

ANL/ALCF/ESP-13/13

Ab-initio Reaction Calculations for Carbon-12

(ESP Technical Report)

ALCF-2 Early Science Program Technical Report

Argonne Leadership Computing Facility

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,

at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne

and its pioneering science and technology programs, see www.anl.gov.

Availability of This Report

This report is available, at no cost, at http://www.osti.gov/bridge. It is also available

on paper to the U.S. Department of Energy and its contractors, for a processing fee, from:

 U.S. Department of Energy

 Office of Scientific and Technical Information

 P.O. Box 62

 Oak Ridge, TN 37831-0062

 phone (865) 576-8401

 fax (865) 576-5728

 reports@adonis.osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express

or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply

its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of

document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,

Argonne National Laboratory, or UChicago Argonne, LLC.

ANL/ALCF/ESP-13/13

Ab-initio Reaction Calculations for Carbon-12

(ESP Technical Report)

ALCF-2 Early Science Program Technical Report

prepared by

Alessandro Lovato1 and Steven C. Pieper2
1Argonne Leadership Computing Facility, Argonne National Laboratory
2Physics, Argonne National Laboratory

May 7, 2013

ESP technical report

Alessandro Lovato

ALCF and Physics division, Argonne National Laboratory∗

Steven C. Pieper

Physics division, Argonne National Laboratory

(Dated: April 3, 2013)

∗ lovato@alcf.anl.gov

mailto:lovato@alcf.anl.gov

2

I. DESCRIPTION OF SCIENCE

The electroweak response is a fundamental ingredient to describe the neutrino - 12Carbon

scattering, recently measured by the MiniBooNE collaboration to calibrate the detector aimed

at studying neutrino oscillations. As a first step towards its calculation, we have computed

the sum rules for the electromagnetic response of 12C. The cross section of the process

e+12 C → e′ +X . (1)

can be written in Born approximation as [1]

d2σ

dΩe′dEe′
= −

α2

q4
Ee′

Ee

LµνW
µν , (2)

where α ≃ 1/137 is the fine structure constant, dΩe′ is the differential solid angle specified by

ke′ and q = ke − ke′ is the four momentum transfer of the process. The leptonic tensor Lµν is

fully determined by the measured kinematical variables of the electron, while all information on

target structure, which is largely dictated by nuclear interactions, is enclosed in the hadronic

tensor

W µν =
∑

X

〈Ψ0|J
µ|ΨX〉〈ΨX |J

ν |Ψ0〉δ
(4)(p0 + q − pX) . (3)

The sum over the final states includes an integral over pX , the spatial momentum of the final

hadronic state, while p0 is the initial four-momentum of the nucleus.

In the nonrelativistic approach, the hadronic tensor can be written in terms of the longitu-

dinal and transverse response functions, with respect to the direction of the three-momentum

transfer q. For instance, taking q along the z-axis, the transverse response is defined by [2]

Rxx+yy(q, ω) =
∑

X

δ(ω + E0 − EX)
[

〈Ψ0|j
x(q, ω)|ΨX〉〈ΨX |j

x(q, ω)|Ψ0〉+

〈Ψ0|j
y(q, ω)|ΨX〉〈ΨX|j

y(q, ω)|Ψ0〉
]

(4)

while the longitudinal is given by

R00(q, ω) =
∑

X

δ(ω + E0 − EX)〈Ψ0|ρ(q, ω)|ΨX〉〈ΨX |ρ(q, ω)|Ψ0〉 (5)

The sum rules are obtained integrating the response functions over the energy transfer and

using the completeness relation of the states |X〉. For Rxx+yy and R00 one has

Sxx+yy(q) ≡

∫

dωRxx+yy(q, ω) = 〈Ψ0|j
x(q, ωel)j

x(q, ωel) + jy(q, ωel)j
y(q, ωel)|Ψ0〉

S00(q) ≡

∫

dωR00(q, ω) = 〈Ψ0|ρ(q, ωel)ρ(q, ωel)|Ψ0〉 , (6)

3

where the energy transfer dependence of the current and density operators is determined at

the the quasi-elastic peak: ωel =
√

|q|2 +m2 −m. Hence, the sum rules of the response can

be evaluated by computing the expectation values of the electromagnetic currents and density

on the ground state of 12C.

