Eftf?ofiling your application
with Intel® Vtune ™
Amplifier and Intel®
Advisor

uuuuuuuuuuuuuu

Tuning at Multiple Hardware Levels

Exploiting all features of modern processors requires good use of the available resources
= Core
— Vectorization is critical with 512bit FMA vector units (32 DP ops/cycle)
— Targeting the current ISA is fundamental to fully exploit vectorization
= Socket
— Using all cores in a processor requires parallelization (MPI, OMP, ...)
— Up to 64 Physical cores and 256 logical processors per socket on Thetal
= Node

— Minimize remote memory access (control memory affinity)

— Minimize resource sharing (tune local memory access, disk IO and network traffic)

Intel® Compller Reports

FREE* performa

Compile with -qopt-report=5

= Which loops were vectorized = Prefetching

LOOP BEGIN
remark
remark
remark
remark
remark
remark
remark
remark
remark
remark
remark
remark
remark
remark
remark

LOOP END

Vector Length = [ssues preventing vectorization
Estimated Gain = [nline reports
Alignment = |nterprocedural optimizations
Scatter/Gather = Register Spills/Fills
at ../src/timestep.F(4835,13)
#15389: vectorization support: reference nbd_(1) has unaligned access [../src/timestep.F(4836,16)]
#15381: vectorization support: unaligned access used inside loop body
#15335: loop was not vectorized: vectorization possible but seems inefficient. Use vector always directive or -vec-threshold® to override
#15329: vectorization support: irregularly indexed store was emulated for the variable <coefd_(nbd_(1))=, part of index 1s read from memory
#15305: vectorization support: vector length 2
#15399: vectorization support: unroll factor set to 4
#15309: vectorization support: normalized vectorization overhead 0.139
#15450: unmasked unaligned unit stride loads: 1
#15463: unmasked indexed (or scatter) stores: 1
#15475: --- begin vector cost summary ---
#15476: scalar cost: 4
#15477: vector cost: 4.500
#15478: estimated potential speedup: 0.830
#15488: --- end vector cost summary ---
#25439: unrolled with remainder by 2

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Intel® Application
Performance Snapshot

VTune™ Amplifier’s Application Performance
Snapshot

High-level overview of application performance

= |dentify primary optimization areas

= Recommend next steps in analysis

= Extremely easy to use

= Informative, actionable data in clean HTML report
» Detailed reports available via command line

= Low overhead, high scalability

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Usage on Theta

Launch all profiling jobs from /projects rather than /home
No module available, so setup the environment manually:
$ source /opt/intel/vtune amplifier/apsvars.sh
$ export PMI NO FORK=1
Launch your job in interactive or batch mode:
$ aprun -N <ppn> -n <totRanks> [affinity opts] aps ./exe
Produce text and html reports:

$ aps -report=./aps result ...

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

APS HTML Report

Application: heart_demo
Report creation date: 2077-08-01 12:08:48

umber o anks: 144 Your application is MPI bound.
anks per node:
Dpen'\;’p threads per rank: 2 This may be caused by high busy wait time inside the library (imbalance), non-
HW Platform: Intel(R) Xeon(R) Processor code named Broadwell-£P optimal communication schema or MPI library settings. Use MPI profiling tools
Logical Core Count per node: 72 like Intel ® Trace Analyzer and Collector to explore performance bottlenecks.
1 2 1 3 9 S Cumentun Tagst Dela

¢ MPLTime S374%K <10% SE———

043% <10%

1470% <20%
0.30%K >50% |
0.00% <10%

50.98

0.68

SPFLOPS

MPI Time ry Stalls

53.74%k of Elapsed Time 0.43% of Elapsed Time 14.70% of pipeline slots 0.30%N~
.23 0.52:

65259 0529 Cache Stalls SPFLOPs per Cycle
MPI Imbalance 12.84% of cycles 0.08 Out of 32.00
(1113‘033;/:)Of Elapsed Time M_gmg_r_y__Egg_t_p_lf_i_[]_t DRAM Stalls Vector. Capacity Usage

. . Resident: 0.18% of cycles 25.84%K
TOP 5 MPI Functions % Per node:
Waitall 37.35 Peak: 786.96 MB ’3“”7”;’* . FP Instruction Mix
. 1.79% of remote accesses

Isend 6.48 Average: 687.49 MB ©
- Per rank:

Barrier 5.52 Peak: 127.62 MB

Irecv 3.70 Average: 38.19 MB

Scatterv 0.00 Virtual:

Per node:
Peak: 9173.34 MB

_| /OBoun d Ayeragfe: 9064.92 MB

0.00% Per rank:

(AVGGO 00, PEAK 0.00) Peak: 566.52 M5

ot : Average: 50361 MB

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Tuning Workflow

Intel® VTune™ Amplifier's
Application Performance Snapshot

MPI Bound S FPU
MPI Imbalance CPU Bound read-leve
+ Thread-level scalability issues parallelization] y

and Collector

(OpenMP analysis) I
Intel® Trace Analyzer I *

Intel® Advisor

Intel® MPI Tuner Intel® VTune™ Amplifier Threading Vectorization

CLUSTER NODE CORE

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Intel® Advisor

Vectorization and Threading

Intel® Advisor

Modern HPC processors explore different level of parallelism:
= within a core: vectorization (Theta: 8 DP elements, 16 SP elements)
» between the cores: multi-threading (Theta: 64 cores, 256 threads)

Adapting applications to take advantage of such high parallelism is quite
demanding and requires code modernization

The Intel® Advisor is a software tool for vectorization and thread prototyping

The tool guides the software developer to resolve issues during the vectorization
process

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Typical Vectorization Optimization Workflow

There is no need to recompile or relink the application, but the use of -g is
recommended.

1. Collect survey and tripcounts data

» |nvestigate application place within roofline model

= Determine vectorization efficiency and opportunities for improvement
2. Collect memory access pattern data

= Determine data structure optimization needs
3. Collect dependencies

= Differentiate between real and assumed issues blocking vectorization

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Cache-Aware Roofline

Next Steps If Under the Vector Add Peak

If just above the

— _ Scalar Add Peak
Check “Traits” in the Survey to see if FMAs are Check vectorization

used. If not, try altering your code or compiler efficiency in the Survey.

flags to induce FMA usage.
If under or near a FLOPS J g Follow the
memory roof... recommendations to
ry A FMA Peak

+ Try'a MAP analysis, improve it if it's low.

Make any appropriate ‘Cor ea
y appbrop V‘t addLeal If under the
Scalar Add Peak...

H
cache optimizations. : 1
« If cache optimization -
is impossible, try : : Check the Survey Report
reworking the ;| to see if the loop
algorithm to have a I ‘ vectorized. If not, try to get
higher Al. ‘ ScalarAdd Peak it to vectorize if possible.
This may involve running
Dependencies to see if it's
safe to force it.

>

Arithmetic Intensity

[Ootimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Using Intel® Advisor on Theta

Two options to setup collections: GUI (advixe-gui) or command line (advixe-cl).

| will focus on the command line since it is better suited for batch execution, but the GUI provides the
same capabilities in a user-friendly interface.

| recommend taking a snapshot of the results and analyzing in a local machine (Linux, Windows, Mac) to
avoid issues with lag.

advixe-cl --snapshot --cache-sources --cache-binaries ./advixe_res_dir
Some things to note:
» Use /projects rather than /home for profiling jobs
» Set your environment:

$ source /opt/intel/advisor/advixe-vars.sh

$ export LD LIBRARY PATH=/opt/intel/advisor/lib64:SLD LIBRARY PATH
$ export PMI_NO FORK=1

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Using Intel® Advisor on Theta

C:\Users\pauliusvitest - Intel Advisor
File View Help

‘M8 |2 EF G2 | B @ | b SttSuveyhnalysis v [@B | @

Welcome | €000 X

2 Survey & Roofline

& No Data

To collect data about your application's performance, compile your application with Release
build settings and run Survey analysis.

