

ANL/ALCF/ESP-13/16

Multiscale Molecular Simulations at the Petascale

(Parallelization of Reactive Force Field Model for Blue

Gene/Q)

ALCF-2 Early Science Program Technical Report

Argonne Leadership Computing Facility

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,

at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne

and its pioneering science and technology programs, see www.anl.gov.

Availability of This Report

This report is available, at no cost, at http://www.osti.gov/bridge. It is also available

on paper to the U.S. Department of Energy and its contractors, for a processing fee, from:

 U.S. Department of Energy

 Office of Scientific and Technical Information

 P.O. Box 62

 Oak Ridge, TN 37831-0062

 phone (865) 576-8401

 fax (865) 576-5728

 reports@adonis.osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express

or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply

its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of

document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,

Argonne National Laboratory, or UChicago Argonne, LLC.

ANL/ALCF/ESP-13/16

Multiscale Molecular Simulations at the Petascale

(Parallelization of Reactive Force Field Model for Blue Gene/Q)

ALCF-2 Early Science Program Technical Report

prepared by

Adrian W. Lang1, Gard Nelson2, Christopher Knight3, and Gregory A. Voth2
1Argonne Leadership Computing Facility, Argonne National Laboratory
2University of Chicago
3Computing, Environment, and Life Sciences, Argonne National Laboratory

May 7, 2013

Parallelization of Reactive Force Field Model for Blue Gene/Q

Adrian W. Lange,1 Gard Nelson,2 Christopher Knight,3 and Gregory A. Voth2, 4

1Leadership Computing Facility, Argonne National Laboratory, Argonne, IL 60439, USA
2Department of Chemistry, University of Chicago, Chicago, IL 60637, USA

3Computing, Environment, and Life Sciences, Argonne National Laboratory, Argonne, IL 60439, USA
4James Franck Institute, Institute for Biophysical Dynamics,

and Computation Institute, University of Chicago, Chicago, IL 60637, USA

(Dated: April 1, 2013)

Our efforts in developing a highly parallel implementation of the reactive force field model, the
Multi-state Empirical Valence Bond (MS-EVB) method, are discussed. We have introduced multi-
threading, a state decomposition parallelism, and replica exchange capabilities. Example calcula-
tions are presented to demonstrate the improved productivity and scalability of the new code on
the Blue Gene/Q supercomputer, Mira. We show that we are now able to successfully scale to half
of Mira and have the potential to scale even further.

I. INTRODUCTION

Modeling the dynamics of complex biological molecu-
lar systems, such as proteins solvated in water, is a cru-
cial facet of understanding how life works at the level
of atomic detail and also understanding how we might
be able to develop biotechnology for energy production
and/or medical purposes. The vast number of atoms
present in biological systems, though, prohibits the appli-
cation of highly accurate quantum mechanical electronic
structure methods, because the computational cost of
these methods scales exponentially with respect to the
system size (i.e., the number of electron basis functions).
In order to study the dynamics of such molecular systems
with atomic detail, one instead opts to employ a classical
molecular mechanics force field whose energy and forces
can be computed at orders of magnitude faster than elec-
tronic structure. A typical molecular mechanics force
field developed specifically for biological molecules ap-
proximate chemical bonds as harmonic springs between
two atoms. While this approximation works reasonably
well for most molecular systems near equilibrium, it is
unable to account for the realistic quantum mechanical
nature of chemical bonds, which can break and form dy-
namically.

The Multi-state Empirical Valence Bond (MS-EVB)
method1,2 is one way to incorporate chemical reactiv-
ity into an otherwise non-reactive force field, enabling
the study of chemical reaction dynamics in complex bi-
ological systems without suffering the expense of elec-
tronic structure calculations. In short, MS-EVB makes
the ansatz that a reactive molecular system can be de-
composed into a set of diabatic states, each representing
one of several possible chemical bonding topologies, akin
to the “resonance structures” familiar to most chemists.
These diabatic states form a basis set, and the total sys-
tem is then a linear combination of the states, written
as

|Ψ〉 =
∑

I

cI |ψI〉 , (1.1)

where |ψI〉 is a diabatic state with coefficient cI . MS-

EVB then constructs a model Hamiltonian matrix, H.
The diagonal elements, HII , are simply the total energy
of each state. The off-diagonal elements, HIJ , are a cou-
pling energy between two states that serve as a reac-
tant and a product state (see Ref. 2 for more detail).
Finally, the Hamiltonian is diagonalized according to a
Schrödinger-like equation,

