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Abstract

The HACC (Hybrid/Hardware Accelerated Cosmology Code) frame-
work has achieved over 69% of the floating-point peak running on all of
Mira, and is now uniquely positioned to make significant contributions
to the science of large-scale structure formation. At the beginning of the
Early Science Project (ESP), HACC was attaining under 1% of the peak
FLOPS, and lacked the memory-management and file I/O capabilities
necessary for running at scale. This report describes the improvements
that transformed HACC from an average scientific code to one well-known
for its unmatched performance.

1 Introduction

Modern cosmology, and the study of large-scale structure formation in particu-
lar, is now a precision science, with both simulation and observation contributing
to our overall understanding of a vast quantity of observational data. As the
quantity and quality of observational data increases, corresponding increases
in our simulation ability are required. In order to tackle questions related to
the detailed behavior of dark matter and dark energy, the two dominate, yet
mysterious, components of the energy-density of the universe [2, 1], we must be
able to simulate the effect of small changes in theory parameters on observable
statistical quantities.

After the emission of what is now the Cosmic Microwave Background (CMB)
during recombination, the non-linear and long-range nature of the gravitational
force becomes increasingly important to the overall evolution of the matter in
the universe. At scales larger than that of galaxy clusters, no other forces make
a significant contribution1. As a result, we can accurately predict how the
matter will move and cluster at large scales using a “gravity-only” simulation.
Because of the huge dynamic range required almost everywhere in the simulation
volume, almost all structure-formation codes use a particle method whereby the
matter in the universe is decomposed into many point masses which are evolved
using a modified form of Newton’s equations. The HACC (Hybrid/Hardware

1Assuming that the effect of dark energy on the background evolution of the universe is

taken into account.
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Accelerated Cosmology Code) framework provides an infrastructure for running
just these kinds of simulations and performing some of the analysis necessary
to compare the simulated universes to observational data.

Prior to the beginning of the Early Science Project (ESP), large simulations
had been run with HACC only on the Roadrunner machine at LANL. The
largest of these simulations used a few hundreds of billions of particles, and
made use of the PowerXCell 8i GPU-like processors in order to quickly compute
the short-range particle-particle force contributions [5]. HACC’s ability to run
on an massively-parallel CPU-only system like Mira was very limited, and initial
tested showed that it achieved under 1% of the peak FLOPS (floating-point
operations per second). In addition, its required one-file-per-rank I/O facility
would have been impractical for use at scale, and its poor memory management
would have precluded long runs. Over the course of the last two years, all
of these things have greatly improved. In fact, HACC was a 2012 finalist for
the IEEE/ACM Gordon Bell prize in scientific high-performance computing [4],
reporting 13.94 PFlops at 69.2% of peak and 90% parallel efficiency on 1,572,864
cores running on the BG/Q machine Sequoia at LLNL. To meet today’s science
requirements, we’ll need to run trillions of particles in several large simulations:
HACC is now ready for that challenge!

2 Long-Range Force

The total gravitational force on every particle from every other particle is split
into two parts: the long-range part and the short-range part. The long-range
force is computed on a grid using a FFT (Fast Fourier Transform)-based tech-
nique. Unfortunately, memory limits the size of the grid to a resolution near
the initial inter-particle spacing. As the universe evolves, and matter clusters
together under gravity, the relevant length scale for particle-particle interactions
in clustered regions falls well below the grid resolution. Adding this additional
short-range component is the responsibility of the architecture-specific short-
range force solver. Nevertheless, the long-range force solver, and specifically
the routines used to compute the distributed FFTs on which the solver relies,
determine the overall weak scaling of the code. As shown in Figure 1, the overall
weak scaling of the code is nearly perfect, across architectures, and specifically
on nearly all of Mira.

In order to achieve this scaling on tens of thousands of ranks, the algorithm
using to compute the FFTs was changed. Prior to the ESP, HACC used a slab-
decomposed FFT, meaning that the grid is decomposed in only one dimension.
Unfortunately, this limits the total number of ranks that can participate in the
FFT computation (because there can be only as many ranks as there are grid
points in the smallest dimension). Due mostly to work by Nicholas Frontiere,
this limitation was removed by implementing a distributed slab-decomposed
FFT. The slab decomposed FFT enables as many ranks to participate as there
are points on the smallest two-dimensional face. This difference is illustrated in
Figure 2. Once completed, this slab-decomposed FFT allowed HACC to easily
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Figure 1: Scaling of the long-range force solver.

scale to the largest-available machines.

Figure 2: A diagram showing slab (left) and pencil (right) data decompositions
[derived from diagrams in [6]].