Copy Command Line to Clipboard
Command line:

& Consider selecting loops for deeper analysis using checkboxes in Survey Report

mpiexec -n 1 -gtool “advixe-cl -collect tripcounts -module-filter-mode=exclude -trip-counts -no-flop -no-
stacks -no-callstack-tripcounts -no-flops-and-masks -no-callstack-flops -stack-stitching -no-profile-python
-auto-finalize -project-dir C:\Users\pauliusv\test:0" "C:\Users\pauliusv\AppData\Local\Apps\Pexip Connect
\pexip-connect.exe'|

Copy | l Close

[J Hide knobs with default values

[Generate command line for MPI

Copyrigh 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Sample Script

#!/bin/bash

#COBALT -t 30
#COBALT -n 1 —>Basic scheduler info (the usual)
#COBALT -q debug-cache-quad

#COBALT -A <project>

export LD LIBRARY PATH=/opt/intel/advisor/1ib64:$LD LIBRARY PATH >Environment setup

source /opt/intel/advisor/advixe-vars.sh

export PMI NO FORK=1 Two separate collections
aprun -n 1 -N 1 advixe-cl -c survey --project-dir ./adv_res --search-dir src:=./ --search-dir bin:=./ --./exe

aprun -n 1 -N 1 advixe-cl -c tripcounts -flops-and-masks --project-dir ./adv_res \

--search-dir src:=./ --search-dir bin:=./ -- ./exe

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Nbody demonstration

The naive code that could

Nbody gravity simulation

Let’s consider a distribution of point masses m_1,...,m_nlocated atr_1,...,r_n.

We want to calculate the position of the particles after a certain time interval using the Newton law of

gravity.
struct Particle for (1 = 0; i < n; i++){ // update acceleration
{ for (J = 0; j < n; j++){
public: real type distance, dx, dy, dz;
Particle() { init();} real type distanceSqr = 0.0;
void init () real type distanceInv = 0.0;
{
pos[0] = 0.; pos[l] = 0.; pos[2] = O.; dx = particles[j].pos[0] - particles[i].pos[O0];
vel[0] = 0.; vel[l] = 0.; vel[2] = O0.;
acc[0] = 0.; acc[l] = 0.; acc[2] = 0.;
mass = 0.; distanceSqr = dx*dx + dy*dy + dz*dz + softeningSquared;
} distanceInv = 1.0 / sqrt(distanceSqr);
real_type pos[3];
real_type vel[3]; particles[i].acc[0] += dx * G * particles[j].mass *
real type acc[3]; distancelInv * distanceInv * distancelnv;
real_ type mass; particles[i].acc[l] += .
}; particles[i].acc[2] += .

[Ootimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Collect Roofline Data

Starting with version 2 of the code we collect both survey and tripcounts data:
export LD LIBRARY PATH=/opt/intel/advisor/l1ibé64:$LD_LIBRARY PATH
source /opt/intel/advisor/advixe-vars.sh
export PMI NO FORK=1
aprun -n 1 -N 1 advixe-cl --collect roofline --project-dir ./adv_res --search-dir src:=./ \

--search-dir bin:=./ -- ./nbody.x

And generate a portable snapshot to analyze anywhere:

advixe-cl --snapshot --project-dir ./adv_res --pack --cache-sources \

--cache-binaries --search-dir src:=./ --search-dir bin:=./ -- nbody naive

If finalization is too slow on compute add -no-auto-finalize to collection line.

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Summary Report

‘g Elap H Vectorized H Not Vectorized H FILTER:| All Modules 9 Al r -

e 5 o remnettos e WL ADVSIRDS GUI left panel provides access to further
@ Vectorization Advisor = tests

Vectorization Advisor is a vectorization analysis toolset that lets you identify loops that will benefit most from vector parall
discover performance issues preventing from effective vectorization and characterize your memory vs. vectorization bottlei
Advisor Roofline model automation.

I Summary provides overall performance
cpes e - characteristics

Vector Instruction Set AVX512, AVX2, AVX Number of CPU Threads 1
Total GFLOP Count 2120 Total GFLOPS 207 |
Total Arithmetic Intensity © 0.35165 | n LiStS instru Ction Set(S) used
) Loop metrics
Metrics Total
Total CPU time 10.14s (I 100.0% ™

e — _Top t_|me consuming loops are listed
Time in scalar code 006s | Indlvldua”y

Total GFLOP Count 2120 () 100.0%
e v = Loops are annotated as vectorized and
() Vectorization Gain/Efficiency .

Vectarzs toops Ganricency 1005] non-vectorized

Program Approximate Gain ' 10.00x

() Top time-consuming loops

i e s = Vectorization efficiency is based on used
s i To0a0 oo s ISA, in this case Intel® Advanced Vector

at <pp:136] 0.060s 10.140s 2000

©top Gt Gt o 0w s Extensions 512 (AVX512)

8, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Survey Report (Source)

o | G i [) R ORI e v s D

[B) Summary % Survey & Roofline |®i Refinement Reports

Inline information regarding

Vectorized Loops Bl FLops
+][=] Function Call Sites and Loops ¥ Performance Issues Self Time v | Total Time | Type Why No Vectorization? . .
Vector..| Efficiency | Gain E...| VL (Ve...| Self GFLOPS IOO Ch a ra Cte rl Stl CS
[loop in at cpp:138] €2 gather/sc... 10.080s @8 10.080s @l Vectorized (Body) Avxs.. [83% |1005x 16 2,093
20 [loop in tat pp:136) §10 forouter I. 0060sl 10.140s @ Scalar @ inner loop was already v... 1.700 EEEED
S § _start 0000s| 10.140 @D Function
f main 0.000s| 10.140s @D Function

5§ GSimulation:start 0000 10.1405 @EEE Function | | I S A u Sed

%G [loop in GSimulation:start at GSimulation.cpp:133] ¥ 1 Data type conversions .. 0.000s| 10.140s SN Scalar @ inner loop was already v...

< > <« >
source | Top Down | Code Anaiytics | Assembly | 4 & Why No Vectorizati u Types processed
 File: cache ec70d097069d33¢h5b0f6e401a49d97 G ion.cpp:138 G :start
Line Source Total Time = % | Loop/Function Time % Traits |~
132 CONSt GoUbLE tU = time.StArt(); . N
e e = Compiler transformations
134 {
135 ts0 += time.start(); .
136 @ for (i = 0; i < n; i++)// update acceleration a Iled
137 (p p
138 ©] 0.100s 100805 m—

32; UInt32 data type(s) and includ
= Vector length used
139 {
140 real_type dx, dy, dz;
141 real_type distancesqr
142 real_type distancelnv
143 | |
Selected (Total Time): 0.100s v LI

NO

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Survey Report

Detailed loop information

= |nstruction mix

= |SA used, including
subgroups

= Loop traits
= FMA
= Square root

» Gathers / Blends point to

memory issues and vector

inefficiencies

NO

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Code Analytics)

B) Summary % Survey & Roofline ®i Refinement Reports

-

[#] =] Function Call Sites and Loops

@ Performance
Issues

Vectorized Loops

FLOP;
Self Time v | Total Time T

GainE... |VL (Ve.. |Self ¢

Type Why No Vectorization?