Hc = Ec (1.2)

to yield a set of eigenvalue energies, E, and eigenvec-
tors, c, containing the coefficients cI . The minimum
eigenvalue energy is selected as the final MS-EVB energy,
and forces on each atom are computed via the Hellman-
Feynman theorem. The MS-EVB approach can thus be
viewed as a coarse-graining (or, a multi-scale) approach
to quantum chemistry electronic structure, which allows
us to access larger molecular systems sizes and longer
time scales.

MS-EVB is a straightforward framework, yet it is a
challenge to implement effectively in a code capable of
taking advantage of modern supercomputers with thou-
sands of core processors. In the remainder of this work,
we discuss how we have tackled this challenge with sev-
eral advances in our MS-EVB code, Rapid Approach
to Proton Transport and Other Reactions (RAPTOR).3

Specifically, we discuss the parallelization of RAPTOR
tailored for running on the IBM Blue Gene/Q (BGQ)
supercomputer, Mira, housed at the Argonne Leadership
Computing Facility.

Throughout this work, we focus primarily on an exam-
ple application of MS-EVB for proton transport through
a transmembrane protein, Cytochrome c Oxidase (CcO).
Cco serves as a representative system of interest, al-
though the RAPTOR code is generalizable to a variety
of other reactions and molecular systems as well. Our
model CcO system consists of 159,519 atoms treated with
the CHARMM22 force field for protein molecules and
the CHARMM36 force field for the lipid molecules. Wa-
ter molecules are treated with the SPC/Fw force field,
in accord with the MS-EVB3 model,2 which is used to
model the proton transfer reactivity. We use a cutoff

2

of 10 Å (smoothly attenuated to zero with a switching
function beginning at 8 Å) for van der Waals and short-
range Coulomb pairwise interactions. Molecular dynam-
ics (MD) simulations are carried out at constant volume
and temperature with a Nose-Hoover thermostat. MD is
propagated with Velocity-Verlet integration with 1 fem-
tosecond time step intervals.

All calculations presented below are performed on the
BGQ architecture supercomputers—each compute node
containing 16 core processors and each core containing a
quad floating point unit (FPU)—at the Argonne Lead-
ership Computing Facility. Codes have been compiled
with the IBM XL compilers with level -O3 optimizations.
Performance of the codes is measured as productivity in
terms of MD time steps per wall second.

II. RAPTOR IMPLEMENTATION

A. Interface to LAMMPS

The RAPTOR code is an optionally installed user
package interface to the LAMMPS,4 a widely used and
freely available, open-source parallel molecular dynamics
code written in C++. LAMMPS is parallelized mainly
through a domain decomposition scheme, wherein a given
unit cell, simulated with periodic boundary conditions
(PBC), is divided in Cartesian space into many smaller
domains, each of which is treated separately on an in-
dividual rank with Message Passing Interface (MPI).
Intra-domain interactions are thereby computed entirely
in parallel, and inter-domain interactions are handled
with minimal MPI communications with neighboring do-
mains.

The domain decomposition scheme in LAMMPS is
very effective and scalable for the bonded interactions
(e.g., bonds, angles, dihedrals) and short-range non-
bonded interactions (e.g., van der Waals interactions)
of a force field. Because the magnitude of short-range
non-bonded interactions approaches zero rapidly, an in-
teractions cutoff radius can be used. However, for a
fixed size system, one cannot divide the unit cell into
domains of size smaller than the cutoff radius without
errors and/or loss of parallel efficiency, placing a limit on
how many MPI ranks can be used with domain decom-
position scheme alone. In addition, pairwise Coulomb
interactions usually cannot be approximated with a cut-
off because 1/r does not approach zero fast enough to
ignore without possibly introducing severe errors.

