

Thomas Uram
Data Science group, Argonne Leadership Computing Facility

EXECUTING
WORKFLOWS

WHY SHOULD YOU CARE ABOUT WORKFLOWS?

▪ You came to the SDL workshop to learn to use large-scale parallel
systems for simulation, data, and learning:
–  architectures
–  programming models
–  communication
–  solvers

▪ Once you've written your application and achieved near-peak node-
level performance and scalability, what comes next?

2

–  visualization
–  profiling
–  optimizing for node-level performance
–  scaling parallel applications to tens of

thousands of nodes

3

WORKFLOWS

4

WORKFLOWS

Source: http://www.cs.utexas.edu/~aim

ALLOCATION EXAMPLES

▪ Small number of large jobs running on Mira over course of the year followed by some
analysis
▪ 40 jobs x 16K nodes * 16 cores/node * 12 hours ~= 100M core-hours
▪ ~Reasonable to manage manually

▪ Large number of simulation+analysis jobs running across multiple facilities, requires
coordination of jobs submitted to multiple schedulers, large/long data transfers, and
interaction with project storage and archival storage
▪ Programmatic management would be a clear benefit

Workflows can save you!
…but you might have to code them yourself!

5

WHY USE WORKFLOWS?

▪ Automate job submission
▪ Simplify computational campaigns
▪  Increase concurrency by disentangling data dependencies
▪ Robustness: Improve error handling and recovery (retries)
▪ Coscheduling of multiple resources
▪ Systematize data management
▪ Provenance/Metadata tracking

–  Validation
–  Reuse

6

▪  It depends who you ask
▪ Basically a collection of jobs to be run

–  Could be a sequence of individual jobs
–  Could be a sequence of varying numbers of jobs

▪ Available means of describing and running workflows
–  Script jobs
–  Job dependencies
–  Ensemble jobs
–  In situ
–  Custom workfows
–  Workflow software

7

WHAT IS A WORKFLOW?

WORKFLOW VIA SCRIPT JOB

▪ You can submit a job that executes your application
–  qsub -q cache-quad -n 512 -t 60 -A yourproject application.exe

▪ Alternatively, you can submit a script job that executes
multiple applications sequentially
–  qsub -q cache-quad -n 512 -t 60 -A yourproject script.sh

▪ With this approach, you wait in the queue one time to run your application multiple times
▪ However, small long jobs tend to stay in the queue longer than small short jobs

–  It may be better to submit individual jobs with dependencies

8

aprun -n 512 -N 1 application.exe
aprun -n 512 -N 1 application.exe

script.sh

j1

j2

j3

one long job

WORKFLOW VIA COBALT JOB DEPENDENCIES

▪  A simple way to achieve a linear workflow is simply to set dependencies
between your jobs

–  qsub -q cache-quad -n 512 -t 60 -A yourproject a.out
 Job 12345 submitted

–  qsub -q cache-quad -n 512 -t 60 -A yourproject --dependencies 12345 a.out
–  qsub -q cache-quad -n 512 -t 60 -A yourproject --dependencies 12345:12346 a.out

▪  Is there an advantage to setting job dependencies?

–  Dependent jobs accumulate score more quickly
▪ How many jobs can be submitted at once?

–  On Theta, max queued is set to 20

9

qstat -Q
Name Users Groups MinTime MaxTime MaxRunning MaxQueued MaxUserNodes MaxNodeHours TotalNodes State
cache-quad None None None 06:00:00 10 20 None None None draining
flat-quad None None None 06:00:00 10 20 None None None draining

j1

j2

j3

multiple
independent

short
jobs

ENSEMBLE JOBS ON THETA

for x in {0..100}

do

background one aprun call per job

aprun -n 1 -N 1 myapp.py --args $x &

sleep 1

done

wait

Note:
▪ There is a system limitation of 1000 simultaneous apruns per Cobalt script job
▪ You should include a sleep call between aprun invocations

10 For more details of running ensemble jobs on Theta, see Paul Rich’s slides
https://www.alcf.anl.gov/files/rich-ensemble-jobs-2017_1.pdf

▪ How can I set job dependencies across multiple resources (e.g. Mira and
Cooley)?
–  ALCF does not provide a means of doing this currently
–  However, Cetus and Cooley mount the Mira filesystems. Analysis jobs run on

Cooley without needing to transfer the data.

