Visualizing your Data

Joseph Insley
Lead, Visualization & Data Analytics
Argonne Leadership Computing Facility

Silvio Rizzi
Assistant Computer Scientist
Argonne Leadership Computing Facility

Argonne 🚣

Here's the plan...

- Examples of visualizations
- Visualization resources
- Visualization tools and formats
- Data representations
- Visualization for debugging
- In-Situ Visualization and Analysis

Climate

Data courtesy of: Mark Taylor, Sandia National Laboratory; Rob Jacob, Argonne National Laboratory; Warren Washington, National Center for Atmospheric Research

Data courtesy of: Anurag Gupta and Umesh Paliath, General Electric Global Research

Materials Science / Molecular

Data courtesy of:
Subramanian
Sankaranarayanan,
Argonne National
Laboratory

Data courtesy of: Jeff Greeley, Nichols Romero, Argonne National Laboratory

Data courtesy of: Paul Kent, Oak Ridge National Laboratory, Anouar Benali, Argonne National Laboratory

Cosmology

Data courtesy of: Salman Habib, Katrin Heitmann, and the HACC team, Argonne National Laboratory

Cooley: Analytics/Visualization cluster

Peak 223 TF

126 nodes; each node has

- Two Intel Xeon E5-2620 Haswell 2.4 GHz 6-core processors
- NVIDIA Telsa K80 graphics processing unit (24GB)
- 384 GB of RAM

Aggregate RAM of 47 TB

Aggregate GPU memory of ~3TB

Cray CS System

216 port FDR IB switch with uplinks to our QDR infrastructure

Mounts the same GPFS file systems as Mira, Cetus (not Theta)

Moving Data between Theta and Cooley (Mira)

globus.org

- Select Institution: Argonne LCF
- Login using your ALCF username and CryptoCard PIN+password
- Select Endpoints
 - Source: alcf#dtn_theta
 - Destination: alcf#dtn_mira

All Sorts of Tools

Visualization Applications

- -VisIt
- –ParaView
- -EnSight
- Domain Specific
- –VMD, PyMol, Ovito

APIs

- -VTK: visualization
- –ITK: segmentation & registration

GPU performance

- –vI3: shader-based volume and particle rendering
- **Analysis Environments**
- -Matlab
- -Parallel R
- **Utilities**
- -GnuPlot
- -ImageMagick

ParaView & Vislt vs. vtk

ParaView & VisIt

- -General purpose visualization applications
- -GUI-based
- Client / Server model to support remote visualization
- -Scriptable / Extendable
- Built on top of vtk (largely)
- -In situ capabilities

vtk

- -Programming environment / API
- Additional capabilities, finer control
- -Smaller memory footprint
- -Requires more expertise (build custom applications)

Data File Formats (ParaView & Vislt)

VTK	PLOT3D	Facet	Tetrad
Parallel (partitioned) VTK	SpyPlot CTH	PNG	UNIC
VTK MultiBlock	HDF5 raw image data	SAF	VASP
(MultiGroup, Hierarchical Hierarchical Box)	, DEM	LS-Dyna	ZeusMP
•	VRML	Nek5000	ANALYZE
Legacy VTK	PLY	OVERFLOW	BOV
Parallel (partitioned) legacy VTK	Polygonal Protein Data	paraDIS	GMV
EnSight files	Bank	PATRAN	Tecplot
EnSight Master Server	XMol Molecule	PFLOTRAN	Vis5D
Exodus	Stereo Lithography	Pixie	Xmdv
BYU	Gaussian Cube	PuReMD	XSF
XDMF	Raw (binary)	S3D	
PLOT2D	AVS	SAS	
FLOIZD	Meta Image		

Version 5.4.1 (Client and Server versions must match)

- Connect
- Fetch servers (first time only)
- Fetch Theta configuration
- Connect
- Configure server settings
- Connecting: Enter Password
- Open File

Version 5.4.1 (Client and Server versions must match)

- Connect
- Fetch servers (first time only)
- Fetch Theta configuration
- Connect
- Configure server settings
- Connecting: Enter Password
- Open File

Version 5.4.1 (Client and Server versions must match)

- Connect
- Fetch servers (first time only)
- Fetch Theta configuration
- Connect
- Configure server settings
- Connecting: Enter Password
- Open File

Version 5.4.1 (Client and Server versions must match)

- Connect
- Fetch servers (first time only)
- Fetch Theta configuration
- Connect
- Configure server settings
- Connecting: Enter Password
- Open File

Version 5.4.1 (Client and Server versions must match) After launching client locally