The Particle-Particle Particle-Mesh5 (PPPM) ap-
proach (available in LAMMPS) is therefore used in our
calculations to divide the work into a short-range part,
handled in conjunction with the pairwise van der Waals
interactions via domain decomposition, and a long-range
part, handled with a Fast Fourier Transform (FFT) per-
formed as parallel calls to the FFTW library. The long-
range electrostatics computation (i.e., the k-space com-
putation), despite being O(NlogN) scaling, is unfortu-

nately not nearly as efficiently parallel as the domain de-
composition (for the relatively small three dimensional
grids used in our calculations) because it involves a sub-
stantial amount of MPI communication in order to broad-
cast the electrostatics from the PPPM mesh globally to
all processors, an all-to-all style communication. More-
over, each PPPM evaluation requires 4 3D-FFTs, one
forward and three reverse. For MS-EVB calculations,
this is compounded further by the fact that the MS-EVB
model requires electrostatic energies in the off-diagonal
coupling matrix elements, adding to the amount of k-
space work. Indeed, at large counts of MPI ranks, the
k-space computation can dominate the wall time in MS-
EVB calculations with RAPTOR.3,6 For this reason, pre-
vious work in our research group3 had been devoted to
developing a partitioning scheme in which the real-space
bonded and non-bonded short-range interactions are per-
formed on one partition of MPI ranks and the k-space
computation is performed concurrently on another par-
tition. Thereby, one could assign fewer MPI ranks to the
k-space work to hide some of its poorly scaling commu-
nication, resulting in improved parallel efficiency and a
modest overall speedup at a large number of processors.

To demonstrate this, we compare results of productiv-
ity for the Cco model using only the MPI domain decom-
position in LAMMPS and also the k-space partitioning
scheme (MPI/split) in Figure 1. At 64 nodes (1024 MPI
ranks), the domain decomposition has reached the limit
where further spatial division competes with the size of
the cutoffs, hitting the intrinsic domain limit mentioned
above.

As one can infer from Figure 1, RAPTOR does not
scale very well with only the domain decomposition or the
k-space partitioning scheme, dropping below 50% paral-
lel efficiency at just 16 nodes, a far cry from the 49,152
nodes on Mira. The k-space partitioning improves the
scalability slightly, but, again it cannot scale further due
to the domain decomposition limit. Therefore, we are
compelled to develop new parallelism approaches to im-
prove scalability.

B. Multithreading with OpenMP and QPX SIMD

LAMMPS has recently added the ability (through an
optional user package) to take advantage of shared mem-
ory multithreading parallelism via the OpenMP API. It
does so with a so-called “force decomposition” scheme,
where, for example, the pairwise additive N2 force loop is
distributed across threads. Similar loop-level parallelism
is implemented for bonded interactions and parts of the
PPPM k-space calculation, such as interpolating charges
to the mesh. Note that the OpenMP force decomposition
is in addition to the usual MPI domain decomposition in
LAMMPS.

This multithreaded code, however, was implemented
for the general purpose parts of LAMMPS, of which
RAPTOR only uses for its diagonal matrix elements in

3

4 8 16 32 64

No. BG/Q Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0
M

D
 s

te
p
s
 /

 s
e
c

MPI
MPI/split

FIG. 1: Strong scaling of RAPTOR code with the CcO model
comparing domain decomposition only (MPI) and k-space
partitioning (MPI/split) schemes. Runs are carried out in
c16 mode (i.e. with 16 MPI ranks per node). The Cco sys-
tem contains 15 MS-EVB states on average.

the model Hamiltonian. So it was our task to merge this
existing OpenMP code with RAPTOR and also rewrite a
number of portions of RAPTOR that would benefit from
such force decomposition multithreading. For instance,
this involved multithreading certain pairwise loops for
off-diagonal coupling matrix elements as well as rewriting
parts of the LAMMPS PPPM interface with RAPTOR.
In the process of this re-coding, we also introduced a
handful of basic serial optimizations (e.g., loop unrolling
or conditional hoisting) that the compilers were unable to
recognize in complex loop structures, amounting to a 15%
speedup even with running only a single thread. In the
PPPM interface of RAPTOR, we were also able to share
a few of the FFT calls across thread partitions, providing
some additional concurrency. The OpenMP multithread-
ing was further combined with the k-space partitioning
scheme, code which has also been introduced to the gen-
eral release of LAMMPS now.