/gpfs/mira-fs0, /gpfs/mira-fs1

WORKFLOW ACROSS ALCF SYSTEMS

11

Cetus Mira Cooley

SOFTWARE FOR MANAGING WORKFLOWS
This manual effort can be ameliorated by scripting your job submission so that new jobs are
automatically submitted as you drop below the max_queued limit. Multiple toolkits are available for this
purpose.

Balsam (https://www.alcf.anl.gov/balsam)
Balsam is an ALCF project for managing jobs and workflows on our systems. Balsam allows users to
define campaigns of many jobs with interdependencies and control how they execute on the systems,
either by submitting them to the job scheduler, or running them within a single job for higher throughput.

Swift (http://swift-lang.org)
Swift provides a C-like language for expressing workflows that consist of command-line invocations, and
an engine for managing their execution. For a recent Python implementation of Swift concepts, also see
Parsl (http://parsl-project.org).

SOFTWARE FOR MANAGING WORKFLOWS
Fireworks (https://pythonhosted.org/FireWorks)
FireWorks is a free, open-source code for defining, managing, and executing workflows. Complex workflows
can be defined using Python, JSON, or YAML, are stored using MongoDB, and can be monitored through a
built-in web interface. Workflow execution can be automated over arbitrary computing resources, including
those that have a queueing system. FireWorks has been used to run millions of workflows encompassing
tens of millions of CPU-hours across diverse application areas and in long-term production projects over the
span of multiple years.

Pegasus/Condor (https://pegasus.isi.edu)
Pegasus bridges the scientific domain and the execution environment by automatically mapping high-level
workflow descriptions onto distributed resources. It automatically locates the necessary input data and
computational resources necessary for workflow execution. Pegasus enables scientists to construct
workflows in abstract terms without worrying about the details of the underlying execution environment or the
particulars of the low-level specifications required by the middleware

Many others…

SWIFT

14

S
ee

 h
ttp

s:
//w

w
w

.a
lc

f.a
nl

.g
ov

/s
w

ift

SWIFT

15

SWIFT

16 swift -site cooley,blues dock.swift

SWIFT

17

BALSAM

We are developing Balsam to manage workflows on systems at ALCF (and elsewhere). What
is Balsam?
▪ Workflow system for managing large campaigns of interdependent jobs (unlimited queue

depth)
▪ Service for managing flow of jobs into scheduler (automated job submission)
▪ Flexible launcher for high throughput execution by side-stepping the queue (user control)
▪ Built on Python and Django
▪ Powerful Django object-relational mapper (ORM)
▪ Support for many databases (sqlite, MySQL, Postgres)

▪ Handles data transfers for stage-in and stage-out
▪ Modular interface to job sources, schedulers, and transfer utilities

18

BALSAM INSTALLATION ON THETA

export PATH=$PATH:$HOME/bin:/opt/intel/python/2017.0.035/intelpython35/bin

conda config --add channels intel

conda create --name balsam_env intelpython3_full python=3

source activate balsam_env

cp /opt/cray/pe/mpt/7.6.0/gni/mpich-intel-abi/16.0/lib/libmpi* ~/.conda/envs/
balsam_env/lib/

export LD_LIBRARY_PATH=~/.conda/envs/balsam_env/lib:$LD_LIBRARY_PATH

git clone git@xgitlab.cels.anl.gov:datascience/balsam.git

cd balsam

pip install -e .