It is worth mentioning that a significant reason that HACC’s inter-rank com-
munication needs are dominated by the FFT, and not by “ghost-region” particle
exchange, is because the exchange of particles between ranks happens relatively
infrequently. Not only is the short-range force computation subcycled (com-
puted multiple times per long-range force computation), but the ghost-region
exchanges do not even need to happen prior to every long-range computation.
Compared to the size of the universe, the velocities of matter in the universe
are relatively small, and the size of densely-clustered regions is limited. As a
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result, we can make the ghost regions large enough to capture whatever large
structures might reside on neighboring ranks close to the inter-rank boundary,
and we can safely assume that they won’t move very far in between ghost-region
exchanges. To mitigate edge effects, we also don’t compute the short-range force
on particles near the outer boundary of the ghost region.

3 Short-Range Force and the RCB Tree

The short-range force is determined by taking the complete gravitational force
between any two particles, and subtracting that part of the force that will be
captured by the long-range force solver. This subtraction is determined by
performing numerical experiments, and then the resulting functional form is
created to fit the results of these experiments. Prior to the ESP, HACC used a
lookup table to compute the force from its fitting form. Now, HACC uses a 5th-
order polynomial fit to the effective short-range part of the force. Specifically,
this is:

fSR(s) = (s + ǫ)−3/2
− fgrid(s) (1)

where s = r · r, fgrid(s) = poly[5](s), and ǫ is a short-distance cutoff.
While on Roadrunner (and on machines with GPUs) HACC can use a

statically-partitioned N2 algorithm to compute the local particle forces, such
a naive algorithm would be too slow for Mira’s CPUs. Instead, we must use a
short-range force computation scheme which effectively approximates the force
from farther-away particles on any given particle and only directly computes
the contributions from the closest particles. The standard way of accomplish-
ing this feat in an efficient way is to use a “tree” code. This means that some
spatial-partitioning tree is used along with a monopole approximation for forces
from particles in far-away tree nodes. Before the ESP, HACC has an octree-
based tree code, but that implementation was inefficient, both computationally
and in terms of memory overhead. Addressing these problems required a new
design, and I implemented what has been called in the physics literature a Re-
cursive Coordinate Bisection (RCB) tree2. Following the suggestion in [3], a
RCB tree recursively splits each spatial node on its longest side such that the
dividing plane intersects the center of mass of the particles in the node. As also
suggested in [3], when each node is partitioned, the particle data for that node
is also partitioned, and the particles are shuffled into the two subpartitions.
Finally, this splitting process stops when the nodes reach a certain maximum
number of particles. These implementation details, illustrated in Figure 3, have
important performance benefits: The center-of-mass splitting makes the com-
putation in each leaf node balanced by insuring that each leaf node has near
the maximum number of allowed particles. The partitioning insures that each
node’s particle data exhibits a high degree of cache locality. Finally, keeping
multiple particles in each leaf node gives us a tuning parameter allowing us to

2A computer scientist would, however, call it a KD-tree.
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trade a fast but asymptotically expensive operation (the particle-particle inter-
actions, which scale as N2) for a slow but asymptotically favorable operation
(the tree walk, which has N log N scaling). An additional benefit to keeping
multiple particles in each leaf node is an increase in the accuracy of the com-
putation. As can be seen from Figure 4, even making aggressive use of the
monopole approximation still yields highly-accurate force computations in clus-
tered regions when many particles are contained in each leaf node. On Mira, we
normally run with a few hundred particles in each leaf node, and the resulting
error from the monopole approximation is quite small.
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Figure 3: A diagram (from [3]) showing how the particles are recursively parti-
tioned into RCB-tree nodes.

Another critical aspect of the attaining good performance on Mira is how
multiple threads per rank are used to compute the short-range force on each
particle. At this point, two different schemes have been used in production. The
first scheme, which was used in the runs used for the Gordon Bell submission,
confines the threading to the force computation within each RCB-tree leaf node.
Within each leaf node, the particles are divided among the available threads, and
because all particles in a leaf node share the same interaction list, each thread
simply computes the force on its particles from those particles in the interaction
list. The downsides of this scheme are that the per-leaf-node concurrency is
limited by the number of particles per leaf node (which limits scaling), and that
the process of walking the tree to compose the interaction list is not threaded.
As a result, this scheme could scale to only 8 threads per rank. To overcome this
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Figure 4: A plot of a force-computation test involving a sphere randomly filled
with particles showing the relative error from the monopole approximation. The
theta parameter controls the aggressiveness of the monopole approximation.

limitation, I implemented a second scheme. In this second scheme, a queue is
composed of all leaf nodes, and these leaf nodes are divided among all available
threads for processing (both the tree walk to form the interaction list and the
force computation itself). As there are many leaf nodes per rank, as shown in
Figure 5, this scheme can scale to 32 thread per rank on Mira. OpenMP was
used to implement both schemes.