Vector.. Efficiency

[loop in at cpp:138] 52 ...10.080s @ 10.080s @M Vectorized (Body) AVX5... [63%]10.05x 16 2.09:
26 [loop in at GSimul pp:136] §10 0060s| 101405 G Scalar & inner loop was already v... 1700
5 _start 0.000s| 10.140s @ Function
= § main 0000s| 10.140s @I Function
» § GSimulation:start 0.000s! 10.140s @D Function
50 [loop in GSimulation:start at GSimulation.cpp:133] & 1Datatype conv... 0.000sl 10.140s @I Scalar & inner loop was already v...
< < >
Source | Top Down ‘ Code Analytics ‘ Assembly @ Why No
~
Loop in GSimulation::start at GSimulation.cpp:138 Average Trip Counts: 125 ® GFLOPS: 2.09325 ®
10.080s AVX-512 Mask Usage: 37
Vectorized (Body) Total time
it ™ ’ -
AVX512ER_512; 10.080s Traits © static Instruction Mix C
= Square Roots ®
AVX512F_512 Selfime a Memory: 22 Compute:21 Mixed -2 Other
Instruction Set Gathers 12 Number of Vector Registers: 26

VY Static Instruction Mix Summary™
» Memory 39% (22) GHEED
» Compute 37% (21) G
¥ Mixed 4%(2)0
Other 21% (12) @
» Dynamic Instruction Mix Summary"

g]

63% Vectorization Efficiency

10.05x

Vectorization Gain

« Iregular Memory Access Patterns May Decrease Perfor
Suggestion: See Recommendations Tab

Blends

« Irregular Memory Access Patterns May Decrease Perfor
Suggestion: See Recommendations Tab
FMA
2-Source Permutes

Mask Manipulations

CARM Analysis

Using single threaded roof

Performance (GFLOPS) @ Q [B ~ | [/ Use Single-Threaded Roofs @ | [[] Show Roofline with Callstacks € =

100

Code vectorized, but
et 0 e performance on par with
R scalar add peak?

5
Scalar Add Peak: 2.23 GFLOPS

‘* ””””””””””””””””””””””””””””””””””” = Irregular memory access
patterns force gather
operations.

017 e

, | _ = Overhead of setting up
| e yeCtor operations reduces
efficiency.

0.01
Self Elapsed Time: 10.080s Total Time: 10.080 s

Next step is clear: perform a Memory Access Pattern analysis

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Memory Access Pattern Analysis (Refinement

aprun -n 1 -N 1 advixe-cl --collect map --project-dir ./adv_res \
--search-dir src:=./ --search-dir bin:=./ -- ./nbody.x

~ .
B) Summary % Survey & Roofline ™i Refinement Reports [MAP Source: GSimulation.cpp wig
Site Location Loop-Carried Dependencies ‘Strides Distribution Access Pattern Max. Site Footprint ‘Site Name Recommendations
[[loop in start at cpp:1... Noji ilabl 33%/33%//33% | Mixed strides 5KB loop_site_1 @ 2 Inefficient gather/scatter instructions present
A
Memory Access Patterns Report | Di ies Report |Q i | \ ’ " /
ID @ |Stride | Type Source Nested Function ‘Variable references Max. Site Footprint | Modules | Site Name | Access Type
=P 0; 40 onsta de ation.cpp:144 block 0x60a0b0 allocated a ation.cpp:109 |4KB bod oop Read
142 real_type distanceInv = 0.0f;
143
144 dx = particles[j].pos[0] - particles[i].pos[0]; //1£1op
145 dy = particles[j].pos[1] - particles[i].poes[1]; //1£lop
146 dz = particles[j].pos[2] - particles[i].pos[2]; //1flop
2P @ Gather stride i cpp:144 block 0x60a0b0 allocated at GSimulation.cpp:109 5KB nbody.x loop_site_1 Read
1142 real_type distanceInv = 0.0f;
143
144 dx = particles[j].pos[0] - particles[i].pos[0]; //1flop
145 dy = particles[j].pos[1] - particles[i].pos[1]; //1flop
146 dz = particles[j].pos[2] - particles[i].pos[2]; //1flop
=pP3 & Parallel site information GSimulation.cpp:144 nbody.x loop_site_1
142 real_type distanceInv = 0.0f;
143
144 dx = particles[j].pos[0] - particles[i].pos[0]; //1flop
145 dy = particles[j].pos[1] - particles[i].pos[1]; //1flop
146 dz = particles[j].pos[2] - particles[i].pos[2]; //1flop
=P5 @ 0 Uniform stride GSimulation.cpp:149 48 nbody.x loop_site_1 Read
147
148 distanceSgr = dx*dx + dy*dy + dz*dz + softeningSquared; //6£flops
149 distanceInv = 1.0f / sqrtf(distanceSqr); //1div+1sqgrt
150
151 particles[i].acc[0] += dx * G * particles[j].mass * distanceInv * distanceInv * distanceInv; //6£lops

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Storage of particles is in an Array
Of Structures (AOS) style

This leads to regular, but non-unit
strides in memory access

= 33% unit

* 33% uniform, non-unit

= 33% non-uniform
Structure Of Arrays (SOA) may

lead to unit stride access and more
effective vectorization

Vectorization: gather/scatter operation

The compiler might generate gather/scatter instructions for loops automatically vectorized
where memory locations are not contiguous

{
public:

real_ type
real_type
real_type

real_type
}i

struct Particle

pos[3];
vel[3];
acc[3];
mass;

{
public:

real_type
real_type

real_type
real_ type

}i

struct ParticleSoA

*pos_x,*pos_y, *pos_2z;
*vel _x,*vel_y,*vel_z;
*acc_x,*acc_y;*acc_z
*mass;

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

AoS - array
of structures
Memory
T ~
R
(a8
'.l.
Q
[
(1]
n
=
-
- ~
[}
R
(a8
'.l.
Q
[
(1]
1]
E:
E \

/

E

Vector
Register

SOA - structure
of arrays

(Memozy)

p.pos_x[i]

p.pos_x[i+l]

p.pos_x[i+2]

p.pos_x[i+3]

p.pos_x[i+4]

p.pos_x[i+5]

p.pos_x[i+6]

p.pos_x[i+7]

p.pos_x[i+8]

2 ol

>

S—

Vector
Register

Performance After Data Structure Change

In this new version (version 3 in Bfsumear]| ¢ Suey & Roofine. |1 ReSremmeetReports . -/A/I/\/
H H 'erformance Vectorized Loops
github sample) we introduce the " ecorJcaine vt senariors 3

Issues
. B = [loop in GSil i at GSi ion.cpp:151] ¢ 1 dep... 46.360s @ 46.360s B Scalar & vector dependence pre... 112200 ¢
following change:

Scalar loop. Not vectorized: vector dependence prevents vectorization
No loop transformations applied

" 50 [loop in GSil ion:start at GSi ion.cpp:171] @ 1 Assumed depe.. 0.040s! 0.040s| Scalar & vector dependence preve... 0475@8 C

= Change particle data structures o oo sso0 e i

0.000s! 46.400s EHED Function

f O S S O 3 § GSimulationzstart 0.000s! 46.400< MR Function [
rom AOS to SOA ‘ 4k ’

| Source ‘ Top Down ‘ Code Analytics [v i @ Why No V.

