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Google trends popularity: MPI vs Hadoop vs Spark

Why should MPI codes interface with Spark?



Spark Use Cases

Q: What about less embarrassingly parallel computations? 
A: Use Spark and MPI



Example: linear algebra in Spark

Pros for MPI: Classical MPI-based linear algebra implementations will be faster 
and more efficient

Faster development, easier reuse
One abstract uniform interface (RDD)
An entire ecosystem that can be used before and after the NLA computations
Spark can take advantage of available local linear algebra codes
Automatic fault-tolerance, out-of-core support

Pros for Spark:



Motivation
NERSC: Spark for data-centric workloads and scientific analytics
RISELab: characterization of linear algebra in Spark (MLlib, MLMatrix)
Cray: users asking for Spark; understand performance concerns
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Case Study: Spark vs. MPI

• Numerical linear algebra (NLA) using Spark vs. MPI
• Computations performed on NERSC supercomputer Cori Phase 1, a 

Cray XC40
• 2,388 compute nodes
• 128 GB RAM/node, 32 2.3GHz Haswell cores/node
• Lustre storage system, Cray Aries interconnect

A. Gittens et al. “Matrix factorizations at scale: A  comparison of scientific data 
analytics in Spark and C+MPI using three case studies”, 2016 IEEE International 
Conference on Big Data (Big Data), pages 204–213, Dec 2016.
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A. Gittens et al. “Matrix factorizations at scale: A  comparison of scientific data 
analytics in Spark and C+MPI using three case studies”, 2016 IEEE International 
Conference on Big Data (Big Data), pages 204–213, Dec 2016.

Case Study: Spark vs. MPI
• Numerical linear algebra (NLA) using Spark vs. MPI
• Matrix factorizations considered include truncated Singular Value 

Decomposition (SVD)
• Data sets include

• Ocean temperature data - 2.2 TB
• Atmospheric data - 16 TB
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Case Study: Spark vs. MPI

Rank 20 SVD of 
2.2TB ocean
temperature data
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Rank 20 SVD of 
16TB atmospheric
data using 48K+
cores

Case Study: Spark vs. MPI
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Case Study: Spark vs. MPI

Lessons learned:
• With favorable data (tall and skinny) and well-adapted algorithms, linear 

algebra in Spark is 2x-26x slower than MPI when I/O is included
• Spark’s overheads:

• Can be order of magnitude higher than the actual computation times
• Anti-scale

• The gaps in performance suggest it may be better to interface with 
MPI-based codes from Spark
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• Alchemist interfaces between Apache Spark and existing or custom MPI-
based libraries for large-scale linear algebra, machine learning, etc.

• Idea:
• Use Spark for regular data analysis workflow
• When computationally intensive calculations are required, call relevant 

MPI-based codes from Spark using Alchemist, send results to Spark

• Combine high productivity of Spark with high performance of MPI
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Target users:
• Scientific community: Use Spark for analysis of large scientific datasets  

by calling existing MPI-based libraries where appropriate
• Machine learning practitioners and data analysts:

• Better performance of a wide range of large-scale, 
computationally intensive ML and data analysis algorithms

• For instance, SVD for principal component analysis, 
recommender systems, leverage scores, etc.
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• Alchemist: Acts as bridge between Spark and MPI-based libraries
• Alchemist-Client Interface: API for user, communicates with Alchemist 

via TCP/IP sockets
• Alchemist-Library Interface: Shared object, imports MPI library, 

provides generic interface for Alchemist to communicate with library

Basic Framework
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Basic workflow:
• Spark application:

• Sends distributed dataset from RDD (IndexedRowMatrix) to Alchemist
• Tells Alchemist what MPI-based code should be called

• Alchemist loads relevant MPI-based library, calls function, sends results 
to Spark

Basic Framework
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• Alchemist can also load data from file
• Alchemist needs to store distributed data in appropriate format that can 

be used by MPI-based libraries:
• Candidates: ScaLAPACK, Elemental, PLAPACK
• Alchemist currently uses Elemental, support for ScaLAPACK under 

development

Basic Framework
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Alchemist Architecture
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Sample API
import alchemist.{Alchemist, AlMatrix}
import alchemist.libA.QRDecomposition      // libA is sample MPI lib

// other code here ...

// sc is instance of SparkContext
val ac = new Alchemist.AlchemistContext(sc, numWorkers)
ac.registerLibrary("libA", ALIlibALocation)

// maybe other code here ...

val alA = AlMatrix(A)                     // A is IndexedRowMatrix

// routine returns QR factors of A as AlMatrix objects
val (alQ, alR) = QRDecomposition(alA)

// send data from Alchemist to Spark once ready
val Q = alQ.toIndexedRowMatrix()          // convert AlMatrix alQ to RDD
val R = alR.toIndexedRowMatrix()          // convert AlMatrix alR to RDD

// maybe other code here ...

ac.stop()                                 // release resources once no longer required
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Example: Matrix Multiplication

• Requires expensive shuffles in Spark, which is impractical:
• Matrices/RDDs are row-partitioned
• One matrix must be converted to be column-partitioned
• Requires an all-to-all shuffle that often fails once the matrix is distributed
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Example: Truncated SVD
Use Alchemist and MLlib to get rank 20 
truncated SVD

• Spark: 22 nodes; Alchemist: 8 nodes
• A: m-by-10K, where m = 5M, 2.5M, 

1.25M, 625K, 312.5K
• Ran jobs for at most 30 minutes 

(1800 s)

Experiment Setup
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Example: Truncated SVD

• 2.2TB (6,177,583-by-46,752) ocean 
temperature data read in from HDF5 file

Experiment Setup

• Data replicated column-wise
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Upcoming Features

• PySpark, SparkR ⇔ MPI Interface
• Interface for Python => PySpark support
• Future work: Interface for R

• Direct Python interface, potential Dask integration
• More Functionality

• Support for sparse matrices
• Support for MPI-based libraries built on ScaLAPACK

• Alchemist and Containers
• Alchemist running in Docker and Kubernetes
• Will enable Alchemist on clusters and the cloud
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Limitations and Constraints

• Two copies of data in memory
• Data transfer overhead between Spark and Alchemist when data on 

different nodes
• Subject to network disruptions and overload

• MPI is not fault tolerant or elastic
• Lack of MPI-based libraries for machine learning

• No equivalent to MLlib currently available, closest is MaTEx
• Currently, need to run Alchemist and Spark on separate nodes -> more 

data transfer over interconnects -> larger overheads
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Future Work

• Apache Spark ⇔ X Interface
• Interest in connecting Spark with other libraries for distributed computing 

(e.g. Chapel)
• Reduce communication costs

• Exploit locality
• Reduce number of messages
• Use communication protocols designed for underlying network 

infrastructure
• Run as network service
• MPI computations with (basic) fault tolerance and elasticity
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github.com/project-alchemist/

Thanks to Cray Inc., DARPA and NSF for financial support
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