.6047v2.pdf

Numpy and Scipy

NumPy - your first stop for performance improvement. It provides:

* N-dimensional homogeneous arrays (ndarray) I\ I P

« Universal functions (ufunc) le y
 built-in linear algebra, FFT, PRNGs

» Tools for integrating with C/C++/Fortran

« Heauvy lifting done by optimized C/Fortran libraries such as Intel's MKL or IBM’s ESSL

SciPy extends NumPy with common scientific computing tools
» optimization

« additional linear algebra

* integration

 interpolation

« FFT

« signal and image processing

 ODE solvers

Problems arise when NumPYy isn’t well built...

16 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

NumPy and SciPy

Optimized and built with MKL via Spack

[wscullin@thetaloginé ~]$ python
Python 2.7.13 (default, May 2 2017, 20:30:06)
[GCC Intel(R) C++ gcc 4.9.4 mode] on linux2
Type "help", "copyright", "credits" or "license" for more information.
readline: /etc/inputrc: line 19: term: unknown variable name
>>> import numpy as np
>>> np.__config__.show()
lapack_opt_info:
libraries = ['mkl_rt', 'pthread']

library_dirs = ['/projects/datascience/soft/builds/spack/packages/opt/1inux/mkl/1ib/intel64']

define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]

include_dirs = ['/projects/datascience/soft/builds/spack/packages/opt/linux/mkl’, '/projects/
datascience/soft/builds/spack/packages/opt/linux/mkl/include’, '/projects/datascience/soft/

builds/spack/packages/opt/1inux/mkl/1ib"]
blas_opt_info:
libraries = ['mkl_rt', 'pthread']

library_dirs = ['/projects/datascience/soft/builds/spack/packages/opt/1inux/mkl/1ib/intel64']

define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]

include_dirs = ['/projects/datascience/soft/builds/spack/packages/opt/linux/mkl’, '/projects/
datascience/soft/builds/spack/packages/opt/linux/mkl/include’, '/projects/datascience/soft/

builds/spack/packages/opt/1inux/mkl/1ib']
lapack_mkl_info:
libraries = ['mkl_rt', 'pthread']

library_dirs = ['/projects/datascience/soft/builds/spack/packages/opt/1inux/mkl/1ib/intel64']

define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]

include_dirs = ['/projects/datascience/soft/builds/spack/packages/opt/linux/mkl’, '/projects/
datascience/soft/builds/spack/packages/opt/linux/mkl/include’, '/projects/datascience/soft/

builds/spack/packages/opt/1inux/mkl/1ib']
blas_mkl_info:
libraries = ['mkl_rt', 'pthread']

library_dirs = ['/projects/datascience/soft/builds/spack/packages/opt/1inux/mkl/1ib/intel64']

define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]

include_dirs = ['/projects/datascience/soft/builds/spack/packages/opt/linux/mkl’, '/projects/
datascience/soft/builds/spack/packages/opt/1inux/mkl/include’, '/projects/datascience/soft/

builds/quck/pqckqges/opt/linux/mkl/lib'ﬂ

The test on a KNL system:

>>> import timeit

>>> sum([timeit.timeit('import numpy as np; np.random.random((100,100))*np.random.random((100))"') for i

119.68859601020813s

17 Argonne Leadership Computing Facility

Installed via pip

Python 2.7.5 (default, Nov 6 2016, 00:28:07)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-11)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy as np
>>> np.__config__.show()
lapack_info:

NOT AVAILABLE
lapack_opt_info:

NOT AVAILABLE
openblas_lapack_info:

NOT AVAILABLE
blas_info:

NOT AVAILABLE
atlas_3_10_blas_threads_info:

NOT AVAILABLE
atlas_threads_info:

NOT AVAILABLE
blas_src_info:

NOT AVAILABLE
atlas_3_10_threads_info:

NOT AVAILABLE
atlas_blas_info:

NOT AVAILABLE
atlas_3_10_blas_info:

NOT AVAILABLE
lapack_src_info:

NOT AVAILABLE
atlas_blas_threads_info:

NOT AVAILABLE
openblas_info:

NOT AVAILABLE
blas_mkl_info:

NOT AVAILABLE
blas_opt_info:

NOT AVAILABLE
blis_info:

NOT AVAILABLE
atlas_info:

NOT AVAILABLE
atlas_3_10_info:

NOT AVAILABLE
lapack_mk1l_info:

NOT AVAILABLE

>>> I

499.9269280433655s

in range(100)])/100.0

Argonne &

NATIONAL LABORATORY

NumPy and SciPy

Using NumPy appropriately pays off:
import timeit
import numpy as np

>>>
>>>

>>> A = np.linspace(-10,10,100) .reshape(10,10)
>>> B = np.linspace(-1.0,1.0,100) .reshape(10,10)
>>>
>>> def mat_mult(A,B):
""" We're assuming regular 2D NumPy matrixes with dimensions such that
A.shape[l] == B.shape[O]"""
assert A.shape[l] == B.shape[0], "A[l].shape != B[O].shape"
C=np.zeros((A.shape[0],B.shape[1l]))
for i in range(A.shape[0]):
for j in range(A.shape[l]):
for k in range(B.shape[1l]):
Cli,j1 += A[1,k]1*B[k,j]
return C
>>> if __name__ == '_main__":
setup_str = "from __main__ import A,B,mat_mult; import numpy as np"
cnt = 100000
manual_time = timeit.timeit("mat_mult(A,B)", number=cnt, setup=setup_str)
numpy_time = timeit.timeit("np.matmul(A,B)", number=cnt, setup=setup_str)
print("Manual Matmul x%d: %24.6fs" %(cnt, manual_time))
print("NumPy Matmul x%d: %24.6fs" %(cnt, numpy_time))
Manual Matmul x100000: 409.429088s
NumPy Matmul x100000: 1.660264s

18 Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAAAA

Parallelism

19 Argonne Leadership Computing Facility

B CHOSTBUSTERS B

DON'T CROSS THE
STREAMS

Good advice is timeless

COM EBY .; S td

AAAAAAAAAAAAAAAA

Parallelism

* Don't cross the streams!

* Choose a form of parallelism — maybe two and stick to it! Trouble begins when
you have:
« multiple OpenMP runtimes or pthreads+OpenMP
* multiprocessing (never the correct answer)
* forking

« Watch affinity very carefully on the Cray — numpy and others can link threaded
BLAS and LAPACK leading to more threads than you expect

20 Argonne Leadership Computing Facitty . AgoNNe ws

Why MPI?

It is (still) the HPC paradigm for inter-process communications

» Supported by every HPC center and vendor on the planet

» APIs are stable, standardized, and portable across platforms and languages

« We'll still be using itin 10 years...
It makes full use of HPC interconnects and hardware

» Abstracts aspects of the network that may be very system specific

« Dask, Spark, Hadoop, and Protocol Buffers use sockets or files!

* Vendors generally optimize MPI for their hardware and software
Well-supported tools for development — even for Python

« Debuggers now handle mixed language applications

» Profilers are treating Python as a first-class citizen

» Many parallel solver packages have well-developed Python interfaces
Folks have been writing Python MPI bindings since at least 1996

« David Beazley may have started this...

» Other contenders: Pypar (Ole Nielsen), pyMPI (Patrick Miller, et al), Pydusa (Timothy H. Kaiser), and
Boost MPI Python (Andreas Klockner and Doug Gregor)

 The community has mostly settled on mpi4py by Lisandro Dalcin

21 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

A bottleneck at the start: Loading Python

When working in diskless environments or from shared file systems, keep track of
how much time is spent in startup and module file loading. Parallel file systems are
generally optimized for large, sequential reads and writes. NFS generally serializes
metadata transactions. This load time can have substantial impact on total
runtimes.

300

250

200

150

100

Time to load NumPy (seconds)

&

--"'.-‘-

D - I I L L
128 256 512 1024 2048 4096 8192
MP1 Ranks

22 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

mpidpy

Pythonic wrapping of the system’s native MPI
provides almost all MPI-1,2 and common MPI-3 features
very well maintained
distributed with major Python distributions
portable and scalable
* requires only: NumPy, Cython, and an MPI
 used to run a python application on 786,432 cores
 capabilities only limited by the system MPI
http://mpidpy.readthedocs.io/en/stable/

23 Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAAAA

http://mpi4py.scipy.org/

How mpi4py works...

* mpi4py jobs are launched like other MPI binaries:
mpiexec -np ${RANKS} python ${PATH TO SCRIPT}
« an independent Python interpreter launches per rank
* no automatic shared memory, files, or state
« crashing an interpreter does crash the MP| program
* it is possible to embed an interpreter in a C/C++ program and launch an
Interpreter that way

24 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

How mpi4py works...

