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HPC needs better throughput tools

Restrictive queue policy 

Lacking job packing / MPMD execution 

Cumbersome error & timeout handling

Human effort scales unfavorably with # of runs: 
(2,457,600 runs) (1 node) (6 minutes) = 245,760 node-hours
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Balsam
Workflows, scheduling, and execution for HPC

• Plan unlimited application runs in a stateful task database 

• Balsam automates packing, scheduling, and MPMD task execution 
• no modification to user applications 
• strong fault tolerance at task level 

• Program dynamic workflows with Python API 

• Workflow status and project statistics available at-a-glance
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Scaled to 91% of Theta, 1.2M+ tasks

2 jobs

5 jobs
• 7M+ core hours of DFT 

• Up to 5 concurrent 
batch jobs consuming 
tasks from the same 
database

Constructing and Navigating Polymorphic Landscapes of Molecular Crystals (PI: Alexandre Tkatchenko)

3 days 
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Release in production @ ALCF

module load balsam
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Balsam components
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Database

BalsamJob table:  
one row per task 

PostgreSQL backend 
High concurrency 

Django API
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Launcher

Pilot application 
running inside Cobalt 

job 

Dynamic task pull and 
execution
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Service

Automated queue 
submission (optional) 

Elastic scheduling of 
launcher jobs under 

varying workload
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BalsamJob fields: storage & retrieval

Name

Workflow Tag

Description

JSON data

Working directory
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BalsamJob fields: dependencies & data movement

Parents

Stage-in URL

Stage-out URL

Input file patterns
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BalsamJob fields: application parameters

Executable

Command line arguments

Environment variables

Pre/post-process scripts

# MPI ranks ranks / node
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Django: flexible queries from Python

from balsam.launcher.dag import BalsamJob 

BalsamJob.objects.filter( 
    num_nodes__lte=128, 
    name__contains="sim", 
    state="JOB_FINISHED" 
).update(state="RESTART_READY")   
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CLI encapsulates database configuration

Automated setup
balsam init ~/myproject

Virtualenv style context switching

. balsamactivate myproject
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Check load balance from launcher metadata

Load-balanced, 
flexible MPMD 

execution 

Execution metadata 
available for post-run 

analysis

Async Bayesian hyperparameter optimization: 64 nodes, 1 model-per-GPU
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Launcher
Resilient to task faults; errors logged in database

[BalsamDB: test-db] msalim@thetalogin6:~/test-db> balsam ls --state FAILED  
--history
Job testfail [fab575a3-01db-41b5-b70d-c396c17ef10d]
---------------------------------------------------

[10-03-2018 19:34:38.379895 CREATED]
[10-03-2018 19:38:24.490910 PREPROCESSED]
[10-03-2018 19:38:24.701099 RUNNING]
[10-03-2018 19:38:30.618931 RUN_ERROR]     Traceback (most recent call last):
   Hello from rank 2
   Hello from rank 1
      File "/gpfs/mira-home/msalim/test-db/fail.py", line 5, in <module>
           raise RuntimeError("simulated error")
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Theta Walkthrough
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Balsam on Theta — Walkthrough

• Theta module requires Python 3.6
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Command line interface

Load 3.6

CLI 
subcommands
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Start a new Balsam DB

Use balsam init to create a new database directory 
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Start a new Balsam DB

source balsamactivate <db-name> : starts server, 
if not already running, sets environment for Balsam 
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Hello World

balsam app :  
Register new applications with Balsam
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Hello World

balsam job :  
Add a new run (or task) to the database
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Hello World

Confirmation shows task details and 
names of adjustable fields 
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Hello World
balsam ls :  

View tasks in database
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Hello World
balsam submit-launch :  

Shortcut for Cobalt job submission (template in ~/.balsam)
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Hello World
If successful, jobs eventually marked 

JOB_FINISHED 
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Where did the output go?

7

By default, everything goes into DB 
directory

Job working directories are created as:  
data/<workflow>/<name>_<id>
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Error States

7
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Error States

7

balsam ls —state :  
Filter jobs by state
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Modifying Tasks

7

Modify BalsamJob fields from 
command line: 

Or with more flexible Python API:
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Managing large job counts
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Populating the Database
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Populating the Database
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The Launcher job template

~/.balsam/settings.json 
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The Launcher job template

…
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Configurable Queue Submission Policy



Argonne Leadership Computing Facility

Monitoring Progress

7

balsam ls —by-states :  
Group by state
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Monitoring Progress
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Dependencies and Dynamic Workflows
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Defining Dependencies
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Dynamic Workflows

• balsam.launcher.dag enables context-aware processing 
• dag.current_job 

• Attach pre/post-processing scripts to application 
• Inspect dag.current_job  
• Modify DB in response to workflow outcomes 

• dag.kill(job) 
• launcher terminates and replaces tasks in near-realtime
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Dynamic Workflows

• In more tightly-coupled workflows, a “master” app running 
under Balsam may itself spawn tasks for parallel, 
asynchronous execution 

• balsam.launcher.async facilitates programmatic polling/
processing of BalsamJobs
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concurrent.futures-inspired polling 
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• https://github.com/balsam-alcf/balsam  

• Tom Uram 
• Taylor Childers 
• Venkat Vishwanath 
• Prasanna Balaprakash 
• ADSP teams 

Argonne Leadership Computing Facility 
DOE Office of Science 
Supported under Contract DE-AC02-06CH11357

Thank you!

https://github.com/balsam-alcf/balsam