In addition to OpenMP multithreading, we explored
the special BGQ-specific QPX vector intrinsics API to
take advantage of the possibility of SIMD parallelism
on BGQ. For our purposes, we were introduced QPX
into the short-range non-bonded pairwise loops as well
as parts of the PPPM code specific to RAPTOR. Since
these loops have a number of branching conditional state-
ments, it was not straightforward to take full advantage
of QPX. We ultimately found that a “buffer/flush” ap-
proach was most successful. In this approach, we use
a set of vector4double buffers to temporarily store in-
formation needed to complete a pairwise interaction (or
other quantity). The bulk of the floating point oper-
ations in the loop are delayed until we have filled the
buffers, and then the buffers are flushed by computing
four pair interactions simultaneously with QPX vector
intrinsic functions. We note that the usual LAMMPS
pairwise loop uses a lookup table for the short-range

Coulomb interaction, which otherwise involves a some-
what expensive polynomial expansion to approximate the
error function. The lookup table is typically faster than
the explicit evaluation of the polynomial, but a lookup
table is not amenable to QPX vectorization. Thus, we
applied QPX to the polynomial expansion and omitted
the lookup table. Compared to no QPX vector intrin-
sics and without the lookup table, our buffer/flush code
exhibits a ∼ 50% speedup for the non-bonded force ker-
nel. Compared to no QPX and with the lookup table,
though, we observe a ∼30% speedup for the non-bonded
force kernel. While this is clearly shy of the theoretical
speedup of QPX, we nonetheless have found it a welcome
enhancement.

Putting all of the above together, we show in Fig-
ure 2 the improvements to scaling that are realized with
OpenMP and QPX. The BGQ is capable of hyperthread-
ing the quad FPU with OpenMP threads, but this may
not always prove beneficial since it may prevent the use
of QPX SIMD or possibly increase cache misses due to
less memory per MPI rank. We examine this in Figure 2
with two different modes, c4o16 being 4 MPI ranks per
node with 16 threads per rank (hyperthreaded mode),
and c1o16 being 1 MPI rank per node with 16 thread
per rank. It is quite clear that multithreading provides
a significant speedup compared to the MPI domain de-
composition or k-space partitioning for the same number
of nodes. It also pushes the domain decomposition limit
to greater node counts since threads reduce the number
of MPI ranks per node. Notice that the c1o16 mode
(the non-hyperthreaded mode) exhibits lower productiv-
ity than c4o16 mode (the hyperthreaded mode) at low
node counts, but because c1o16 mode has better paral-
lel efficiency, c1o16 scales further and eventually is more
productive as node count increases. This appears to be
the result of a combination of causes. One is the ability to
use QPX in c1o16 mode both in the FFTs (automatically
vectorized by compiler) and our special non-bonded force
kernels. Another appears to be that the MPI communica-
tion is appreciably faster in c1o16 mode (as compared to
c4o16 mode), likely because there is no intra-node com-
munication in c1o16, making the MPI ranks closer in the
communication network.

C. State Decomposition

Multithreading has certainly improved RAPTOR’s
parallelism, yet there has still been one aspect of RAP-
TOR that has been treated serially up to this point: the
matrix elements in the model Hamiltonian are evaluated
one at a time. In our model Cco example, there are on
average 15 states in the MS-EVB Hamiltonian, and each
state’s energy and forces can be computed independently
of the others. This glaringly obvious source of parallelism
had gone untapped until now when we introduced our
new “state decomposition” parallel scheme.