] FLOPS ~
+] [=] Function Call Sites and Loops Self Time v |Total Time | Type Why No Vectorization? T

3NIN4008

No loop transformations applied

ly

N Ote Ch a ng es in re po rt: Loopin tart at cpp:151 Average Trip Counts: 2000 () GFLOPS: 1.12166 ®
° (5 AVX-512 Mask Usage: 100
46.360s
H Scal: Total tim
= Performance is lower o . © Code Optmizatons o
33}(3?85 Static Instruction Mix 5 Compiler: Intel(R) C++ Intel(R) 64 Compiler for applications
: : . " Memory:8 Compute: 1 Mixed -1 Oth running on Intel(R) 64,
= Main loop is no longer vectorized & emberof v regsters 1 Verson: 1800128 B 201701
¥ Static Instruction Mix Summary'
» Memory 24% (8) @D
» Ci ute 32% (11
= Assumed vector dependence A —
. . . Other 12% (4)@
preven ts automatic vectorization > Dynamic nstruction Mix Summary®
Traits ®
Sauare Roots. FMA _ M

Next step is clear: perform a Dependencies analysis

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Dependencies Analysis (Refinement)

aprun -n 1 -N 1 advixe-cl --collect dependencies --project-dir ./adv_res \
--search-dir src:=./ --search-dir bin:=./ -- ./nbody.x

[1 Summary % Survey & Roofline * i Reports | [D i il i i . .
Site Location Loop-Carried Dependencies Strides Distribution Access Pattern Max. Site Footprint Site Name Recommendations D e pe n d e n CI eS a n a I yS I S h a S
[[loop in start at GSimulation.cpp:157] @ RAW:4 Noi ion available No il ion available No il ion available loop_site_1 @ 1 Proven (real) dependency present

high overhead:

ies Report | &

Type Site Name | Sources Modules | State

et = Run on reduced

Pl @ Parallel site information loop_site_1 GSimulation.cpp nbodyx v Nota problem Error 4items
P3 ® Read after write dependency loop_site_1 GSimulation.cpp nbodyx R New Information 1 item

Read after write dependency |loop_site_1 |GSimulation.cpp; main.cpp | nbody.x WO rk I O a d
PS @ Read after write y loop_site_1 op nbodyx R New LD

Parallel site information 1 item

P6 @ Read after write y loop_site_1 imulation.cpp nbodyx RNew
Read after write depend... 4 items

o s Advisor Findings:
ID |Instruction Address | Description | Source Function | Variable references | Module |State GSimulation.cpp Sitems g -

EX3 0x401c85 Parallel site) GSimulation.cpp:157 start nbodyx R New main.cpp 1item
155 real_type distanceInv = 0.0f; Module
156 nbody.x 5 items
157 dx = particles->pos_x[j] - particles->pos_x[il; //1flop V- n
T e ependenc
159 dz = particles->pos z[j] - particles->pos z[i]; __ //1flop
New 4items
X6 0x401cb8, 0x401d17 Read [GSimulation.cpp:164 start register XMM1 nbodyx A New)
162 distanceInv = 1.0f / sqrtf (distancesqr); //1div+1isqre Not a problem 1item
163
. .
164 particles->acc_x[i] += dx * G * particles->mass[j] * distanceInv * distanceInv * distanceInv; //6flops ™
166 particles->acc z[i] += dz * G * particles->mass[j] * distanceInv * distanceInv * distancelInv; //6flops
EX7 0x401dle Write [GSimulation.cpp:164 start nbodyx A New R
162 distanceInv = 1.0f / sqrtf(distancesqr); //1div+lsqre n n I
163 . ‘ 9 Sort By Item Name *®
e RIS A R AT) (5 O ey TR e S {4l * distancelny * distancelny ¢ distancernv: //Gflops

NO

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Recommendations

Memory Access Patterns Report | Dependencies Report ‘ ¥ Recommendations
All Advisor-detectable issues: C++ | Fortran ISSUE: PROVEN (REAL) DEPENDENCY
. PRESENT

Recommendation: Resolve dependency The compiler assumed there is an

The Dependencies analysis shows there is a real (proven) dependency in the loop. To fix: Do one of the following: anti-dependency (Write after read - WAR) or

true dependency (Read after write - RAW) in the
loop. Improve performance by investigating the
assumption and handling accordingly.

« [f there is an anti-dependency, enable vectorization using the directive #pragma omp simd

safelen(length) , where length is smaller than the distance between dependent iterations in
anti-dependency. For example:

Resolve dependency
fpragma omp simd safelen(4)
for (1 = 0; 1 < n - 4; 1 += 4)
{
al[i + 4] = a[i] * c;

o [f there is a reduction pattern dependency in the loop, enable vectorization using the directive #pragma omp simd reduction(operator:list) . For example:
#pragma omp simd reduction (+:sumx)
for (k = 0;k < size2; k++)
{

sumx += x[k]*b[k];

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Performance After Resolved Dependencies

Summary % Survey & Roofline i Refinement Reports

R &4
Performance (GFLOPS) Y

B~ | Use Single-Threaded Roofs @ | [[] Show Roofline with Callstacks ©

] ,
100 SP Vector FMA Peak: 75.98 GFLOPS
I R e b - m - oo S SERIITRIRENSD £ - A S
.- Lot P Vectar Add Pe:
P oo SPVecgraddPa
. z DP Vectdr FMA Peak
| eSS O _ g [DP Vector Add Peak
o %)- |

2
Scalar Add Peak: 2.22 GFLOPS

0.01 0:1 '

. 1 10
Self Elapsed Time: 2.320s Total Time: 2.320 s Arithmetic Intensity (FLOP/Byte)

New memory access pattern plus vectorization produces much improved performance!
What's next?

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Intel® VTUNE ™
Amplifier

Intel® VTune ™ Amplifier

VTune Amplifier is a full system profiler

= Accurate

= Low overhead

= Comprehensive (microarchitecture, memory, 1O, treading, ...)
= Highly customizable interface

= Direct access to source code and assembly

Analyzing code access to shared resources is critical to achieve good
performance on multicore and manycore systems

VTune Amplifier takes over where Intel® Advisor left

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Predefined Collections

Many available analysis types:

= advanced-hotspots Advanced Hotspots

= concurrency Concurrency

= disk-io Disk Input and Output

= general-exploration General microarchitecture exploration

= gpu-hotspots GPU Hotspots

= gpu-profiling GPU In-kernel Profiling

» hotspots Basic Hotspots >
= hpc-performance HPC Performance Characterization

» |ocksandwaits Locks and Waits >
" memory-access Memory Access

= memory-consumption Memory Consumption >
= system-overview System Overview

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Python Support

The HPC Performance Characterization Analysis

Threading: CPU Utilization

» Serial vs. Parallel time
= Top OpenMP regions by potential gain

» Tip: Use hotspot OpenMP region analysis
for more detail

Memory Access Efficiency
= Stalls by memory hierarchy

= Bandwidth utilization

» Tip: Use Memory Access analysis

Vectorization: FPU Utilization
» FLOPS T estimates from sampling

= Tip: Use Intel Advisor for precise metrics
and vectorization optimization

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

@ HPC Performance Characterization HPC Performance Characterization viewpoint (change) @ INTELVTUNEAMPLIFIER XE 2017

B Collection Log

Elapsed Time *: 3.859s

@ Analysis Target Analysis Type +% Bottom-up

GFLOPS “: 4.743
>U Usage Histogram

~) CPU Utilization *: 31.3% F 4 Overtued time adds to the e CPU usag:valu:.