II. NUMERICAL METHODS

The calculation of the sum rules requires the knowledge of the nuclear ground state wave-

function of 12C. Solving the many-body Schroedinger equation

ĤΨ0(x1 . . . xA) = E0Ψ0(x1 . . . xA) , (7)

where the generalized coordinate xi ≡ {ri, si, ti} represents both the position and the spin-

isospin variables of the i-th nucleon, is made particularly difficult by the complexity of the

interaction. The nuclear potential is indeed spin-isospin dependent and contains strong tensor

terms; thus Eq. (7) consists in 2A
(

A

Z

)

complex coupled second order partial differential equa-

tions in 3A variables. For the actual case of 12C, there are 270,336 coupled equations in 36

variables.

Standard methods for solving partial differential equations are not feasible in this context.

Green Function Monte Carlo (GFMC) algorithms use projection techniques to enhance the

true ground-state component of a starting trial wave function ΨT

Ψ0(x1 . . . xA) = lim
τ→∞

e−(Ĥ−E0)τΨT (x1 . . . xA) . (8)

In the actual calculation, the imaginary time evaluation is done a sequence of imaginary time

steps, each one consisting in a 3A dimensional integral, evaluated within the Monte Carlo

approach.

In GFMC all the spin-isospin configurations are considered and the wave-function is a vector

of 2A
(

A

Z

)

complex numbers. For example the eight spin configurations of the 3H nucleus are

represented by [3]

4

|Ψ3H〉 =







































a ↑↑↑

a ↑↑↓

a ↑↓↑

a ↑↓↓

a ↓↑↑

a ↓↑↓

a ↓↓↑

a ↓↓↓







































(9)

Each coefficient aα, which is a function of the coordinates r1, r2 and r3, represents the

amplitude of a given many-particle spin configuration; for instance

a ↑↑↓ = 〈↑↑↓ |Ψ3H〉 . (10)

The application of the spin matrix σ12 ≡
∑

i σ
i
1σ

i
2 yields

σ̂12|Ψ3H〉 =







































a ↑↑↑

a ↑↑↓

2a ↓↑↑ − a ↑↓↑

2a ↓↑↓ − a ↑↓↓

2a ↑↓↑ − a ↓↑↑

2a ↑↓↓ − a ↓↑↓

a ↓↓↑

a ↓↓↓







































(11)

The “new” wave function can be expressed in terms of the coefficients of the old one.

Therefore, in order to reduce the computational complexity of the spin and isospin matrix

multiplication, a specialized table-drive code is implemented.

III. BEFORE MIRA AND ON MIRA

The GFMC code needed to be deeply revised to better capitalize the resources of a

leadership class computer like Intrepid (BQP) and Mira (BGQ).

The branching process of the GFMC algorithm involves replication and killing of the sam-

ples, the number of which can undergo large fluctuations. Therefore, to achieve an high

5

efficiency, the old version of the code did several Monte Carlo samples, say at least 10, per

processor. However, a typical 12C calculation involves around 15,000 samples while leadership

class computers have many 10,000’s of processors, making the old algorithm quite inefficient.

Fortunately, for nuclei as large as 10B and 12C, the calculation of the energy and of the

response is complex enough to allow for splitting one sample over many processors. To this

extent, the general purpose Automatic Dynamic Load Balancing (ADLB) library [4], was

developed on Intrepid and implemented in the code.

Both the direct calculation of the response with the Ψ1+,T=1 state and the evaluation of the

sum rules would have not been possible on Intrepid, due to the limited amount of RAM per

node (2GB). On the other hand, Mira, with 16 GB of RAM per node enables us to perform

such a large calculations.