19

BALSAM USE CASES

Add an application to the database
balsam app --name myapp --desc “my application" --exec myapp.py

Add a job to the database (options mirror qsub/aprun options)
balsam job --name myjob --workflow balsam_tutorial --application myapp \

 --wall-min 60 --num-nodes 1 --ranks-per-node 1

Launch the Balsam service to automatically flow jobs from the database to the
scheduler (subject to user-defined limits)

balsam service

Submit Balsam launcher jobs manually to run jobs from the database continuously
in the context of a single Cobalt job

qsub balsam launcher --consume-all --max-ranks 4

20

BALSAM COMMAND LINE INTERFACE (CLI)
$ balsam ls
 job_id | name | workflow | application | state
--
43e4d1be-fc30-4618-91e0-65b100bc18a8 | myjob | balsam_tutorial | myapp | CREATED
77d5e32e-8595-4162-ac21-1b86835a6cd0 | myjob | balsam_tutorial | myapp | CREATED
ebcdc382-d548-4d1d-8c6a-53f3ac59d64e | myjob | balsam_tutorial | myapp | CREATED
e705d917-b196-4cf4-9b6f-c2ea453e14ae | myjob | balsam_tutorial | myapp | CREATED
35a570d9-2120-42a8-9984-387285827606 | myjob | balsam_tutorial | myapp | CREATED
50d8bea1-977a-4028-84ac-022686c7949b | myjob | balsam_tutorial | myapp | CREATED
eb613637-efc2-49c0-9105-bac8cd48fdd8 | myjob | balsam_tutorial | myapp | CREATED

$ balsam rm jobs --id 43e4d1be-fc30-4618-91e0-65b100bc18a8

$ balsam --help
 app add a new application definition
 job add a new Balsam job
 dep add a dependency between two existing jobs
 ls list jobs, applications, or jobs-by-workflow
 modify alter job or application
 rm remove jobs or applications from the database
 qsub add a one-line bash command or script job
 killjob Kill a job without removing it from the DB
 mkchild Create a child job of a specified job
 launcher Start an instance of the balsam launcher
 dbserver Start/stop database server process
 init Create new balsam DB
 service Start an instance of the balsam metascheduler service

21

MORE INFO

▪  Code available at xgitlab.cels.anl.gov/datascience/balsam
▪  Documentation

▪  Generated docs exist in repo under balsam/docs
▪  Online documentation at balsam.alcf.anl.gov (soon)

▪  Misha Salim will present use of Balsam for hyperparameter
optimization on Thursday

22

HIGH ENERGY PHYSICS EXAMPLE

23

LHC Computing Grid
(analysis) Experimental

data
(>25PB/year)

Simulation
data

A
TL

A
S

 d
et

ec
to

r a
t L

H
C

A

LC
F

>170 computing
facilities in 36 countries

▪ The ATLAS experiment uses more than 1 billion compute hours per year
▪ This consists of integration, event generation, showering, simulation, reconstruction, and analysis
▪ This (very loosely coupled) workflow propagates step-by-step through the ATLAS production system

based on requests from users.
▪ Simulation with Geant4 accounts for 60% of ATLAS's computing. We wanted to leverage Mira to offload

some of this computing, and chose to target event generation (not simulation) as a first step. This task
required coordination of multiple workflow-like steps:
- fetching job descriptions from ATLAS (manual process)
- serial phase-space grid integration on local cluster
- transfer of data from local cluster to ALCF
- large-scale event generation on Mira, based on incoming integration grids
- transfer of data from ALCF to local cluster
- post-processing of output data to exportable format
- transfer of data from local cluster to WLCG

24

HIGH ENERGY PHYSICS EXAMPLE

Monte Carlo-based generation of particle collision
events such as occur in the ATLAS detector at the
Large Hadron Collider, using Alpgen.