If you crash or have trouble with simple codes , remember:
« CPython is a C binary and mpi4py is a binding
 you will likely get core files and mangled stack traces
use |d or otool to check which MPI mpi4py is linked against
ensure Python, mpi4py, and your code are available on all nodes and libraries
and paths are correct
« on the Cray, it may be necessary to copy
${CRAY_MPICH_DIR}/lib/
iInto your environment’s
${CONDA_PREFIX}/1lib/
try running with a single rank
rebuild with debugging symbols

25 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

mpi4py startup and shutdown

* Importing and MPI initialization
 importing mpi4py allows you to set runtime configuration options (e.g. automatic
initialization, thread_level) via mpidpy.rc()
by default importing the MPI| submodule calls MPI _Init ()
e caling Init() orInit thread() more than once violates the MPI
standard
* This will lead to a Python exception or an abort in C/C++
« use Is initialized() to test for initialization
* MPI Finalize () will automatically run at interpreter exit
 there is generally no need to ever call Finalize ()
use Is finalized() to test for finalization if uncertain
» calling Finalize () more than once exits the interpreter with an error and may
crash C/C++/Fortran modules

26 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAA

mpi4py and program structure

Any code, even if after MPI.In1it (), unless reserved to a given rank will run on all
ranks:

from mpidpy import MPI
comm = MPI.COMM _WORLD
rank = comm.Get rank()

mpisize = comm.Get size()

if rank%2 ==
print(“Hello from an even rank: %d” %(rank))

comm.Barrier ()

print(“Goodbye from rank %d” %(rank))

27 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

mpi4py and datatypes

« Python objects, unless they conform to a C data type, are pickled
* pickling and unpickling have significant compute overhead
» overhead impacts both senders and receivers
* pickling may also increase the memory size of an object
 use the lowercase methods, eg: recv (),send()

* Picklable Python objects include:
* None, True, and False
* integers, long integers, floating point numbers, complex numbers
* normal and Unicode strings
* tuples, lists, sets, and dictionaries containing only picklable objects
 functions defined at the top level of a module
* built-in functions and classes defined at the top level of a module
* instances of such classes whose dict () orthe result of

caling getstate () is picklable

28 Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAA

mpi4py and datatypes

« Buffers, MPI datatypes, and NumPy objects aren'’t pickled
 fransmitted near the speed of C/C++
 NumPYy datatypes are autoconverted to MPI datatypes
 buffers may need to be described as a 2/3-list/tuple
[data, MPI.DOUBLE] for a single double
[data,count,MPI.INT] foran array of integers
« custom MPI datatypes are still possible
 use the capitalized methods, e.g.: Recv (), Send()
 When in doubt: can it be represented as a memory buffer or only as PyObject?

29 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

mpid4py: collectives and operations

» Collectives operating on Python objects are naive
» For the most part collective reduction operations on Python objects are serial
« Casing convention applies to methods:

* lowercase methods will work for general Python objects (albeit slowly)

« uppercase methods will work for NumPy/MPI data types at near C speed

30 Argonne Leadership Computing Faciity . AGONNe w

mpi4py: Parallel I/O

« All 30-something MPI-2 methods are supported
« conventional Python I/O is not MPI safe!
« safe to read files, though there might be locking issues
» write a separate file per rank if you must use Python |/O
« hb5py 2.2.0 and later support parallel I1/O
* hdf5 must be built with parallel support
* make sure your hdf5 matches your MPI
* h5pcc must be present
 check things with: h5pcc -showconfig
« hdf5 and h5py from Anaconda are serial!
 anything which modifies the structure or metadata of a file must be done
collectively
* Generally as simple as:
f = h5py.File('parallel test.hdf5', 'w',
driver='mpio', comm=MPI.COMM_WORLD)

31 Argonne Leadership Computing Facility

AAAAAAAAAAAAAAAAAA

Profiling Python application

« Right tool for high performance application profiling at all levels
* Function-level and line-level hotspot analysis, down to disassembly
« Call stack analysis

* Low overhead
* Mixed-language, multi-threaded application analysis

« Advanced hardware event analysis for native codes (Cython, C++, Fortran) for cache misses,
branch misprediction, etc.