We were pleased to find that the version of ADLB developed for Intrepid works very well

on Mira; no modification was required. The conversion to Mira consisted primarily of timing

the OpenMP (OMP) sections of the GFMC code to work well up to 64 threads and developing

the new subroutines for the response and for the sum rules.

IV. THE CODE

The scheme of ADLB, illustrated in Fig. 1, shows that the nodes are organized in servers

and slaves; in standard GFMC calculations approximately 3% of the nodes are ADLB servers.

A shared work queue, managed by the servers, is accessed by the slaves that either put work

units, denoted as “work packages” in it or get those work package out to work on them. Once

a work package has been processed by a slave, a “response package” may be sent to the slave

that put the work package in the queue.

ADLB is a general purpose library, which hides communication and memory management

from the application, providing a simple programming interface. Besides the initialization and

termination functions, the truly essential function calls of the ADLB application programmer

interface (API) are the ADLB_Put, ADLB_Reserve and ADLB_Get_reserved. To better illustrate

these three function calls, it is worth showing the explicit case of the sum rules subroutines.

The expectation value of Eq. (6) has to be evaluated for momentum transfer directed along

x, y and z axis. In each of these cases, ∼ 20 values of the discretized momentum transfer

magnitude are considered; hence for each configuration ∼ 60 independent expectation values

6

have to be computed. Since the evaluation of the sum rules of the 12C for a single value of q

takes of about 100 seconds (with 32 OMP threads), we decided to split the calculation in such

a way that each ADLB slave calculates the sum rules for a single value of q.

Figure 1. Automatic Dynamic Load Balancing work flow.

• subroutine o_em_wk

Let us concentrate on a particular ADLB energy slave, managing a single configuration.

It enters o_em_wk and immediately puts into the work pool the part of work package

independent on q

call ADLB_Begin_batch_put (rwp%cfl,respon_wp_len_common,ierr)

where rwp%cfl indicates the beginning of the work package, respon_wp_len_common

denotes its size and ierr will get a return code.

Afterwards, the q dependent parts of the work packages are placed in the work pool for

each of the ∼ 60 cases.

call ADLB_PUT(rwp%qh,respon_wp_len_var,-1,myid, adlbwp_respon,i_prior,ierr)

7

The size of the q dependent part of the work package is specified by rwp%qh,respon_wp_len_var,

while myid identifies the energy slave from which the work package originates.

As a matter of fact, the work packages can be processed either by the same ADLB energy

slave which put them in the work pool or by another one. However, only the slave that

sent the work package can retrieve the corresponding response package by means of the

following call

call get_adlb_respon_work_ans (ierr, node)

which is iterated until all the response packages have been collected.

• get_adlb_respon_work_ans

To retrieve a unit of work, the energy slave uses this subroutine to call ADLB_reserve

call ADLB_reserve ((/ adlbwp_respon_ans, adlbwp_respon, -1 /), &

& i_wrk_type, i_prior, i_handle, i_len, i_answer, ierr)

specifying that it is looking either for a work package or for a response package. If

either one is present, ADLB will find it and send back a handle (i_handle) , a global

identifier (i_wrk_type) along with the size of the reserved work unit (i_len) and the

origin identifier (i_answer). The priority of the answer is set much larger than the

priority of the work packages, so that they will be preferentially returned.

If an answer has been found by ADLB, it is retrieved by

call ADLB_GET_RESERVED_TIMED (rap, i_handle, qtime, ierr)

where rap denotes the response answer package and the energy slave returns into the

subroutine o_em_wk.

If a work package is instead found by ADLB_reserve, the energy slave processes it. It

has to be remarked that other ADLB slaves than the energy ones can process a work

package. For this purpose an entry appears in the subroutine

entry process_adlb_respon_work (ii_prior,ii_handle,ii_len,ii_answer,ierr)

8

Analogously to what happens for the answer package, ADLB_GET_RESERVED_TIMED is

called

call ADLB_GET_RESERVED_TIMED (rwp, i_handle, qtime, ierr)

with rwp appearing as a first argument instead of rap.