Average CPU Usage : 27.509 Out of 88 logical CPUs
0.761s (19.7%)
3.098s (80.3%)
2.470s (64.0%)
0.627s (16.3%) aooms

800ms:
Serial Time :

Parallel Region Time :

Elapsed Time

600ms

Target Utilization

Estimated Ideal Time :

OpenMP Potential Gain
Top OpenMP Regions by Potential Gain
CPU Usage Histogram 200ms

T T
60 80

) Memory Bound : 50.3% [x M
Cache Bound : 0.092
Simultaneously Utilized Logical CPUs
DRAM Bound : 0.194 &

NUMA: % of Remote Accesses : 0.0%
Bandwidth Utilization Histogram

FPU Utilization *: 0.3% &

GFLOPS : 4743
Scalar GFLOPS @ 4.735
Packed GFLOPS : 0.008
Top 5 hotspot loops (functions) by FPU usage

T For 3rd, 5th, 6th Generation Intel® Core™ processors and second generation
Intel® Xeon Phi™ processor code named Knights Landing.

Memory Access Analysis

INTEL VTUNE AMPLIFIER XE 2017

Tune data structures for performance T/

= Attribute cache misses to data structures Ty Ty Addhdl g
(not just the code causing the miss) o et |

H
:
=
g
I iZi‘;Zﬂ "
= Support for custom memory allocators B e ——
Grouping:| Bandwidth Domain / Bandwidth Utiization Type / Memory Obje.::; / Allocation Stack v[x][a][®]
Bandwidth Domain / Bandwidth Utiliz... CPU Time ¥ \ L2 Miss Count |
'v DRAM. GB/sec 840.803s (D 6.000.180

v High 508.635s (D 4.000.120

Optimize NUMA latency & scalability o

» stream.c:98 (381 MB)

» True & false sharing optimization I — 2000

= Auto detect max system bandwidth @ e v N - EOE T | EXET R
= Easier tuning of inter-socket bandwidth

Bandwidth Domain / Bandwidth Utiliz... CPUTime ¥ l L2 Miss Count
v DRAM. GB/sec | 840.803s (D 6.000.180
Easier install, Latest processors v High | 5086355 G 4000.120
. . . . % p stream.c:100 (381 MB) 2,000,060
= No special drivers required on Linux > stream.c:98 (331 MB) | 2000060
= Intel® Xeon Phi™ processor MCDRAM (high » Medium | 241638 0
bandwidth memory) analysis > Low | 9052 @ 2.000.060
» MCDRAM Flat, GB/sec | 840.803s (D 6.000.180

N |@ . 34

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Using Intel® VTune ™ Amplifier on Theta

Two options to setup collections: GUI (amplxe-gui) or command line (amplxe-cl).

| will focus on the command line since it is better suited for batch execution, but the GUI provides the
same capabilities in a user-friendly interface.

Some things of note:
= Use /projects rather than /home for profiling jobs
= Set your environment:

$ source /opt/intel/vtune amplifier/amplxe-vars.sh

$ export LD LIBRARY PATH=/opt/intel/vtune amplifier/1ibé64:$LD LIBRARY PATH
$ export PMI NO FORK=1

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

A et b

Bl oz b B DS O wecme [N
@ Analysis Target A Analysis Type

Algorithm Analysts HPC Performance Characterization 72l

Basic Hotspots
Advanced Hotspots

Analyze important aspects of your application performance, including CPU utilization with additional details on OpenMP efficiency analysis,
Concurrency memory usage, and FPU utilization with vectorization information.
Locks and Waits For vectorization optimization data, such as trip counts, data dependencies, and memory access patterns, try Intel Advisor. It identifies the loops
that will benefit the most from refined vectorization and gives tips for improvements.

Re noyiCelsumpiion The HPC Performance Characterization analysis type is best used for analyzing intensive compute applications. Learn more (F1)

A Vectorization analysis is limited for this platform. Only metrics based on binary static analysis such as vector instruction set will be available.

C Analysis

CPU sampling interval, ms

Microarchitecture Analysis K
General Exploration Copy Command Line to Clipboard@jlselogin2 X
M Ac
smory ficcess Command line:
TSX Exploration — — -
[soft/compilers/inteljvtune_amplifier_2018.1.0.535340/bin64/amplxe-cl -collect hpc-
TSX Hotspots performance -app-working-dir fusr/bin -- Is
SGX Hotspots

Platform Analysis
CPU/GPU Concurrency

System Overview
GPU Hotspots
o | []
GPU In-kernel Profiling LY m
Disk Input and Output [Use -collect-with action
Hide knobs with default values
Custom Analysis -

[eIvrvTrvINTy PR A i 7 EepTvvvEI

*Other names ands may be claimed as the property of oth

0

Sample Script

#!/bin/bash

#COBALT -t 30
#COBALT -n 1 —>Basic scheduler info (the usual)
#COBALT -q debug-cache-quad

#COBALT -A <project>

export LD LIBRARY PATH=/opt/intel/vtune amplifier/lib64:$LD LIBRARY PATH >Environment setup

source /opt/intel/vtune amplifier/amplxe-vars.sh
export PMI_NO_ FORK=1

export OMP_NUM THREADS=64; export OMP_PROC_BIND=spread; export OMP_PLACES=cores | Invoke VTune™ Amplifier

aprun -n 1 -N 1 -cc depth -d 256 -j 4 amplxe-cl -c hotspots -knob analyze-openmp=true \
-r ./adv_res -- ./exe

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Hotspots analysis for nbody demo (ver7: threaded

/& 2| > D ®F| @ welcome viuneres X

OpenMP Region Duration Histogram
& Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ INTE INE AMPLIFIER 201
9 ElCollection Log @ Analysis Target A Analysis Type & Summary @ Bottom-up & Caller/Callee & Top-down Tree {:: Platform P //

This histogram shows the total number of region instances in your application executed with a specific duration. High number of slow instances may signal a performance
bottleneck. Explore the data provided in the Bottom-up, Top-down Tree, and Timeline panes to identify code regions with the slow duration

N

~ . OpenMP Region: \slanompparallel 64@unknown:146:182 ~
() Elapsed Time : 1.037s
CPU Time ?: 21.4208 5007 ¢
Effective Time “: 2.280s 3
Spin Time ¥ 18.660s K 0078
Imbalance or Serial Spinning ®: 17.319s K 2
Lock Contention 0s 3004 <
Other 13425
Overhead Time 0.480s 200
Total Thread Count 64
Paused Time 0s 100
(~) OpenMP Analysis. Collection Time : 1.037 0
Serial Time (outside parallel regions) : 0.733s (70.7%) K 0002 0027
Top Serial Hotspots (outside parallel regions)
Parallel Region Time : 0.304s (29.3%) Duration Type (sec)

Top Hotspots
) CPU Usage Histogram Lots of spin time indicate issues with load balance and

This histogram displays a percentage of the wallime the specific number of CPUs were running simutaneously. Spin and Overhead time adds to the idile CPU usage

synchronization
ﬁ: Given the short OpenMP region duration it is likely we do not have
g sufficient work per thread
0: , .- . ‘ . ! Let’s look a the timeline for each thread to understand things

—— —— better...

