
www.anl.gov

Balsam Workflows

Misha Salim
Argonne Leadership Computing Facility

msalim@anl.gov

Argonne Leadership Computing Facility

github.com/balsam-alcf/balsam

mailto:msalim@anl.gov

Argonne Leadership Computing Facility

HPC needs better throughput tools

Sometimes a few scripts is enough:
(20 runs) (1024 nodes) (12 hours) = 245,760 node-hours

Argonne Leadership Computing Facility

HPC needs better throughput tools

Human effort scales unfavorably with # of runs:
(2,457,600 runs) (1 node) (6 minutes) = 245,760 node-hours

Sometimes a few scripts is enough:
(20 runs) (1024 nodes) (12 hours) = 245,760 node-hours

Argonne Leadership Computing Facility

HPC needs better throughput tools

Restrictive queue policy

Lacking job packing / MPMD execution

Cumbersome error & timeout handling

Human effort scales unfavorably with # of runs:
(2,457,600 runs) (1 node) (6 minutes) = 245,760 node-hours

Argonne Leadership Computing Facility

Balsam
Workflows, scheduling, and execution for HPC

• Plan unlimited application runs in a stateful task database

• Balsam automates packing, scheduling, and MPMD task execution
• no modification to user applications
• strong fault tolerance at task level

• Program dynamic workflows with Python API

• Workflow status and project statistics available at-a-glance

Argonne Leadership Computing Facility

Scaled to 91% of Theta, 1.2M+ tasks

2 jobs

5 jobs
• 7M+ core hours of DFT

• Up to 5 concurrent
batch jobs consuming
tasks from the same
database

Constructing and Navigating Polymorphic Landscapes of Molecular Crystals (PI: Alexandre Tkatchenko)

3 days

802

1604

2406

3208

4010

A
ct

iv
e

no
de

s

Argonne Leadership Computing Facility

Release in production @ ALCF

module load balsam

Argonne Leadership Computing Facility

Balsam components

Argonne Leadership Computing Facility

Database

BalsamJob table:
one row per task

PostgreSQL backend
High concurrency

Django API

Argonne Leadership Computing Facility

Launcher

Pilot application
running inside Cobalt

job

Dynamic task pull and
execution

Argonne Leadership Computing Facility

Service

Automated queue
submission (optional)

Elastic scheduling of
launcher jobs under

varying workload

Argonne Leadership Computing Facility

BalsamJob fields: storage & retrieval

Name

Workflow Tag

Description

JSON data

Working directory

Argonne Leadership Computing Facility

BalsamJob fields: dependencies & data movement

Parents

Stage-in URL

Stage-out URL

Input file patterns

Argonne Leadership Computing Facility

BalsamJob fields: application parameters

Executable

Command line arguments

Environment variables

Pre/post-process scripts

MPI ranks ranks / node

Argonne Leadership Computing Facility

Django: flexible queries from Python

from balsam.launcher.dag import BalsamJob

BalsamJob.objects.filter(
 num_nodes__lte=128,
 name__contains="sim",
 state="JOB_FINISHED"
).update(state="RESTART_READY")

Argonne Leadership Computing Facility

CLI encapsulates database configuration

Automated setup
balsam init ~/myproject

Virtualenv style context switching

. balsamactivate myproject

Argonne Leadership Computing Facility

Check load balance from launcher metadata

Load-balanced,
flexible MPMD

execution

Execution metadata
available for post-run

analysis

Async Bayesian hyperparameter optimization: 64 nodes, 1 model-per-GPU

Argonne Leadership Computing Facility

Launcher
Resilient to task faults; errors logged in database

[BalsamDB: test-db] msalim@thetalogin6:~/test-db> balsam ls --state FAILED
--history
Job testfail [fab575a3-01db-41b5-b70d-c396c17ef10d]

[10-03-2018 19:34:38.379895 CREATED]
[10-03-2018 19:38:24.490910 PREPROCESSED]
[10-03-2018 19:38:24.701099 RUNNING]
[10-03-2018 19:38:30.618931 RUN_ERROR] Traceback (most recent call last):
 Hello from rank 2
 Hello from rank 1
 File "/gpfs/mira-home/msalim/test-db/fail.py", line 5, in <module>
 raise RuntimeError("simulated error")

Argonne Leadership Computing Facility

Theta Walkthrough

Argonne Leadership Computing Facility

Balsam on Theta — Walkthrough

• Theta module requires Python 3.6

Argonne Leadership Computing Facility

Command line interface

Load 3.6

CLI
subcommands

Argonne Leadership Computing Facility

Start a new Balsam DB

Use balsam init to create a new database directory

Argonne Leadership Computing Facility

Start a new Balsam DB

source balsamactivate <db-name> : starts server,
if not already running, sets environment for Balsam

Argonne Leadership Computing Facility

Hello World

balsam app :
Register new applications with Balsam

Argonne Leadership Computing Facility

Hello World

balsam job :
Add a new run (or task) to the database

Argonne Leadership Computing Facility

Hello World

Confirmation shows task details and
names of adjustable fields

Argonne Leadership Computing Facility

Hello World

Confirmation shows task details and
names of adjustable fields

Argonne Leadership Computing Facility

Hello World
balsam ls :

View tasks in database

Argonne Leadership Computing Facility

Hello World
balsam submit-launch :

Shortcut for Cobalt job submission (template in ~/.balsam)

Argonne Leadership Computing Facility

Hello World
If successful, jobs eventually marked

JOB_FINISHED

Argonne Leadership Computing Facility

Where did the output go?

7

By default, everything goes into DB
directory

Job working directories are created as:
data/<workflow>/<name>_<id>

Argonne Leadership Computing Facility

Error States

7

Argonne Leadership Computing Facility

Error States

7

balsam ls —state :
Filter jobs by state

Argonne Leadership Computing Facility

Modifying Tasks

7

Modify BalsamJob fields from
command line:

Or with more flexible Python API:

Argonne Leadership Computing Facility

Managing large job counts

Argonne Leadership Computing Facility

Populating the Database

Argonne Leadership Computing Facility

Populating the Database

Argonne Leadership Computing Facility

The Launcher job template

~/.balsam/settings.json

Argonne Leadership Computing Facility

The Launcher job template

…

Argonne Leadership Computing Facility

Configurable Queue Submission Policy

Argonne Leadership Computing Facility

Monitoring Progress

7

balsam ls —by-states :
Group by state

Argonne Leadership Computing Facility

Monitoring Progress

Argonne Leadership Computing Facility

Dependencies and Dynamic Workflows

Argonne Leadership Computing Facility

Defining Dependencies

Argonne Leadership Computing Facility

Dynamic Workflows

• balsam.launcher.dag enables context-aware processing
• dag.current_job

• Attach pre/post-processing scripts to application
• Inspect dag.current_job
• Modify DB in response to workflow outcomes

• dag.kill(job)
• launcher terminates and replaces tasks in near-realtime

Argonne Leadership Computing Facility

Dynamic Workflows

• In more tightly-coupled workflows, a “master” app running
under Balsam may itself spawn tasks for parallel,
asynchronous execution

• balsam.launcher.async facilitates programmatic polling/
processing of BalsamJobs

Argonne Leadership Computing Facility

concurrent.futures-inspired polling

Argonne Leadership Computing Facility

• https://github.com/balsam-alcf/balsam

• Tom Uram
• Taylor Childers
• Venkat Vishwanath
• Prasanna Balaprakash
• ADSP teams

Argonne Leadership Computing Facility
DOE Office of Science
Supported under Contract DE-AC02-06CH11357

Thank you!

https://github.com/balsam-alcf/balsam