We accomplish the state decomposition in a manner

4

4 8 16 32 64 128 256 512 1024

No. BG/Q Nodes

1.0

2.0

3.0

4.0

5.0

6.0

7.0
M

D
 s

te
p
s
 /

 s
e
c

MPI
MPI/split
MPI/OMP c4o16
MPI/OMP/split c4o16
MPI/OMP c1o16
MPI/OMP/split c1o16

FIG. 2: Strong scaling of RAPTOR code with the CcO model
with OpenMP multithreading and QPX (data labeled with
OMP). Results from Figure 1 are included for comparison.
The mode is listed for each OMP run. c4o16 = 4 MPI ranks
per node and 16 threads per MPI rank (hyperthreaded mode).
c1o16 = 1 MPI rank per node and 16 threads per MPI rank.
MPI/OMP/split combines the OpenMP threading with the
k-space partitioning scheme. Each line of data is extended to
the domain decomposition limit.

analogous to the k-space partitioning scheme, but instead
of dividing by real-space and k-space work for all MS-
EVB states, we divide the work by individual MS-EVB
state. This allows us to have not just two partitions (as in
k-space partitioning) but as many partitions as we have
MS-EVB states, distributing the work of both real-space
and k-space across more processors. In practice, though,
because the number of MS-EVB states is dynamic during
the course of an MD simulation, we find that it is most
efficient to use slightly fewer state partitions than there
are MS-EVB states in order to avoid workless partitions.

The state decomposition scheme in RAPTOR is car-
ried out by running LAMMPS in partitioned mode,
which simply uses MPI Split to create a new MPI sub-
communicator for each partition. All partitions share the
same coordinates and velocities so that they all end up
with the same set of MS-EVB states after completing the
MS-EVB state search algorithm.2 Once the states have
been determined, each partition decides which state(s)
to work on with a simple static load balance and then
computes the work. Thus, each partition stores in mem-
ory only a subset of the entire set of MS-EVB state en-
ergies and forces. With the energies and couplings in
hand, the partitions perform an MPI Allreduce of the
MS-EVB Hamiltonian [a modest communication of data
size O(N2

states) with Nstates usually less than 20], which is
subsequently diagonalized by each partition to yield the
minimum eigenvalue energy (i.e., the MS-EVB energy)
and its corresponding eigenvector coefficients. Each par-
tition computes the MS-EVB force on atoms according

to the Hellman-Feynman theorem:

Fi = −

states∑

I,J

cIcJ
∂HIJ

∂xi

, (2.1)

where Fi is the force on the i-th atom with respect to
the xi Cartesian coordinate, and cI is the I-th coeffi-
cient from the minimum energy eigenvector. Since each
partition has only stored in memory those matrix ele-
ments (∂HIJ/∂xi) that it has worked on, another MPI
all-reduce communication is necessary, which, in order
to take advantage of MPI collective communications, is
performed within an MPI communication group contain-
ing the same spatial domains of different partitions. The
time step can then be propagated as usual on each par-
tition, updating coordinates and velocities for the next
iteration.

We present the productivity of the state decomposition
scheme in Figure 3. Note that the state decomposition
is a layer of parallelism on top of the MPI domain de-
composition and OpenMP multithreading. We observe
an appreciable speedup as we add more state partitions,
with 8 partitions scaling best for the CcO model, which
has on average 15 MS-EVB states in the MD run. At
low node counts, however, state partitioning is not as
productive as the other schemes. This is not especially
surprising since adding more state partitions reduces the
number of ranks in the domain decomposition, a tradeoff
in computational speed. Nonetheless, the state decom-
position exhibits better parallel efficiency and eventually
is more productive as the node count is increased.

The new state decomposition and multithreading has
certainly improved the scalability and productivity of
RAPTOR by a great deal. Before, RAPTOR could
hardly scale to 32 BGQ nodes, but now we are capable
of scaling to multiple BGQ racks (1 rack = 1,024 nodes)
with acceptable parallel efficiency.

III. REPLICA EXCHANGE UMBRELLA

SAMPLING

In addition to the advances made in parallelizing RAP-
TOR for single trajectory MD simulations, we also have
implemented a novel ensemble-run (replica exchange um-
brella sampling) interface to perform enhanced sampling
ensemble MD simulations.