Profiling technology Event Instrumentation Sampling, hardware events

Analysis granularity Function-level Line-level Line-level, call stack, time windows, hardware
events

Intrusiveness Medium (1.3-5x) High (4-10x) Low (1.05-1.3x)

Mixed language programs Python Python Python, Cython, C++, Fortran

32 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

Using VTune from command line

Analysis type

amplxe-cl -collect hotspots \ +—
-knob sampling-interval=1\ _

Analysis parameters, knobs

-knob analyze-openmp=true \
-r dir_name_hs
-- python script.py

amplxe-cl -archive -r dir name hs <

Make trace folder relocatable

amplxe-gui ./dir name hs/ dir_name_hs.amplxe <

33 Argonne Leadership Computing Facility

Analyse in GUI on laptop

AAAAAAAAAAAAAAAAAA

VTune trace at a glance [summary tab]

Elapsed Time : 2.916s Top Hotspots '
. This section lists the most active functions in your application. Optimizing these
CPU Time ™ 61.890s hotspot functions typically results in improving overall application performance.
Effective Time : 60.079s
spin Time ©: 0.240s Function Module CPU Time
5) Overhead Time?: 1.571s pow w21rs0 241005
Total Thread Count: 76 DOUBLE_add.h umath.cpython-36m-x86_64-linux-gnu.so 5.187s
i DOUBLE_multiply.h umath.cpython-36m-x86_64-linux-gnu.so 4.656s
Paused Time = Os APy Pyt - 9
[MKL BLAS]@dcopy libmkl_intel_thread.so 4.352s
vdRngUniform libmkl_intel_Ip64.so 4.032s

CPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.

1000ms 4 o o | < |
(=2} o
= H =
N
800ms- o g I N
a z |
= G|
600ms -
2
[}
=
|
400ms - <
|
200ms - :
|
Oms - T T S—— —L— . S— ——
0 5 10 15 20 25 30 35

Idle Poor Fm
A

Simultaneously Utilized Logical CPUs

34 Argonne Leadership Computing Facility Argonne &

Bottom-up view

& <no current project> - Intel VTune Amplifier

Ih\@ ﬁ‘ > D q.ﬁ]@ Welcome
{ Basic Hotspots Hotspots by CPU Usage viewpoint (change) @
d Collection Log (D) Analysis Target & Analysis Type Summary & Bottom-up = &3 Caller/Callee & Top-down Tree (=} Platform stick_tetrah...

[oons x|

Grouping: l Function / Call Stack

self-time, excluding callees

| NE AMPLIFIER 2018
7

|CPU Time v

O: 4 —
OMP Master Thread #0 (TID

OMP Worker Thread #:
OMP Worker Thread #1 (TID...
OMP Worker Thread #3 (TID...
OMP Worker Thread #23 (TI...
OMP Worker Thread #26 (TI...
OMP Worker Thread #34 (TI...
OMP Worker Thread #33 (TlI...

Thread

OMP Worker Thread #28 (TI...

OMP Worker Thread #31 (T1...

CPU Usage

FILTER 100.0%

% | Process |Any Process v | Thread [Any Thread

20s 30s

40s

Function / Call gtack CPU Time V12 f Module | Function (Full)
b __kmp_fork_barrier 2087.422s fllibiomp5.so __kmp_fork_barrier(int, int)
) [MKL BLAS]@dcopy 101.636sjlibmki_intel_thread.so mkl_blas_dcopy
> pow 47.721sfllibm.s0.6 pow
)» DOUBLE_multiply.h 7.886s Jumath.cpython-36m-x86_64-linux-gnu.so DOUBLE_multiply.h
» DOUBLE_add.h 6.792s Jumath cpython-36m-x86_64-linux-gnu.so DOUBLE_add.h
b vdRngUniform 3.336sJlibmki_intel_Ip64.so vdRngUniform
» DOUBLE_subtracth 3.218sflumath_cpython-36m-x86_64-linux-gnu.so DOUBLE_subtract.h
» __kmp_fork_call 2.551s|libiomp5.s0 __kmp_fork_call
» DOUBLE_less 2.335s Jumath.cpython-36m-x86_64-linux-gnu.so DOUBLE_less
b [MKL SERVICE]@threader_d_1i_10 2 211s|libmkI_intel_thread.so mkl_vmi_serv_threader_d_1i_10
int free 1.638s]libc.s0.6 _int_free
1.350s JJlibiomp5.so __kmp_join_call
H t f t' 1.310sJumath.cpython-36m-x86_64-linux-gnu.so PyUFunc_GenericReduction.h
O u n C I O n S 1.120sjlibiomp5.s0 __kmp_join_barrier(int)
0.770s Jumath.cpython-36m-x86_64-linux-gnu.so call_mkl_mv
0.650s Jumath.cpython-36m-x86_64-linux-gnu.so run_binary_simd_multiply_DOUBLE.h
» PyUFunc_dd_d 0.639s Jumath.cpython-36m-x86_64-linux-gnu.so PyUFunc_dd_d
» __intel_ssse3_rep_memmove 0.520s|libintic.s0.5 __intel_ssse3_rep_memmove
) npyiter_iternext_itflags0O_dims1_iters2 0.520smultiarray.cpython-36m-x86_64-linux-gnu.so npyiter_iternext_itflags0_dims1_iters2
> Npy_pow 0.470s umath_cpython-36m-x86_64-linux-gnu.so npy_pow
» Pylter_Next 0.400slibpython3.6m.s0.1.0 Pylter_Next abstr:
. RANIL lAanAiral and n qAnrl..m-‘m rrathan 268m veE £A linnv Annen RANI _ laniral anAd)