- Connect
- Fetch servers (first time only)
- Fetch Theta configuration
- Connect
- Configure server settings
- Connecting: Enter Password
- Open File

Version 5.4.1 (Client and Server versions must match)
After launching client locally

- Connect
- Fetch servers (first time only)
- Fetch Theta configuration
- Connect
- Configure server settings
- Connecting: Enter Password
- Open File

Data Representations: Volume Rendering

Data Representations: Glyphs

2D or 3D geometric object to represent point data

Location dictated by coordinate

- 3D location on mesh

2D position in table/graph

Attributes of graphical entity dictated by

attributes of data

color, size, orientation

Data Representations: Contours (Isosurfaces)

A Line (2D) or Surface (3D), representing a constant value Vislt & ParaView:

good at this

vtk:

- same, but again requires more effort

Data Representations: Cutting Planes

Slice a plane through the data

Can apply additional visualization methods to resulting plane

VisIt & ParaView & vtk good at this

VMD has similar capabilities for some data formats

Molecular Dynamics Visualization

VMD:

- Lots of domain-specific representations
- Many different file formats
- Animation
- Scriptable

VisIt & ParaView:

 Limited support for these types of representations, but improving

VTK:

Anything's possible if you try hard enough

Visualization for Debugging

Visualization for Debugging

Visualization as Diagnostics: Color by Thread ID

Visualization as Diagnostics: Color by Thread ID

Defining Workflows with Science Teams

Investigating Tooth Enamel Fractures

Large-Scale Computing and Visualization on the Connectomes of the Brain

Objectives:

- development of imaging and analytical pipelines for full mammalian brains at the level of individual cells, axons and blood vessels
- integration on large-scale computing systems

Imaging technique:

 X-Ray extended tomography (or Mosaic Tomography) with 1micron resolution done at the beamline 32-ID-C on the Advanced Photon Source

Segmentation:

 Tensor flow based segmentation to extract features like cell bodies, myelinated axons and blood vessels

Science: Narayanan (Bobby) Kasthuri and team Slide courtesy Rafael Vescovi, Hanyu Li

Large-Scale Computing and Visualization on the Connectomes of the Brain

In Situ Visualization and Analysis

The Need of In Situ Analysis and Visualization

Research challenges for enabling scientific knowledge discovery at extreme-scale concurrency
Widening gap between FLOPs and I/O capacity

 will make full-resolution, I/O-intensive post hoc analysis prohibitively expensive, if not impossible.

Slides courtesy SENSEI in situ project:

www.sensei-insitu.org

Multiple in-situ infrastructures

Can We....

Enable use of any in situ framework?

Develop analysis routines that are portable between codes?

Make it easy to use?

OUR APPROACH

Data model – to pass data between Simulation & Analysis

API – for instrumenting simulation and analysis codes

Miniapp instrumentation with SENSEI

Slide courtesy OSPRay team @ Intel

Wald, Ingo, Gregory P. Johnson, J. Amstutz, Carson Brownlee, Aaron Knoll, J. Jeffers, J. Günther, and P. Navratil. "OSPRay-A CPU Ray Tracing Framework for Scientific Visualization." IEEE transactions on visualization and computer graphics 23, no. 1 (2017): 931-940.

Ray tracer for interactive scientific visualization-style rendering

- Volumes, triangle meshes, non-polygonal geometry (spheres, cylinders,...)
- Ray traced shading effects for shadows, ambient occlusion

Slide courtesy OSPRay team @ Intel

Wald, Ingo, Gregory P. Johnson, J. Amstutz, Carson Brownlee, Aaron Knoll, J. Jeffers, J. Günther, and P. Navratil. "OSPRay-A CPU Ray Tracing Framework for Scientific Visualization." IEEE transactions on visualization and computer graphics 23, no. 1 (2017): 931-940.

Ray tracer for interactive scientific visualization-style rendering

- Volumes, triangle meshes, non-polygonal geometry (spheres, cylinders,...)
- Ray traced shading effects for shadows, ambient occlusion

Slide courtesy OSPRay team @ Intel

Wald, Ingo, Gregory P. Johnson, J. Amstutz, Carson Brownlee, Aaron Knoll, J. Jeffers, J. Günther, and P. Navratil. "OSPRay-A CPU Ray Tracing Framework for Scientific Visualization." IEEE transactions on visualization and computer graphics 23, no. 1 (2017): 931-940.

Ray tracer for interactive scientific visualization-style rendering

Volumes, triangle meshes, non-polygonal geometry (spheres, cylinders,...)