A. Background

Umbrella sampling is a commonly used technique to
compute the free energy along a chosen path. The path is
usually referred to as a “collective variable” (CV) because
it often involves a combination of atom coordinates, such
as the distance or angles between groups of atoms. The
CV is then divided into multiple “windows”, and each
window is given an artificial restraint (i.e., a bias) to

5

4 8 16 32 64
128

256
512

1024
2056

4096
8192

No. BG/Q Nodes

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0
M

D
 s

te
p
s
 /

 s
e
c

MPI
MPI/split
MPI/OMP c4o16
MPI/OMP/split c4o16
MPI/OMP c1o16
MPI/OMP/split c1o16
MPI/OMP/state2 c1o16
MPI/OMP/state4 c1o16
MPI/OMP/state8 c1o16

FIG. 3: Strong scaling of RAPTOR code with the CcO model
with state decomposition. Results from Figure 1 and Figure 2
are included for comparison. The mode is listed for each OMP
run. c4o16 = 4 MPI ranks per node and 16 threads per MPI
rank (hyperthreaded mode). c1o16 = 1 MPI rank per node
and 16 threads per MPI rank. The number of state partitions
is listed, where “state2” is 2 state partitions, for example.
Note that the data for MPI/OMP c1o16 is the equivalent of
using one state partition. Each line of data is extended to the
domain decomposition limit.

be applied to the molecular system of interest in order
to keep the system near that window in the CV space.
By doing so, one ensures good sampling of each window
along the CV, which might otherwise not be the case
if parts of the CV are energetically unfavorable. After
sampling the windows, usually with MD runs, one uses
statistics of the biased energy to compute a relative free
energy value at each window, amounting to a free energy
surface along the CV.

The umbrella sampling approach described above can
be performed by running each window independently in
separate calculations. However, it is now well-known that
independent runs like this can produce artifacts and/or
poorly converged free energy surfaces if the MD runs
are not long enough and/or neighboring windows do not
have substantial overlap in CV space. One solution to
overcome this issue is to perform a loosely-coupled en-
semble simulation, where all windows are run simultane-
ously in one big single calculation. At certain points in
time, the ensemble simulation is halted, and one attempts
to swap umbrella sampling restraints between neighbor-
ing windows. Swaps are accepted or rejected according
to the canonical Metropolis Monte Carlo criteria to sat-
isfy detailed balance. This approach is known as replica
exchange umbrella sampling (REUS), and it has been
shown to reduce artifacts and speed convergence in um-
brella sampling.7 The swapping of windows increases the
sampling overlap between neighboring windows, and it
helps to prevent the system from becoming “stuck” in
metastable energy wells. REUS requires more computa-
tional power to run all the windows simultaneously, but

it actually reduces the time to solution of a converged
free energy surface as compared to completely uncoupled
umbrella sampling windows, thereby actually requiring
less overall CPU time.

B. LAMMPS Ensembles Implementation

In our work, we are interested in computing free energy
surfaces of proton transport, and we want to use REUS
enhanced sampling to speed the process. In the CcO
model, we have identified a CV for proton uptake along
a certain channel of the protein that leads to a catalytic
complex buried within the interior of the protein. Details
of this proton uptake channel will not concern us here
and can be found elsewhere in the literature. For the
purpose of the current work, we instead want to focus on
the computational aspect.

Prior to this report, we were only able to perform the
conventional uncoupled umbrella sampling with RAP-
TOR. We have now developed an implementation of
REUS for RAPTOR, which is part of a development code
by the name of LAMMPS Ensembles (LE). LE works by
using MPI Split to create a set of MPI subcommunica-
tors in which each subcommunicator creates its own in-
stance of the LAMMPS program class. Each LAMMPS
instance runs MD of its own replica of the molecular sys-
tem within its subcommunicator. At a specified time in-
terval, the ensemble of replicas must synchronize in order
to attempt swaps according to the REUS algorithm.