Viewing * 10f2 » selected stack(s)

86.2% (87.616s of 101.636s)
libmkl_intel_thread so![MKL BLAS]@dcopy - [unknown source file]
libiomp5.so![OpenMP dispatcher]+0x86 - [unknown source file]
libiomp5.so!__kmp_fork_call+0x1054 - [unknown source file]
libiomp5.so![OpenMP fork]+0x13d - [unknown source file]
libmki_intel_Ip64.solcblas_dcopy+0x20 - [unknown source file]
multiarray.cpython-36m-x86_64-linux-gnu.so!call_mkl_mv+0x131 - [unknown source file]
multiarray.cpython-36m-x86_64-linux-gnu.so!PyArray_AssignArray+0x5f7 - [unknown source file]
multiarray.cpython-36m-x86_64-linux-gnu.so!npyiter_allocate_arrays+0x6f9 - [unknown source file]
multiarray.cpython-36m-x86_64-linux-gnu.so!Npylter_AdvancedNew h+0x27ed - [unknown source file]
umath.cpython-36m-x86_64-linux-gnu.so!PyUFunc_GenericReduction.h+0xbf5 - [unknown source file]
umath.cpython-36m-x86_64-linux-gnu.solufunc_accumulate+0x65 - [unknown source file]
libpython3.6m.so.1.0!PyCFunction_Call+0xf8 - methodobject.c:98
libmkI_intel_thread.so![Unknown stack frame(s)] - [unknown source file]
libpython3.6m.so.1.0!call_function+0x4e3 - ceval.c:4846
libpython3.6m.so0.1.0!call_function+0x4e3 - ceval.c:4846
parallel_mc.py!sequential_mc_run+0x1b - parallel_mc.py:44
libpython3.6m.s0.1.01Pylter_Next+0xa - abstract ¢:3162
multiarray.cpython-36m-x86_64-linux-gnu.so!PyArray_Fromlter+0x1db - [unknown source file]
multiarray.cpython-36m-x86_64-linux-gnu.solarray_fromiter+0x7d - [unknown source file]
libpython3.6m.so.1.0!call function+0x329 - ceval.c:4825 v