Simultaneously Utiized Logical CPUs

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Bottom-up Hotspots view

P P point (change) @ I AMPLI B

it o e S 4« ot & i i WD}MM» There is not enough work per
Grouping:| Module / Function / Call Stack v‘ﬁg

& Basic H H by CPU Usage vi

« = o= thread in this particular example
Module / Function / Call Stack Effective Time by Utiization » > » Module | 100.0% (2.260s of 2.260s) "
Spin Time Overhead Time
8Kle @Poor 8Ok @ldeal §Over nbody.xIGSimulation: startSomp

» libiomp5.so 0s 18.660s 0.320s » libiomp5.so![OpenMP dispatche
v nbody.x 2.260s (S 0s 0.160s { libiomp5.s01[OpenMP fork]+0x1 H H

» GSimulation: startSomp$parallel_forgl 2.260s | (3 0s | nbody.x e T e U R SR nbodly xIGSimulation: start+0x69. O u e C I C O n I n e O a Cce S S

» GSimulation:start 0s 0Os 0.160s nbody.x GSimulation: start(void) nbody.x!main+0x86 - main.cpp:43
» [Unknown] 0.020s | 0s 0s nbodyx!_start+0x28 - start $:118 SO Ce a d asse b |
. 1 . ur n mDoly.

P:i4 — w x0s 0.1s 02s Ruler Area:

OMP Master Thread #0 (TID. " Region Instance

o
3
2
£
(=

S Notice the filtering options at the

OMP Worker Thread #56 (TI o —

OMP Worker Thread #50 (TI. H H .
BT 5 mcmvree bottom, which allow customization

OMP Worker Thread #54 (TI. s Spin and Overhea . .

OMP Worker Thread #49 (TI... | EACEUS=co f th

OMP Worker Thread #58 (Tl [cPu Usage 0 I S V I eW

‘OMP Worker Thread #59 (T1
‘OMP Worker Thread #61 (Tl

e Next steps would include additional
e analysis to continue the

‘OMP Worker Thread #39 (Tl v

FILTER 1000% % | [AnyProcess - | Thiead |Any Thread || Any Module | Any Utiizatio ~ | | | Only user functions |- [Show iniine functic » | Functions only Opt“ I ||Zat|0n prOCGSS.

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Bottom-up HPC Characterization View

& <no current project> - Intel VTune Amplifier@jlselogin2 - X
= A @l { Welcome H vtune_hpc_... ” vtune_... X} [
Z HPC Performance Characterization HPC Performance Characterization viewpoint (change) e | INE AMPLIFIER 2018
q Collection Log) Analysis Target & Analysis Type & Summary & Bottom-up _— 3
Grouping: Function / Call Stack [Q][%:] ErapseaTime: as.s825 =
Function / Call Stack Serial GPU Time cPUTIme | — :::::"d t"::ss Bou“d“ | SIMD ions per Cycle | CPI Rate = cPU Utilization: 0.6% R
Average CPU Usage: 1.490 Out
» [Loop at line 2928 in timestep_ompparallel@2513] 0.020s 8.840s (NINNEG_ND 31.2% 7.4% 0.000 1.860
» [Loop at line 5335 in gwce_new_ompparallel@5265] ‘ 0.000s 8.590s (NENEEGEGED 95.4% 100.0% 0.365 1.691 Serial Time (outside parallel re
» [Loop at line 2473 in timestep_ompparallel_for@2473] 0s 8.530s (D 27.1% 0.0% 0.000 1.785
» __svml_dpow_cout_rare 5.372s 5.372s (D 0.0% 0.0% 0.084 0.783 Parallel Region Time: 30.3135 (
» [Loop at line 7387 in mom_eqs_new_nc_ompparallel@6789] 0s 4.992s D 59.3% 93.6% 0.355 2.004 CPU Usage Histogram
» [Loop at line 55 in pjac_ompparallel_for@49] 0.030s 3.408s 43.2% 100.0% 0.227 2.858
» [Loop at line 7929 in mom_eqs_new_nc_ompparallel@6789] 0s 26165 @ 28.4% 54.9% 0.377 1.157 Back-End Bound: %9% of pipe
» [Loop at line 2557 in itpackv_mp_unscal_ompparallel_for@2 0.010s 2.526s @ 79.9% 54.0% 0.188 2.758 ®
» __svml_pow8_b3 1.6245 1.624s @ 0.0% 0.0% 0.478 1.438 L2 Hit Bound: 37.
» [Loop at line 2459 in itpackv_mp_scal_ompparallel_for@245 0s 1.443s @ 70.0% 100.0% 0.176 3.925 : L2Miss Bound: 48
» [Loop at line 2025 in itpackv_mp_pmult_ompparallel_for@20 0.010s 1.353s @ 82.4% 100.0% 0.156 2.561 Demand Misses: 48
» [Loop at line 5659 in gwce_new_ompparallel@5265] 0s 1.253s @ 30.3% 100.0% 0.334 1.160 HW Prefetcher: 95.
» [Loop at line 4105 in timestep_ompparallel_for@4105] 0.010s 1.042s @ 30.5% 0.0% 0.535 0.856 MCDRAM Bandwidth Bound: 0.0
» [Loop at line 5304 in gwce_new_ompparallel@5265] 0s 0.932s @ 18.7% 0.0% 0.176 5.600 DRAM Bandwidth Bound: 0.0
» [Loop at line 304 in timestep_ompparallel_for@304] 0s 0.862s @ 12.6% 0.0% 0.069 1.106 Bandwidth Utilization Histogra
» [Loop at line 6824 in mom_eqs_new_nc_ompparallel@6789 0s 0.782s B 74.7% 0.0% 0.200 3.348 SIMD Instructions per Cycle: 0.1
» [Loop@0x6463c0 in _f90_reduction_final_strided] 0.020s 0.702s 0 51.0% 0.0% 0.383 1.188 P Instruction Mix:
» [Loop at line 5945 in gwce_new] 05215 0.521s | 19.0% 0.0% 0.224 3.438 % of Packed SIMD Instr - 7.
» [Loop at line 5707 in gwce_new] 0501s 0.501s | 82.6% 0.0% 0.076 4.385 o of Sealar SIMD Inctr.» 22
» [Loop@0x6a70bd in __svm|_pow8_b3] 0.441s 0.441s | 0.0% 0.0% 0.406 1.375
» [Loop at line 4279 in timestep] 04415 0.441s | 0.0% 0.0% 0.357 0.962
:I” oon at line 1455 in icti 0.421 0.421s | 4 3% 0 0% 0.186 1.433 ﬂ =
O: 4+ — x 30s Ruler Area: =
E =Region Instance
g O =OpenMP Barrier-
1= to-Barrier Segment
Thread [+
_ Effective Time
CPU Time a Spin and Overhe...
§ » package_0 0-875 | (5 Loading CPU Time
g L‘ N @ CPU Time
= s Spin and Overhe..
H DRAM Bandwidth, .. |
b waTotal, GB/sec
% » package_0 10645 ~~Read, GB/sec
3 r ~Write, GBIsec
g L S#PTIEDRAM Bandwidth
4 [7] s MCDRAM Rand

OD! FiLTer 100.0% | Procsss Any Process Module Any Module I Call Stack Mode User functions + 1 [¥ | Inline Mode Show inline functions ¥ [Loop Mode M L l“ 4
g 0

*Other names and brands may be clalmed as the property of others.