- Ray traced shading effects for shadows, ambient occlusion

[Wald et al. '15]

Slide courtesy OSPRay team @ Intel

Wald, Ingo, Gregory P. Johnson, J. Amstutz, Carson Brownlee, Aaron Knoll, J. Jeffers, J. Günther, and P. Navratil. "OSPRay-A CPU Ray Tracing Framework for Scientific Visualization." IEEE transactions on visualization and computer graphics 23, no. 1 (2017): 931-940.

Ray tracer for interactive scientific visualization-style rendering

Volumes, triangle meshes, non-polygonal geometry (spheres, cylinders,...)

Slide courtesy OSPRay team @ Intel

Wald, Ingo, Gregory P. Johnson, J. Amstutz, Carson Brownlee, Aaron Knoll, J. Jeffers, J. Günther, and P. Navratil. "OSPRay-A CPU Ray Tracing Framework for Scientific Visualization." IEEE transactions on visualization and computer graphics 23, no. 1 (2017): 931-940.

Ray tracer for interactive scientific visualization-style rendering

- Volumes, triangle meshes, non-polygonal geometry (spheres, cylinders,...)
- Ray traced shading effects for shadows, ambient occlusion

Slide courtesy OSPRay team @ Intel

Wald, Ingo, Gregory P. Johnson, J. Amstutz, Carson Brownlee, Aaron Knoll, J. Jeffers, J. Günther, and P. Navratil. "OSPRay-A CPU Ray Tracing Framework for Scientific Visualization." IEEE transactions on visualization and computer graphics 23, no. 1 (2017): 931-940.

Ray tracer for interactive scientific visualization-style rendering

- Volumes, triangle meshes, non-polygonal geometry (spheres, cylinders,...)
- Ray traced shading effects for shadows, ambient occlusion

Free & open source: Apache 2.0 License

- http://ospray.org/

Built on top of Embree, extensive use of ISPC for vectorization

LAMMPS instrumentation with SENSEI and ospray

🔞 🖨 📵 srizzi@porota: /d0/SC17livedemo/lammps_sensei_ospray/viewer/build

```
srizzi@porota: /d0/SC17livedemo/lammps sens... × srizzi@po
Got atom type range {0, 67}
Oueried region with 15897 particles
bounds = [(Got atom type range {0, 67}
-27.5, -38.5, -36.3761), (27.5, 38.5, 36.373)]
Queried region with 16103 particles
\hat{b}ounds = [(-27.5, -38.5, -36.3761), (27.5, 38.5, 36.373)]
Got atom type range {0, 67}
Queried region with 16105 particles
bounds = [(Got atom type range {0, 67} -27.5, -38.5, -36.3764), (27.5, 38.5, 36.3733)]
Oueried region with 15895 particles
bounds = [(-27.5, -38.5, -36.3764), (27.5, 38.5, 36.3733)]
Got atom type range {0, 67}
Oueried region with 16106 particles
bounds = [(-27.5, -38.5, Got atom type range {0-36.3764), (27.5, 38.5, 36.3733)]
, 67}
Queried region with 15894 particles
bounds = [(-27.5, -38.5, -36.3764), (27.5, 38.5, 36.3733)]
Got atom type range {0, 67}
Got atom type range {0, 67}
Queried region with 15902 particles
bounds = [(Oueried region with 16098 particles
bounds = [(-27.5, -27.5, -38.5, -36.3767), (27.5-38.5, -36.3767), (27.5, , 38.5, 36.3736)]
38.5, 36.3736)]
Got atom type range {0, 67}
Got atom type range {0, 67}
Oueried region with 15898 particles
bounds = [(-27.5, -38.5, -36.3767), (27.5, 38.5, 36.3736)]
Queried region with 16102 particles
bounds = [(-27.5, -38.5, -36.3767), (27.5, 38.5, 36.3736)]
Got atom type range {0, 67}
Got atom type range {0, 67}
Queried region with 15900 particles
bounds = [(-27.5, -38.5, -36.377), (27.5, 38.5, 36.3739)]
Queried region with 16100 particles
bounds = [(-27.5, -38.5, -36.377), (27.5, 38.5, 36.3739)]
Got atom type range {0, 67}
Got atom type range {0, 67}
Queried region with 16100 particles
bounds = [(Queried region with 15900 particles
bounds = [(-27.5, -38.5, -36.377), (27.5, 38.5, 36.3739)]
<u>-</u>27.5, -38.5, -36.377), (27.5, 38.5, 36.3739)]
```


Immersive visualization

Immersive visualization