60s 70s 80s 90s

[Thread]
~ [ERunning
waCPU Time
waSpin and Overhead ...
[0 ®CPU Sample
CPU Usage

#aCPU Time
waSpin and Overhead -

~ | Module | Any Module

v | | Any Utilization

~] | call stack Mode Inline Mode | Show inline func | Loop Mode

35 Argonne Leadership Computing Facility

Hot call stack

Argonne &

NATIONAL LABORATORY

Top-down view

36 Argonne Leadership Computing Facility

& <no current project> - Intel VTune Amplifier - a X
‘hl h‘ bo = ‘ ®‘ ‘ ‘Welcome ‘ r000hs X‘ smp_native_hs ‘ ‘E
{2 Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ INTE NE AMPLIFIER 201
qd Collection Log (D) Analysis Target & Analysis Type Summary &3 Bottom-up &3 Caller/Callee & Top-down Tree = {:} Platform stick_tetrah... _— //)3
Grouping [Source Function Stack Mia]l=]
Source Function Stack CPU Time: Total Y2/[CPU Time: Self »[Function (Full [Source File | A
v Total 100.0% 0Os
v _start 98.8% 0s _start . . .
¥ __libc_start_main 98.8% 0s __libc_start_main t t I t I d g II
v main 08.8% 0s main python.c Ola Ime’ Including callees
¥ Py_Main 98.8% 0.020s Py_Main main.c
v array_fromiter 92.2% Os array_fromiter
¥ PyArray_Fromiter 92.2% 0Os PyArray_Fromiter
¥ Pylter_Next 92.2% 0.390s Pylter_Next abstract.c
w ufunc_generic_call.h 68.5% 0.040s | ufunc_generic_call.h
¥ PyUFunc_GenericFunction.h 68.3% 00505 PyUFunc_GenericF...
v execute_legacy_ufunc_loop.h 67.9% 0.010s | execute_legacy_ufu...
< il thre-operand Ioop
¥ PyUFunc_dd_d 53.2% 0.619s PyUFunc_dd_d
¥ npy_pow 52.5% 0.460s npy_pow
pow 52.0% 46.371s pow
» DOUBLE_subtract.h 3.5% 3.148s DOUBLE_subtracth
» DOUBLE_add.h 3.2% 2.821s DOUBLE_add.h
» DOUBLE_less 26% 2.285s DOUBLE_less
» DOUBLE_multiply.h 2.3% 2.048s DOUBLE_multiply.h
» BOOL_logical_and 0.4% 0.320s BOOL_logical_and
» DOUBLE_greater 0.1% 0.070s DOUBLE_greater
» PyEval_SaveThread 0.0% 0.020s PyEval_SaveThread ceval.c
» pthread_mutex_unlock 0.0% 0.020s pthread_mutex_unlock
» PyArray_MultiplyList.h 0.0% 0.010s | PyArray_MultiplyList.h
» vdsqrt 1.4% 0.020s vdsqrt
» vdSqr 1.1% Os vdSqr
» solve_may_share_memory 0.1% 0.050s solve_may_share_m...
» PyArray_NewFromDescr 0.0% 0s PyArray_NewFromD...
» PyUFunc_DefaultLegacyl... 0.0% 0.010s PyUFunc_DefaultLe. ..
» PyEval_SaveThread 0.0% 0010s PyEval_SaveThread cevalc .
D: + ! 0Os 10s 20s 40s 50s 60s 70s 80s 90s ~
= £ saCPU Time
[saSpin and Overhead ...
[0 ®CPU Sample
¥ | M CPU Usaae 9
FLTER ' 28% x I IAny Process VI Thread IAnyThread VI Module | Any Module T vl IlAnvhUtiIization VI | IUser functions + 1 VI IShow inline function: VI IFunctions only v
Fecatlind an intel ram

Argonne &

NATIONAL LABORATORY

Python mode vs. native mode

amplxe-cl ... -mrte-mode=native -- python script.py < treat python application as a binary

amplxe-cl -mrte-mode=native -run-pass-thru=--no-altstack — python script.py

a

On Linux, if “stack size

37 Argonne Leadership Computing Facility

too small” error seen.

AAAAAAAAAAAAAAAAAA

https://software.intel.com/en-us/vtune-amplifier-help-error-message-stack-size-is-too-small