We have modified LE to perform REUS with RAP-
TOR. LE is yet another layer of parallelism on top of
the previously described domain decomposition, state de-
composition, and multithreading. A challenge unique to
MS-EVB in REUS, though, is that there can exist a sub-
stantial load imbalance between replicas. Every replica
contains the same molecular system but with different
coordinates, and since the number of MS-EVB states de-
pends on the spatial configuration of water molecules in
our simulations, every replica has a different amount of
work to compute. Fewer states means less work and will
complete a fixed number of time steps in less wall time
than a replica with more states. The issue is that REUS
must synchronize the ensemble runs to attempt swap-
ping, and this must be done after completing a prede-
termined number of MD steps. Those replicas with few
states will, therefore, wait in an MPI Barrier until the
replica with the most number of states completes, an ob-
vious waste of time.

To address this the load imbalance issue, we have in-
troduced a dynamic load balance algorithm to REUS.
In this scheme, we assign one of the LE replica subcom-
municators to act as a listener. After completing the
predetermined number of MD steps, each replica sends
a message to the listener to inform the listener of being
finished. The listener continues to receive messages until
all replicas have reported in, at which time the listener
broadcasts a signal to all other replicas that swapping

6

may proceed. In the meantime, while the non-listener
replicas are waiting for the signal from the listener, the
replicas asynchronously continue to take more MD steps,
checking back for the signal after every few MD steps.
The listener replica also continues to run similarly dur-
ing this time. The result is that the ensemble continues
to produce MD sampling while concurrently waiting to
synchronize for the swapping. Ultimately, the replicas
with fewer states produce several more MD steps than
those with more states. But, because of the swapping
in REUS, the “fast” replicas traverse the windows such
that no individual window is over-sampled compared to
others, which could be the case in conventional umbrella
sampling.

In Figure 4, we present a weak scaling plot of using
the REUS code with RAPTOR. The molecular system
is still the usual CcO model from before, and we com-
pare running REUS with different numbers of replicas
using the usual synchronous static load balance versus
using our asynchronous dynamic load balance, described
above. Each replica in these data runs the CcO model
system on 128 nodes in c1o16 mode using 2 states in
the state decomposition scheme. Swaps are attempted
after 200 MD steps (i.e., 200 femtoseconds). In the asyn-
chronous dynamic load balance scheme, this is the num-
ber of steps a replica takes before sending a message to
the listener replica. The full REUS run involves reported
here involve 20,000 MD steps, but because replicas con-
tinue to run while waiting in the asynchronous scheme,
the total number of MD steps in the end may differ. So,
as the measure of performance, we present the mean pro-
ductivity of the replicas in the ensemble,

Mean productivity =
1

tNrep

replicas∑

i

Ni,step . (3.1)

where Ni,steps is the number of MD steps taken by replica
i, t is the wall time, and Nrep is the number of replicas
in the ensemble. Also, the standard deviation in the to-
tal number of MD steps taken is reported for the asyn-
chronous scheme.

Figure 4 shows the REUS algorithm has fairly good
weak scaling properties, having not dropped below half of
parallel efficiency after increasing the number of replicas
by 16 times both in the synchronous and asynchronous al-
gorithms. However, the asynchronous algorithm is more
productive by nearly as much as 3 MD steps/second on
average at 64 replicas, a result of the improved load bal-
ance. Furthermore, the asynchronous algorithm does not
make certain replicas over-sample any window too much,
as the standard deviation of MD steps taken suggests.

Finally, we present strong scaling data for an REUS
run encompassing the full CV of our CcO system in Ta-
ble I. The CV is divided in total into 96 windows (i.e.,
96 replicas) running in c1o16 mode with 2 states in the
state decomposition scheme and using the asynchronous
dynamic load balance algorithm for REUS. Note that
24576 nodes represents half of Mira. We observe that

4 8 16 32 64

No. Replicas

4.0

5.0

6.0

7.0

8.0

9.0

M
e
a
n
 M

D
 s

te
p
s
 /

 s
e
c

512 1024 2048 4096 8192

No. BG/Q nodes

0

100

200

300

400

S
td

.
D

e
v.

 N
o
.