4 The Short-Range Force Kernel

The BG/Q-specific short-range force kernel, implemented by Vitali Morozov,
uses QPX intrinsic functions, and a loop which is manually partially unrolled,
in order to quickly evaluate the force on some particle by other particles in the
interaction list. While the kernel appears to be a straightforward vectorization
of the loop over particles in the interaction list (see Figure 6 for an exerpt), the
form of the force computation (for example, the −3/2 exponent and the order
of the polynomial in Equation 1) were chosen to map well onto the available
instructions and the number of available registers.

Several other aspects of the force kernel implementation are worth noting:
First, as shown in Figure 7, all data loaded by the kernel in explicitly prefetched
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Figure 5: A plot of the time taken by the short-range force computation vs. the
number of threads. The old threading scheme could not scale past 8 threads
per rank, while the new scheme can scale to 32 threads per rank (running one
rank per node).

into the L1 cache. On the BG/Q, even when the L1 prefetcher is prefetching a
stream of interest, the data is not put into the L1, but rather stays in a separate
L1P buffer, until accessed. Because the L1P access latency is much higher than
that associated with accessing data from the L1 cache, explicitly prefetching the
data into the L1 cache is critical. Second, we don’t need fully IEEE-compliant
values for the square root in Equation 1, and it can be computed using the
provided reciprocal square root estimate and one Newton-Raphson iteration for
refinement. Because the provided estimate is accurate to within one part in 214,
only one iteration is required to provide the single-precision result. Finally, as
branches are expensive, we use the provided “select” intrinsic in order to avoid
branching as part of the distance filtering in the force computation. These
intrinsics are shown in Figure 8. The force kernel itself runs as well over 80% of
the available peak FLOPS.

5 Memory management

Pushing the simulation limits of large-scale structure formation means running
simulations with as many particles as possible, and this implies that we’re con-
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1 for ( i = 0, j = 0; i < count1−7; i = i + 8, j = j + 32 )
2 {
3 ...
4 b0 = vec sub( b0, a1 );
5 c0 = vec sub( c0, a1 );
6

7 b0 = vec mul( b0, b0 );
8 c0 = vec mul( c0, c0 );
9

10 b1 = vec ld( j, yy1 );
11 c1 = vec ld( j+16, yy1 );
12 ...
13 b1 = vec madd( b2, a15, a14 );
14 c1 = vec madd( c2, a15, a14 );
15

16 b1 = vec madd( b2, b1, a13 );
17 c1 = vec madd( c2, c1, a13 );
18

19 b1 = vec madd( b2, b1, a12 );
20 c1 = vec madd( c2, c1, a12 );
21 ...

Figure 6: An excerpt from the short-range force kernel showing some QPX
intrinsics and the basic form of the partially-unrolled loop. The polynomial
force evaluation makes use of many fused multiply-add instructions.

1 for ( i = 0, j = 0; i < count1−7; i = i + 8, j = j + 32 )
2 {
3 dcbt( (void ∗)&xx1 [i+offset] );
4 dcbt( (void ∗)&yy1 [i+offset] );
5 dcbt( (void ∗)&zz1 [i+offset] );
6 dcbt( (void ∗)&mass1[i+offset] );
7 ...

Figure 7: An excerpt from the short-range force kernel showing that all
interaction-list data is prefetched into the L1 cache.

stantly running as close as possible to the memory limit of the machine. As
a result, memory fragmentation 3 becomes a large problem. To make matters
worse, HACC is required to allocate and free different data structures during
different parts of each time step because there is not enough available memory
to hold all such structures at the same time. Furthermore, many of these data
structures, such as the RCB tree used for the short-range force calculation, have

3Memory fragmentation refers to the condition where small allocations dispersed through-

out the memory space leave no large contiguous chunks free even though the total amount of

free memory may be large.
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1 for ( i = 0, j = 0; i < count1−7; i = i + 8, j = j + 32 )
2 {
3 ...
4 b1 = vec rsqrte( b0 );
5 c1 = vec rsqrte( c0 );
6 ...
7 b0 = vec sel( b1, a6, b2 );
8 c0 = vec sel( c1, a6, c2 );
9 ...