Using the retrieved work package, the actual calculation of the sum rule is performed for

a single value of q

call o_em_wk_q(rwp%iptb,rwp%if2,rwp%actf,rwp%q,rwp%qh,rwp%weight, &

& rwp%rpart0,rwp%cfl,cfdl,rwp%cfr,cfdr,rap%fxtt_q,rap%fxll_q, &

& iqq,iqh,.false.)

If the work package answer is addressed to a different ADLB slave from the one that

made the computation, myid .ne. i_answer, then the answer needs to be put in the

work pool

call ADLB_PUT (rap, respon_ans_len, i_answer, myid, adlbwp_respon_ans,&

& i_prior+1000, ierr)

Otherwise, the answer package is not put in the pool and the energy slave returns in the

subroutine o_em_wk.

• master_get_work

The main program continuously calls the subroutine master_get_work to look for work

packages. These can be of any type (except answers). The appropriate subroutine is

called to process the work and then master_get_work is used on each slave, again.

V. TUNING THE CODE AND PERFORMANCE ON MIRA

The conversion of the GFMC code from Intrepid to Mira did not show particular difficulties.

The ADLB performance turned out to be even better on Mira than on Intrepid without

modifications. Moreover, OpenMP scales well with the number of threads.

9

Figure 2. OMP strong scaling performance for 12C GFMC calculation with 2048 configurations, 1024

MPI ranks: total wall time comparison.

A. OpenMP (OMP) strong scaling

First of all let us analyze the OMP scaling of the total wall time required to do a GFMC

calculation for 2048 configurations of the 12C ground state using 1024 MPI ranks, displayed

in Figure 2. The different colours indicate the different number of ranks per node and hence

the total number of nodes. As expected, the single rank per node case exhibits the best OMP

scaling, as there are no threads associated with different ranks competing for memory on the

same node. Due to the competition among the threads belonging to the same rank, the scaling

saturates at about 20 threads, remaining fairly above the ideal case, represented by the dashed

curve, where the wall time decreases as 1/(#OMP threads).

Since in every node there are at most 64 threads, keeping fixed the number of MPI ranks

and increasing the number of threads results in a larger node usage. Thus, a more meaningful

scaling test consists in studying the number of configurations processed by a single node with

different combinations of ranks per node and threads per rank, keeping in mind that the

product of these two quantities cannot exceed 64. The results of Fig. 3 show that, with the

new driver installed in February 2013, the most efficient configuration is 8 ranks per node, 8

threads per rank. In this case a performance of 6.4 GFLOPS per node (about 3.1% of the

10

Figure 3. OMP strong scaling performance for 12C GFMC calculation with 2048 configurations, 1024

MPI ranks: number of configurations per node per minute.

peak) is achieved. Is should be noticed that with the former version of the driver using more

than 6 threads per rank resulted in worse performances. Finally, the limit of 8 ranks per node

is dictated by memory requirements.

An analogous analysis, shown in Fig. 4 has been performed for the sum rules calculation

with 32 MPI ranks. Due to the large size of the wave function derivative, not more than 1 rank

per node can be used in the calculation; however if the derivatives are disregarded, 4 ranks

per node can be used.

Because of large loops over the spin and isospin indices of the wave functions, OMP keeps

improving up to 64 threads, although very slowly beyond 32 threads. However, as for the

energy, while the minimum total wall time consumption is obtained with 1 rank per node and

64 threads per rank, the highest efficiency of about 12 GFLOPS per node is achieved with 4

ranks per node and 16 threads per rank.

B. ADLB weak scaling

The ADLB library was not significantly exercised in the results shown in the former section,

as the number of MPI ranks was limited to 1024. By looking at Fig. 5, in which the total wall

11

Figure 4. OMP strong scaling performance for sum rule calculation with 2 values of momentum

transfer. The total wall time (left panel) and the case/node per hour (right panel) for 32 MPI ranks

are shown.