Bottom-up HPC Characterization View - Thread

& <no current project> - Intel VTune Amplifier@jlselogin2
s B b3 o ®|‘Welcome H vtune_hpc_... H vtune_... x‘
Z HPC Performance Characterization HPC Performance Characterization viewpoint (change) @

4 Collection Log &) Analysis Target & Analysis Type & Summary & Bottom-up

Grouping: OpenMP Region / Thread / Function / Call Stack [V | @E
OpenMP Potential Gain « »] Back-End Bound «
OpenMP Region / Thread / Function / Call Stack Elapsed Time Serial CPU Time CPU Time SIMD Instructions pel
Imbalance Lock Contention Creation Scheduling Reduction Atomics L2 Hit Bound L2 Miss Bound
» [Serial - outside parallel regions] 18.568s 18.202s 19.024s D 14.5% 30.9%
¥ gwece_new_ompparallel:2@unknown:5265:5673 6.316s Os 0.259s 0.005s 0s 0.025s Os 0s 11.887s (D 73.0% 95.4%
» OMP Master Thread #0 (TID: 183872) Os 6.204s (D 70.3% 64.1%
» OMP Worker Thread #1 (TID: 184145) Os 5.683s 76.0% 100.0%
» mom_eqs_new_nc_ompparallel:2@unknown:6789:7951 5.170s 0Os 0.184s 0.020s Os 0.045s 0.005s Os 9.903s (D
4.814s 0.000s 0.166s 0s 0s 0s 0s 0s| 9.201s
» timestep_ompparallel:2@unknown:2473:2502 4.863s Os 0.161s Os 0.005s 0.030s Os 0s 9.151s (D
» pjac_$omphparallel:2@unknown:49:59 2.490s Os 0.117s 0.005s 0.010s 0.035s Os 0s 4.671s @B
» itpackv_mp_unscal_ompparallel:2@unknown:2552:2561 1.637s 0Os 0.112s Os 0.010s 0.010s Os 0s 2847s @
» timestep_ompparallel:2@unknown:4105:4134 0.960s Os 0.061s Os 0.010s Os Os Os 1.664s §
» itpackv_mp_scal_ompparallel:2@unknown:2454:2463 0.884s Os 0.047s 0.005s Os 0.005s Os Os 1.644s 0
» itpackv_mp_pmult_ompparallel:2@unknown:2019:2029 0.843s 0Os 0.056s 0Os Os 0.015s Os Os 1.503s § 68.7% 100.0%
» timestep_ompparallel:2@unknown:304:345 0.774s Os 0.075s Os Os 0.005s Os 0s 1.153s | 13.6% 0.0%
» itpackv_mp_sdot_ompparallel:2@unknown:2950:2954 0.870s 0.000s 0.274s 0.005s 0.025s 0.040s 0.005s 0s 1.093s | 22.3% 50.2%
» mom_eqs_new_nc_ompparallel:2@unknown:7971:8045 0.392s Os 0.037s 0Os 0.005s 0.020s 0Os 0s 0.692s | 86.0% 100.0%
» itpackv_mp_unscal_ompparallel:2@unknown:2506:2540 0.203s 0.000s 0.019s Os 0.005s 0.010s Os Os 0.371s | 29.1% 0.0%
» itpackv_mp_iticg_ompparallel:2@unknown:570:575 0.174s Os 0.030s Os Os Os Os Os 0.291s | 100.0% 100.0%
» gwece_new_ompparallel:2@unknown:4639:4762 0.023s 0s 0.001s 0s 0s 0s 0.005s 0s| 0.050s 0.0% 0.0%
kil [T | ol

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Bottom-up General Exploration

m <no current project> - Intel VTune Amplifier@jlselogin2 -

' Bl b oz @ I ‘ Welcome H vtune_hpc_... ” vtune_hpc_... H vtune_... X }

@ General Exploration General Exploration viewpoint (change) @ INTEL VTUNE AMPLIFIER 2018

4 Collection Log (2 Analysis Target & Analysis Type & Summary & Bottom-up = & Event Count = Platform _— (3
Grouping: Source Function / Function / Call Stack

Front-End Bound « » Back-End Bound =
Source Function / Function / Call Stack . Bad Speculation Memory Latency |
ITLB Overhead BACLEARS MS Entry ICache Line Fetch - - - - - -
L1 Hit Rate L2 Hit Rate L2 Hit Bound L2 Miss Bound UTLB Overhead |Sl...|Sl... |C... Page Walk Split Loads | Split Stor

» [Outside any loop] d 5.1%H d % 93.0% 93.7% 4.5% % % | 0 0 %]
» [Loop at line 865 in _INTERNAL_25 src_kmp_barrier_cpp_ce635 0.0% 0.0% 6.7% 0.0% 100.0% 0.0% 0.0% 2.9% 0.0%0... |0. 0. _.0.0% 0.0% 0.0
» [Loop at line 56 in pjac_ompparallel_for@49] /e o o o o o 56.7% /
» [Loop at line 7339 in mom_eqs_new_nc_ompparallel_for@7339] 0.0% 0.0% 0.0% 0.9% 50.0% 96.3% 100.0% 97.9% 40.9% | 0 1 0 0
» [Loop@0x6727bd in _f30_reduction_final_strided] 0.0% 0.0% 0.0% 0.0% 94.4% 100.0% 34.2% 0.0% 6.0% |1 23 0 0.0
» [Loop at line 2482 in timestep_ompparallel_for@2480] 0.0% 0.0% 0.0% 0.0% 100.0% 100.0% 17.8% 0.0% 37.7%|0 0 0 0.0
» [Loop at line 2915 in timestep] 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 14.0%0... |0, 0 0.0
» [Loop at line 4082 in timestep] 0.0% 6.0% 0.0% 7.2% 100.0% 100.0% 100.0% 0.0% 0.0%|1... | 7. 0 0.0
» [Loop at line 55 in pjac_ompparallel_for@49] 0.0% 0.0% 0.0% o 0.0% 82.4% 100.0% 81.6% 0.0% 0.0%|1... |6 0 0.0
» [Loop@0x6727a0 in _f90_reduction_final_strided] 0.0% 0.0% 0.0% 0.0% 88.9% 100.0% 100.0% 0.0% 0.0% |1 4. |0 0.0
» [Loop at line 1840 in __kmp_fork_call] 0.0% 0.0% 0.0% 0.0% 100.0% 100.0% 38.6% 0.0% 0.0%0... |0 0 0.0
» [Loop at line 1949 in __kmp_join_barrier] 2.8% 0.0% 0.0% 8.5% 80.0% 0.0% 0.0% 0.0% 0.0%0... |0 0 0.0
» [Loop at line 772 in __kmpc_for_static_init_4] 8.3% 20.8% 12.5% 4.2% 100.0% 0.0% 0.0% 0.0% 0.0% 1 0 0.0
» [Loop@0xBc0f46 in cvtas_x_to_a] 0.0% 44.4% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0%|0... |0 0 0.0
» [Loop@0x6808e1 in _f30_reduction_init_array] 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0..
» func@0x13a00 0.0% 27.8% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 1 0.
» [Loop at line 957 in chgcon] 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0
» [Loop at line 1130 in _INTERNAL_22 src_kmp_lock_cpp_7c9c5b 11.4% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% (0 0 0
» [Loop at line 2122 in prbndx] 0.0% 0.0% 0.0% o 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 1 0
[’Ill on@0x380e0 in aetenvl 0 S 0 0% 1 3% 0 0% 12 59 Fi 0% 100 0% 100 0% 0 0% 0 0% .0 0 0