Cython: seen as generated C

Grouping: | Function / Call Stack

vi[x][Q][%:]} [cPuTime v|
CPU Time Viewing ~ 1ofl + selected stack(s)
Function / Call Stack Effective Time by Utilization v » Spin Time « Overhead Time | | 100.0% (22.731s of 22.731s) |
Oidle @Poor © Ok @ldeal @Over Imbalance or Serial Sninnina | Lock Contention | Other | Creation | Schedulina | Reduction | Atomics | libm.s0.6!__ieee754_log_avx - [unkno...
p _ ieee754_log_avx 22.731s (S Os 0s Os 0s 0Os Os Os _barnes_hut_tsne.cpython-36m-x86_...
P _ pyx_f_7sklearn_9neighbors_9quad_tree_9_Quad1 15.984s (D 0s 0s 0s 0s 0s 0s 0s _barnes_hut_tsne.cpython-36m-x86._...
P _ pyx_f_7sklearn_8manifold_16_barnes_hut_tsne_c| 13.190s (D 0s 0s 0s 0s 0s 0s 0s _barnes_hut_tsne.cpython-36m-x86_...
p pow 10.067s (D 0s 0s 0s 0s 0s 0s 0s _barnes_hut_tsne.cpython-36m-x86_...
» _ pyx_f_7sklearn_9neighbors_7kd_tree_10BinaryTr| 9.660s (EEEGD 0s 0s 0s 0s 0s 0s 0s libpython3.6m.so.1.0lcall_function+0...
P _ pyx_f_7sklearn_8manifold_16_barnes_hut_tsne_c 3.241s (il Os 0Os Os Os Os Os 0s = t_sne.py!_kl_divergence_bh+0x7b - t...
P __pyx_f_7sklearn_9neighbors_7kd_tree_min_rdist 1.320s @ 0s 0s Os 0Os 0s Os 0s| libpython3.6m.so.1.0lPyObject_Call+...
p log 0.700s 0 Os Os Os Os Os Os 0s t_sne.py!_gradient_descent+0x81 - t...
P _ pyx_f_7sklearn_9neighbors_9quad_tree_9 Quadl 0.591s | 0Os 0Os Os Os 0s Os 0s libpython3.6m.so.1.0!PyObject_Call+...
P [ld-linux-x86-64.50.2] 0.545s | 0s 0s 0s 0s 0s 0s 0s t_sne.py!_tsne+0x81 - t_sne.py:812
p inflate_fast 0.509s | 0s 0s 0s 0s Os 0s 0s libpython3.6m.so.1.0!call_function+0...
p call_function 0.423s | 0s 0s 0.020s 0s 0s 0s 0s t_sne.py!_fit+0x367 - t_sne.py:770
p di_open_worker 0.376s | 0s 0s Os Os 0s Os Os libpython3.6m.so.1.0lcall_function+0...
» [MKL BLAS]@dcopy 0.354s | 0s 0s 0s 0s 0s 0s 0s t_sne pylfit_transform+0x5 - t_sne.py...
» memecmp 0.340s | 0s 0s 0s 0s 0s 0s 0s libpython3.6m.so.1.0lcall_function+0...
S ——— - - a- - o a= - | tsne.pyl_embec+0xb - tsne py:42
o
B T S S B S S - N D S DN S SN M T
OMP Master... | [@B Running
OMP Worker... 7] dhuk CPU Time
T [oMP Worker... } q
_g OMP Worker... [¥] duk Spin and...
= |OMP Worker... | . O%cpusample
OMP Worker... | ‘[l cPU Usage
OMP Worker... ik CPU Time
l I I ‘ [¥] iuk Spin and...
CPL] llsane

38 Argonne Leadership Computing Facility

Argonne &

NATIONAL LABORATORY

Common problematic patterns

Cuo Qe Ci— e 7s 7.5s 8s 8.5s 9s = Thread
;

@8 Running

mainCRTStartup (0x2c4 -
0)

Coarse Grain |z==> Bl .

OMP Worker Thread 2 iyl CPU Time
(0x228c) Thread Concurrency
Locks ORAP Workoas Faeanc %3

s Concurrency
(0> d74)

cPU Usage

Thread Concurrency |

Thread

<

» >>
- - - T - T T T T T T T T
o e 2.86s 2,8.75 2.88s 2.89s 29s 201s 292< = Thread
mainCRTStartup (0>23f || 1l 1

@ Running
[waits
s CPU Time
Transitions
CPU Usage

iyl CPU Time
Thread Concurrency
= ddusy Concurrency

©) LI}

OMP Worker Thread =1 || I |

©tds) [1T

OMP Worker Thread #2

High Lock |Zcwa:
Contention | [emsss==

SRRl _]

Thread Concurrency

Thread

Low
Concurrency

T s s) e B B S i i
Q- Qe 1.4s 1.5s 16s 1.7s 18s 19s 2s 21s 2.2s < |[Z] Thread
mainCRTStartup (Oxd cc I

@ Running
4)

OMP Worker Thread 1
Load Sars

OMP Worker Thread 2
(0x25c4)

I m ba I a n Ce ?oh:;og;"ker Thread =3

Erale o b‘
Thread Concurrency :

<

Thread

dduds Concurrency

o>

39 Argonne Leadership Computing Facility

Argonne &

NATIONAL LABORATORY

Intel® Trace Collector & Analyzer

/ collect traces

LD PRELOAD="/opt/intel/itac/2018.1.017/intel64/slib/libVT.so $CONDA_PREFIX/lib/libmpi.so” \
mpiexec -n 4 python script.py

... mpiexec -gtool “amplxe-cl -collect hpc-performance -r result:1-4” ...

\ Use VTune to analyze node-level performance.