Figure 5. ADLB weak scaling performance for energy calculation with 2 configurations per rank:

total walltime

time used for computing 2 configurations per MPI rank is plotted against the number of MPI

ranks, it is possible to appreciate the improvements brought about by ADLB. A good scaling,

fairly close to the ideal case of a straight and horizontal line, is shown up to 260,000 ranks,

524,688 cores, 1,572,864 threads. As for the OMP scaling, it is worth analyzing the scaling of

12

the configurations per node per minute, displayed in Fig. 5. Despite the smallest total wall

time being consumed by using 4 ranks per node and 12 threads per rank, the most efficient

configuration is the one with 8 ranks per node and 6 threads per rank.

Finally, it is interesting to notice that a Mira node is almost ten times faster than an Intrepid

one.

Figure 6. ADLB weak scaling performance for energy calculation with 2 configurations per rank:

number of configurations per node per minute

VI. FIRST SUM RULE RESULTS

In Fig. 7 we show the preliminary results for the sum rule of the transverse electromag-

netic response of 12C, obtained neglecting the derivatives of the wave functions. It has been

obtained by averaging over ∼ 1000 configuration for each of the 5 imaginary time values,

τ = 0.8, 0.18, 0.28, 0.40, 0, 48, after the constrained path has been released.

The two-body currents have a prominent effect, relatively much larger than the difference

between GFMC and VMC calculations, that at this level of accuracy, provide compatible

results.

Many more configurations are needed for quantities defined in terms of differences between

13

Figure 7. 12C transverse sum rule for the electromagnetic transverse response.

large Monte Carlo estimates, such as the longitudinal Coulomb sum rule

SL(q) =
1

6[Ge
p(q

2)]2

[

〈Ψ0|ρ(q, ωel)ρ(q, ωel)|Ψ0〉 − 〈Ψ0|ρ(q, ωel)|Ψ0〉
2] (12)

where Ge
p(q

2) is the proton electric form factor. We currently are in the production phase, and

will soon have the necessary statistical significance, hopefully allowing us to predict the data

of a recent Jefferson Lab experiment which is nearing publications.

This is not yet the end of the story: the subroutines for the sum rules of the weak response

have been presently developed by the Los Alamos group and already tested in VMC calculations

of small nuclei. We plan to implement them in the GFMC code and tune them for Mira in the

very next months.

[1] Omar Benhar, Donal Day, and Ingo Sick. Inclusive quasielastic electron-nucleus scattering. Rev.

Mod. Phys., 80:189–224, Jan 2008.

[2] G. Shen, L.E. Marcucci, J. Carlson, S. Gandolfi, and R. Schiavilla. Inclusive neutrino scattering

off deuteron from threshold to GeV energies. Phys.Rev., C86:035503, 2012.

[3] Steven Pieper. Monte carlo calculations of nuclei. In Jesùs Navarro and Artur Polls, editors,

Microscopic Quantum Many-Body Theories and Their Applications, volume 510 of Lecture Notes

in Physics, pages 337–357. Springer Berlin / Heidelberg, 1998. 10.1007/BFb0104530.

[4] Ralph M. Butler Ewing L. Lusk, Steven C. Pieper. More scalability, less pain:

14

A simple programming model and its implementation for extreme computing.

http://www.cs.mtsu.edu/~rbutler/adlb/.

http://www.cs.mtsu.edu/~rbutler/adlb/

Argonne National Laboratory is a U.S. Department of Energy

laboratory managed by UChicago Argonne, LLC

Argonne Leadership Computing Facility
Argonne National Laboratory

9700 South Cass Avenue, Bldg. 240

Argonne, IL 60439

www.anl.gov

	ESP technical report
	 Description of science
	 Numerical methods
	Before Mira and on Mira
	The code
	Tuning the code and performance on Mira
	OpenMP (OMP) strong scaling
	ADLB weak scaling

	First sum rule results
	References