N

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Python

Profiling Python is straightforward in VTune™ Amplifier, as long as one does the
following:

= The “application” should be the full path to the python interpreter used

= The python code should be passed as “arguments” to the “application”
In Theta this would look like this:

aprun -n 1 -N 1 amplxe-cl -c hotspots -r res dir \
-- /usr/bin/python3 mycode.py myarguments

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Simple Python Example on Theta

aprun -n 1 -N 1 amplxe-cl -c hotspots -r vt pytest \
-- /usr/bin/python ./cov.py naive 100 1000

& Basic Hotspots Hotspots by CPU Usag;viewpoint (change) © I E

2018
i o N - i S i S e SSSES, - Naive implementation of the calculation

>) Elapsed Time : 209.598s
. .
D Top Hotepots of a covariance matrix
This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance. 1

Function Module CPU Time
¥ covpy 113533s
covpy 91587s

e Summary shows:

Sy — = Single thread execution

This histogram displays a percentage of the wall time the specific number of CPUS were running simutaneously. Spin and Overhead time adds to the Idle CPU usage value.

= Top function is “naive”

| |] 2 Click on top function to go to Bottom-up

Simultaneously Utiized Logical CPUs

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Bottom-up View and Source Code

Inefficient array multiplication found quickly

& Basic Hotspots Hotspots by CPU Usage viewpoint (change) @
1 ElCollectionLog @ Analysis Target A Analysis Type 3 Summary @ Bottom-up & Caller/Callee & Top-down Tree =% Platform [cov.py
Grouping:| Module / Function / Call Stack NEIRE
CPUTime ¥ « ~
Module / Function / Call Stack Effective Time by Utiization » Module
Oide @Poor §Ok @ideal §Over S || EiD
v covpy 203728 2280s 0s
v naive 111.873s 1.660s 0s covpy naive(fullArray)
v main 110.833s (D 1.660s 0s covpy main()
1108135 | 16605 05 | covpy <modue>
» B main — <module> — _star) covpy main()
» [naive — main — <module> | 1.040s 0s 0s covpy naive(fulArray)
» <genexpr> 90.967s (D 0.620s 0s covpy naive@<genexpr>1
» <module> 0.588s 0s 0Os covpy <module>
» main 03005 0s 0s covpy main()
» [Unknown] 2720s | 0s 0s
» libc-dynamic.so 1325 s s
» python2.7
» libpin3dwarf.so 2
~ trackdanc cn _
< >|l< >
o: + e o l0s 50s 100s 150s 200s
£

We could use numpy to improve on this

o~ O

CPU Time v
Viewing « 10f1 + selected stack(s)

100.0% (112.473s of 1124735)
covpylnaive - covpy
Covpylmains0x42 - covpy200
covpyl<module>+0x221 - covpy.
python2.7!_starts0x28 - [unknow.

Thread ~
[Running
#a CPU Time
s Spin and Overhead Ti
O @ crusample

& Basic Hotspots Hotspots by CPU Usage viewpoint (change) @
7 Bl Collection Log D Analysis Target A Analysis Type & Summary & Bottom-up & Caller/Callee & Top-down Tree '

Assembly % & | W Q Assembly grouping: Function Range / Basic Block / Address

CPU Time:
o Source Effective Time by Util
Line y Vull
Bidie @Poor @Ok W Ide:
59
60 # calculate norm arrays and populate norm arrays dict
61 for i in range (numCols):
62 normArrays.append (np.zeros ((numRows, 1), dtype=float))
63 for j in range (numRows) : |
64 normArrays (i) (j)=fullArray(:, i) (j)-np.mean(fullaArray(:, i 6.3%-
65
66
67 # calculate covariance and populate results array
68 for i in range (numCols):
69 for j in range (numCols): |
70 result[i,j] = sum(p*q for p,q in zip(
7 normArrays[i],normarrays(j]))/ (numRows)
72
73 end = time.time ()
74 print('overall runtime = ' + str(end - start))

Note that for mixed Python/C code a Top-Down view can often be helpful to drill down into the C kernels

Copyright © 2018, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Useful Options on Theta

If finalization is slow you can use -finalization-mode=deferred and simply finalize
on a login node or a differenet machine

If the collection stops because too much data has been collected you can
override that with the -data-limit=0 option (unlimited) or to a number (in MB)

Use the -trace-mpi option to allow VTune Amplifier to assign execution to the
correct task when not using the Intel® MPI Library.

Reduce results size by limiting your collection to a single node using an mpmd
style execution:

aprun -n X1 -N Y amplxe-cl -c hpc-performance -r resdir -- ./exe : \
-n X2 -N Y ./exe

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Resources

Product Pages

= https://software.intel.com/sites/products/snapshots/application-snapshot

» https://software.intel.com/en-us/advisor

» https://software.intel.com/en-us/intel-vtune-amplifier-xe

Detailed Articles

» https://software.intel.com/en-us/articles/intel-advisor-on-cray-systems

» https://software.intel.com/en-us/articles/using-intel-advisor-and-vtune-amplifier-with-mpi

» https://software.intel.com/en-us/articles/profiling-python-with-intel-vtune-amplifier-a-covariance-
demonstration

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR

OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests,
such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change
to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit

www.intel.com/benchmarks.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.

Notice revision #20110804

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Software

EMON Collection

General Exploration analysis may be performed using EMON

= Reduced size of collected data

= Qverall program data, no link to actual source (only summary)
= Useful for initial analysis of production and large scale runs

= Currently available as experimental feature

export AMPLXE EXPERIMENTAL=emon

aprun [..] amplxe-cl -c general-exploration -knob summary-mode=true]..]

O |@. 50

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

VTune Cheat Sheet

amplxe-cl -c hpc-performance -flags -- ./executable
* —--result-dir=./vtune output dir

e —--search-dir src:=../src --search-dir bin:=./

-knob enable-stack-collection=true -knob collect-memory-
bandwidth=false

-knob analyze-openmp=true

—-finalization-mode=deferred

-data-1limit=125 €& in mb

* —-trace-mpi

| Qotimization Notice | https://software.intel.com/en-us/vtune-amplifier-help-

Copyright © 2018, Intel Corporation. All rights reserved. el v
*Other names and brands may be claimed as the property of others. amplxe-cl-command syntax

Advisor Cheat Sheet

advixe-cl -c roofline/depencies/map -flags -- ./executable
* —--project-dir=./advixe output dir

e --search-dir src:=../src --search-dir bin:=./

* -no-auto-finalize

e —-jnterval 1

| Optimization Notice | https://software.intel.com/en-us/advisor-help-lin-

-data-1limit=125 €& in mb

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

command-line-interface-reference

Profiling a single rank (for a 4 node, 256 rank job)

mpirun -n 1 \
amplxe-cl -c hotspots \
-- ./exe \

-n 255 ./exe

N

Intel (JLSE/BEBOP)

| Optimization Notice |

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

profilel.sh:

#!/bin/bash

export PE RANK=$ALPS APP PE
export PMI_NO FORK=1

if ["$PE RANK" == 0];then
$1 -- $2

else
$2

fi

aprun -n 256 —-N 64 profilel.sh

“amplxe-cl -c hotspots” “exe”

Intel + Cray(Theta)