Can also use Intel® Advisor: advixe-cl

40 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAAAA

Summary view

Optio Proje do elp

Summary: python.stf

Total time: 1.34 sec. Resources: 4 processes, 1 node.

Ratio Top MPI functions

This section represents a ratio of all MPI calls to the rest of your This section lists the most active MPI functions from all MPI calls in the application.
code in the application.

MPI_Finalize I 0.0128 sec (0.955 %)

MPI_Gatherv [IE— 0.011 sec (0.817 %)
MPI_Gather 0.0109 sec (0.812 %)
MPI_Scatter | Hmmm————-———-——--—-—) 0.00751 sec (0.559 %)
MPI_Scatterv | 0.00011 sec (0.00819 %)
M Serial Code-1.3sec 96.8%
Il OpenMP - 0 sec 0 %
M MPIcalls - 0.0424 sec 3.1 %
Where to start with analysis
For deep analysis of the MPI-bound application click "Continue >" to open the To optimize node-level performance use:
tracefile View and leverage the Intel® Trace Analyzer functionality: Intel® VTune™ Amplifier for:
- Performance Assistant - to identify possible performance problems B algonthm; level tuning W't,h hpq—performance and t_hreadlng efﬁcn'ency analy§|s;
- microarchitecture level tuning with general exploration and bandwidth analysis;

- Imbalance Diagram - for detailed imbalance overview

- Tagging/Filtering - for thorough customizable analysis Intel® Advisor for:

- vectorization optimization and thread prototyping.
Use the following command lines to run these tools for the most CPU-bound rank.
Intel® VTune™ Amplifier:

mpirun -gtool "amplxe-cl -collect hpc-performance -r result:2" -n 4 -ppn 1
python sources/svd_fast_distributed_mpi.py

Intel® Advisor:

mpirun -gtool "advixe-cl -collect survey:2" -n 4 -ppn 1 python
sources/svd_fast_distributed_mpi.py

41 Argonne Leadership Computing Facility Arggmgo O

Time-line view in traceanalyzer

Intel® Trace Analyzer - [1: /localdisk/work/opaviyk/projects/mpi_examples/mpi/python.stf] (on ansatski1004.an.intel.com)
C File Options Project Windows Help

View Charts Navigate Advanced Layout

= | Im e 0.296 552 - 0.335 799 : 0.039 247 O All_Processes [Major Function Groups ¢ ¥ | *

4e-3s Duration of Collective Ops «
2e-3s = Multiple
o5 03005 03105 03205 03305 Single
0.305 s 0.315s 0.325s 0.335s v
0.0 -
0.0
0.00s 002s 0.04s 0.06s 0.08s 0.10 s
0.01s 0.03s 0.05s 0.07 s 0.09's =

Flat Profile Load Balance Call Tree Call Graph Performance Issue Duration (%) Duration
Early Reduce 6.94% 10.85%e-3 s
Late Broadcast 4.78% 7.477e-3s
Show advanced..

All_Processes v

Name TSelf TSelf TTotal #Calls TSelf /Call

4 All_Processes
Group Application 113.99e-3 s [N 156.374e-3 s 0 n.a. -~ s S TS
Group MPI 42.384e-3 s N 42.384e-3 s 60 706.4e-6 s Description SEES S S R

Select performance issue to see details.

0.3349 s

42 Argonne Leadership Computing Facility

Argonne &

NATIONAL LABORATORY

Enumerated admonishments

« Benchmark and profile as you develop

« Control your environment

« Ask if you can do an operation with NumPy or SciPy

« Watch your data types — use NumPy datatypes

« Never mix forking and threading — ie: Python multiprocessing

» Avoid threading in Python — use threads in compiled modules

» Check the build configurations of your important Python modules

« Beware of thread affinity:
aprun -n .. -N .. -e KMP_AFFINITY=none -d .. -] ..

« Watch startup times carefully

« Search before you write code — someone else has likely already implemented
the solution you seek

* On Cray systems, you'll need the -b flag to aprun with any sort of
environment manager

43 Argonne Leadership Computing Facility Argonne &

AAAAAAAAAAAAAAAA

Questions?
See also:

ECP Python Tutorial:

by William Scullin (ALCF), Matt Belhorn (OLCF), and Rollin Thomas (NERSC)

Intel Python Distribution:

44 Argonne Leadership Computing Facility Argonne A

AAAAAAAAAAAAAAAAAA

https://github.com/wscullin/ecp_python_tutorial
http://software.intel.com/en-us/distribution-for-python