Consists of three stages:
1.  Generation of phase-space

integration grid
2.  Generation of weighted events
3.  Unweighting of events

EXAMPLE: HEP EVENT GENERATION

message
queue

HEP

ALCF-Mira

Job description
messages are
placed on the
incoming
message
queue*

message
queue

Balsam
(service)

Argo
(supervisor)

scheduler
(Cobalt)

message
queue

HEP-local cluster

Balsam
(service)

scheduler
(HTCondor)

particle
showering job

description

HEP-local cluster

Balsam
(service)

scheduler
(HTCondor)

phase-space
integration job

description

event
generation job

description message
queue

MULTI-RESOURCE EVENT GENERATION
WORKFLOW

* Note: To date, all jobs have been injected manually; integration with external services (e.g. PanDA) is incomplete

1

2

3

Final events are
transferred manually
to ATLAS; this could
be automated in future

G
rid

FT
P

G
rid

FT
P

cluster Mira cluster

ALPGEN, a generator for hard multiparton processes in hadronic collisions, M.L. Mangano, M. Moretti, F.
Piccinini, R. Pittau, A. Polosa, JHEP 0307:001,2003

integration event
generation

unweighting,
postprocessing

EVENT GENERATION ON MIRA

▪ Combine multiple application invocations in single script job
▪ Use persistent memory for exchanging data between invocations
▪ Aggregate data from persistent memory to filesystem

28

Mira
bgq persistent memory

cluster

integration event
generation unweighting MPI/IO

aggregation integration

cluster

integration post-
processing

EVENT GENERATION ON MIRA

For details of container-based workflows for HEP work on Theta, see Taylor Childers’ talk on Thursday

RESULTS
▪ 100M+ hours used for ATLAS event generation
through Balsam
▪ Unprecedented rates of event generation (largest event

generation jobs on Mira requested >1T events)
▪ More complex/rare events than could be produced on the

Grid
▪ Mira has become the primary site for ATLAS event

generation
▪ 100 million compute hours have been offloaded from the

WLCG to Mira, freeing this time to be used for other
purposes
▪ Events that would have taken years to produce on the

Grid were generated within a couple months, accelerating
the simulation and analysis pipeline and therefore
publications

29

AUTOMATIC BETWEEN-SHOT ANALYSIS OF FUSION EXPERIMENT DATA

30

experiment
database

Balsam
service

S
U

R
FM

N
 a

na
ly

si
s

DIII-D Tokamak User Facility Argonne Leadership Computing Facility

shot
data

shot
data

coil
configuration

‣  Scien&sts	configure	experimental	“shots”	every	15	minutes		
•  A	shot	is	an	a<empt	to	magne&cally	confine	high	temperature	plasma	
•  The	&ming/current	of	magne&c	coils	are	configured	to	control	the	plasma	during	a	

disrup&on	to	avoid	damage	to	the	containing	vessel	(applicable	to	DIII-D	and	future	
reactors)	

•  Analyses	indicate	how	to	op&mize	coil	configura&on	for	confinement	
‣  Each	shot	triggers	an	automa&c,	real-&me	analysis	job	at	ALCF	
‣  GA	scien&sts	integrate	analysis	results	into	configura&on	for	next	shot	
‣  Analysis	at	ALCF	enables	more	complex	analyses	(1282	FFT	vs	322)	to	be	completed	

faster,	improving	the	accuracy	of	results	and	allowing	analyses	to	inform	every	shot	
instead	of	every	other	

shots
analysis

shots
analysis

original timeline

new timeline

config1 config2 config3

config1 config2+ config3+

Faster analysis time allows analysis results to be integrated into magnet configuration for
subsequent shots. Higher resolution analyses improve configuration accuracy.

SUMMARY

▪ Workflows are inevitable in computational science
▪ Small-scale workflow management should be easy and

is normally managed using scripting
▪ Large-scale workflow management can benefit from a

workflow system
▪  In the transition from small to large workflows, you

might build your own workflow system
▪ The Data Science group at ALCF can help scale your

workflows on our systems

31