M
D

 s
te

p
s

Synchronous
Asynchronous

FIG. 4: Weak scaling of REUS with RAPTOR comparing the
usual synchronous static load balance and the asynchronous
dynamic load balance. Replicas are run on 128 nodes in c1o16
mode using 2 states in the state decomposition scheme.

TABLE I: Strong scaling of REUS with RAPTOR. 96 repli-
cas run in c1o16 mode with 2 states in state decomposition
scheme using asynchronous dynamic load balance algorithm.

No. BGQ Replica mean Parallel Ensemble
nodes MD steps/seca efficiencyb MD steps/secc

3072 2.49 1.00 239.0
6144 4.33 0.85 415.7
12288 7.08 0.67 679.7
24576 10.43 0.50 1001.3
a Eq. (3.1).
b Relative to 3072 nodes.
c Eq. (3.2).

our code performs quite well in strong scaling, remaining
above 50% parallel efficiency in all cases. In addition to
the mean productivity, we present the ensemble produc-
tivity,

Ensemble productivity =
1

t

replicas∑

i

Ni,step , (3.2)

which provides a measure of how much useful sampling
data is being produced per second with the single cal-
culation. That is, at 24,576 nodes (or 393,216 core pro-
cessors), our REUS run is producing, on average, just
over 1 picosecond total of reactive MD every wall sec-
ond, a truly astounding achievement possible only on a
leadership scale supercomputer like Mira.

IV. CONCLUSION

We have provided an overview of our efforts in trans-
forming the originally poorly scaling RAPTOR code into
one which can harness up to half of Mira (24 racks)

7

with appreciable parallel efficiency. This has been ac-
complished by introducing multithreading via OpenMP,
developing a new state decomposition parallel algorithm,
and creating a novel implementation of replica exchange
umbrella sampling with the LAMMPS Ensembles code.
Our new highly scalable RAPTOR code is currently be-
ing used on Mira to compute free energy surfaces of pro-
ton transport in complex biological systems at a unprece-
dented rate. We expect to report the results of these
calculations in future work.

V. ACKNOWLEDGEMENTS

This work has been supported through the Early Sci-
ence Project at the Argonne National Laboratory Lead-

ership Computing Facility. A. W. Lange would like to
extend a special thanks to Jeff Hammond at the Argonne
Leadership Computing Facility as well as to Luke Westby
at the University of Notre Dame for providing the devel-
opment code for LAMMPS Ensembles, which has served
as the foundation of our REUS code.

1 U. W. Schmitt and G. A. Voth. The computer simulation
of proton transport in water. J. Chem. Phys., 111(9361),
1999.

2 Y. Wu, H. Chen, F. Wang, F. Paesani, and G. A. Voth.
An improved multistate empirical valence bond model for
aqueous proton solvation and transport. J. Phys. Chem. B,
112:467–482, 2008.

3 Y. Peng, C. Knight, P. Blood, L. Crosby, and G. A. Voth.
Extending parallel scalability of lammps and multiscale re-
active molecular dynamics. Technical report, 2012.

4 S. Plimpton. Fast parallel algorithms for short-range molec-
ular dynamics. J. Comp. Phys., 117:1–19, 1995.

5 R. W. Hockney and J. W. Eastwood. Computer Simulation

Using Particles. Taylor and Francis Group, New York, 1988.
6 T. Yamashita, Y. Peng, C. Knight, and G. A. Voth. Com-

putationally efficient multiconfigurational reactive molecu-
lar dynamics. J. Chem. Theory and Comput., 8:4863–4875,
2012.

7 W. Jiang, Y. Luo, L. Maragliano, and B. Roux. Calcu-
lation of free energy landscape in multi-dimensions with
hamiltonian-exchange umbrella sampling on petascale su-
percomputer. J. Chem. Theory and Comput., 8:4672–4680,
2012.

Argonne National Laboratory is a U.S. Department of Energy

laboratory managed by UChicago Argonne, LLC

Argonne Leadership Computing Facility
Argonne National Laboratory

9700 South Cass Avenue, Bldg. 240

Argonne, IL 60439

www.anl.gov

