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DOE scientific data for machine learning
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Challenges for irregular domains
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Case studies

e |Scientific application performance modeling

* Surrogate modeling in weather simulation



Predictive models in HPC applications

Attainable processing speed (Gflops/second
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[H. Hoffmann, World Changing Ideas, SA 2009] [S. Williams et al., ACM 2009]

* Performance (run time) prediction still challenging
 ML-based performance modeling to bridge the gap
* |nsights on important knobs that impacts performance
* Help prune large search spaces in performance tuning



Bias variance tradeoff
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* No free lunch: no single method will work well on all data set

All supervised learning algorithms seek to reduce bias and variance in a
different way




Supervised learning methods

A mostly complete chart of

Neural Networks
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Deep neural networks

»
dropout_1: Dropout —

dense_’

(None, 512)
dropout_3: Dropout - —
(None, 512)

(None, 512)

output: Dense




Applications and platforms
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Impact of feature engineering

* No Feature Engineering (No-FE)
e application input parameters
* Feature Engineering (FE)
e application input parameters
* ratio of the application problem size and the
number of number of processes _ i i 77 No-FE
* inverse of the number of processes
* binary logarithm of number of processes
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10 X 20:80 cross validation

Feature engineering has a significant impact on the accuracy
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Impact of hardware platforms
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Algorithmic complexity has more impact than hardware platforms
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Nonlinear methods leverage large training data size



Transfer Iearning

Freeze weights

ropout opout

(None, 512) (None, 512)

dropout_3: Dropout R et ra i n We i g hts

dropout opout —
(None, 512)

- (None, 512)
output: Dense
(None, 1)
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Transfer learning
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Transfer learning significantly improves prediction accuracy 14



Extrapolation
from small to large problem sizes

Incorporating domain knowledge helps in exploration

15



e Scientific application performance modeling

Case studies

Surrogate modeling in weather simulation
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Planetary boundary layer

Planetary boundary layer (PBL)

lowest part of the atmosphere

directly influenced by its contact with a
planetary surface

responds to changes in surface radiative
forcing

flow velocity, temperature, moisture,
etc., display rapid fluctuations

computationally expensive in weather
research and forecasting model

Free Atmosphere

Entrainment
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https://en.wikipedia.org/wiki/Planetary_boundary_layer
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Planetary boundary layer

Output: profiles of wind,
temperature, moisture

Input: Surface properties, fluxes, and ground
temperature
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Surrogate neural network
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Prediction results

(level 1: close to surface) (level 16: ~2 km)
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Prediction results

meridional wind (south-north wind) vertical velocity (up and down motions)
output=wz; training years=1985-1994
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Prediction results

meridional wind (south-north wind) vertical velocity (up and down motions)
ears=1994 . output=wz; training years=1994
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Challenges for irregular domains
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