Figure 8: An excerpt from the short-range force kernel showing the reciprocal
square root estimate and “select” intrinsics.

sizes that change dynamically with each new time step. This, combined with
other allocations from the MPI implementation, message printing, file I/O, etc.
with lifetimes that might outlast a time-step phase, is a recipe for fatal memory
fragmentation problems. Indeed, our first at-scale runs on Mira were limited in
duration precisely because of this problem. To mitigate this problem I imple-
mented a specialized pool allocator called Bigchunk. As the name implies, this
allocator grabs a large chunk of memory, and then distributes it to various other
subsystems. During the first time step, Bigchunk acts only as a wrapper of the
system’s memory allocator, except that it keeps track of the total amount of
memory used during each phase of the time step. Before the second time step
begins, Bigchunk allocates an amount of memory equal to the maximum used
during any phase of the previous time step plus some safety factor. Subsequent
allocations are satisfied using memory from the big chunk, and all such memory
is internally marked as free after the completion of each time-step phase. This
en-mass deallocation design implies that the bigchunk allocator has minimal
overhead, and the time it takes to allocate memory from Bigchunk is very small
compared to the speed of the system allocator. Because the Bigchunk mem-
ory is not released back to the system, the memory fragmentation problem has
effectively been solved.

6 I/O

Prior to the ESP, the initial conditions for a HACC simulation were produced by
a stand-alone (parallel) program. This program would produce one input file per
rank, which was the only input mode supported by HACC at the time. While
the process of producing the initial conditions is fairly fast, the requirement
to write hundreds of thousands, or millions, of initial-conditions files, and then
read them in again would have been prohibitive. As a result, I integrated the
initializer into the HACC simulation code, and enhanced it to use the pencil-
decomposed FFT discussed above.

Once HACC could generate its own initial conditions, the next challenge
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was making sure it could write out particle snapshots for analysis in a reason-
able amount of time (meaning under approximately 30 minutes). After initial
experiments using single-file MPI-I/O proved unable to meet our performance
requirements, in collaboration with Venkat Vishwanath, I designed and imple-
mented a new file I/O framework, called Generic I/O, capable of meeting our
needs. Several important features are:

• For small files, using collective MPI-I/O is necessary, but for large writes
using non-collective MPI-I/O or POSIX I/O is necessary. Using the
Generic I/O framework, we can choose between any of these three options.
On the largest scales, using POSIX I/O yields the best performance on
Mira.

• The total output file size is pre-calculated before the writes begin, and the
file extent is pre-allocated. This reduces locking contention on the parent
directory’s metadata.

• To avoid locking contention, we write one file per BG/Q I/O node. There
is one I/O node per 128 compute nodes on Mira.

• Each rank writes into a disjoint space (without any kind of data reorga-
nization).

• The file format is self-describing, and in addition to ASCII converters, I
created a plugin for the SQLite database engine to make querying data in
the files straightforward and flexible.

• 64-bit CRC (Cyclic Redundancy Check) “checksum” codes are stored cov-
ering all data and metadata, where each variable from each rank has its
own CRC code. This allows the data to be validated before it is used for
a simulations checkpoint restart or for analysis.

To the last point regarding CRC codes, although on-disk data corruption is
rare, and undetected corruption of data while traversing the network is perhaps
rarer still, it can still be a significant problem at scale. As a point of reference, a
relatively-small simulation recently run at NERSC created 100 checkpoint files,
each one TB is size. Among all of those files, in one file, one variable from one
rank was corrupted. This corruption was detected when the checkpoint was
read in, and the restart was aborted. Had we not protected the data with CRC
codes, we might have not noticed, until many CPU hours had been wasted,
that the simulation was partially invalid, and it might have been impossible to
later determine why. With the CRC-code protection, the user was immediately
alerted to the problem, and was able to restart from an earlier checkpoint. In
short, I recommend that all groups make sure that there data is protected by
CRC codes.
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7 Conclusion

Putting together all of the pieces discussed here has resulted in an astound-
ing improvement of HACC’s performance and scalability. HACC is now well
positioned to make significant contributions to the science of large-scale struc-
ture formation. In addition, with additional processing, HACC’s large simulated
universes can be used as test beds for the analysis software used on real observa-
tional data. None of this would have been possible without the dedicated effort
of (in no particular order) Salman Habib, Vitali Morozov, Adrian Pope, Katrin
Heitmann, Venkat Vishwanath, Nicholas Frontiere, and many others. Working
with all of these people has been a great pleasure, and is a good example of how
multi-disciplinary collaborations can yield truly-significant results.
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