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In the beginning, there was Hadoop MapReduce… 

●  Simplified parallel programming model 
●  All computations broken into two parts 

●  Embarrassingly parallel map phase: apply single operation to every key-value pair, 
produce new set of key-value pairs 

●  Combining reduce phase: Group all values with identical key, perform combining 
operation to get final value for each key 

●  Can perform multiple iterations for computations that require them 
●  I/O intensive 

●  Map writes to local storage.  Data shuffled to reducer’s local storage, reduce reads from 
local storage. 

●  Additional I/O between iterations in multi-iteration algorithms (map reads from HDFS, 
reduce writes to HDFS) 

●  Effective model for many data analytics tasks 
●  HDFS distributed file system (locality aware – move compute to data) 
●  YARN cluster resource manager 
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Example: K-Means Clustering with MapReduce 

●  Initially: Write out random cluster centers 
●  Map:  

●  Read in cluster centers 
●  For each data point, compute nearest cluster 

center and write <key: nearest cluster, value: 
data point> 

●  Reduce: 
●  For each cluster center (key) compute average 

of datapoints 
●  Write out this value as new cluster center 

●  Repeat until convergence (clusters don’t 
change) 
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MapReduce Problems 

● Gated on IO bandwidth, possibly interconnect as well 
●  Must write and read between map and reduce phases 
●  Multiple iterations must read in previous results each time (e.g., 

new cluster centers) 
● No ability to persist reused data 
● Must re-factor all computations as map then reduce, 

and possibly repeat 
●  I/O between every stage 
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What is Spark? 

●  Newer (2014) analytics framework 
●  Originally from Berkeley AMPLab (BDAS stack), now Apache 

project 
●  Native APIs in Scala.  Java, Python, and R APIs available as well. 
●  Many view as successor to Hadoop MapReduce.  Compatible with 

much of Hadoop Ecosystem. 
●  Aims to address some shortcomings of Hadoop 

MapReduce 
●  More programming flexibility – not constrained to one map, one 

reduce, write, repeat. 
●  Many operations can be pipelined into a single in-memory task 
●  Can "persist" intermediate data rather than regenerating every 

stage 
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Spark Execution Model 

●  Master-slave parallelism 
●  Driver (master) 

●  Executes main 
●  Distributes work to executors 

●  Resilient Distributed Dataset (RDD) 
●  Spark's original data abstraction 
●  Partitioned amongst executors 
●  Fault-tolerant via lineage 
●  Dataframes/Datasets extend this abstraction 

●  Executors (slaves) 
●  Lazily execute tasks (local operations on 

partitions of the RDD) 
●  Global all-to-all shuffles for data exchange 
●  Rely on local disks for spilling data that's too 

large, and storing shuffle data 

Driver 
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Executor 
 
 Task 

Task 

Node 1 

Executor 
 
 Task 

Task 

Executor 
 
 Task 
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Node N 

Executor 
 
 Task 
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Node 0 

 = Java Virtual Machine Instance 
 
 = TCP Socket-based communication 

Local disk(s) 

Local disk(s) 
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Spark Communication 
Model (Shuffles) 

●  All data exchanges 
between executors 
implemented via shuffle 
●  Senders (“mappers”) send 

data to block managers; block 
managers write to disks, tell 
scheduler how much destined 
for each reducer 

●  Barrier until all mappers 
complete shuffle writes 

●  Receivers (“reducers”) 
request data from block 
managers that have data for 
them; block managers read 
and send 

Map task 
thread 

Block 
manager 

Disk 

Reduce 
task 

thread 
TCP 

Spark 
Scheduler 

Shuffle write 

Shuffle read 

Meta data 
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Lazy Evaluation and DAGs 

● Spark is lazily evaluated 
●  Spark operations are only executed when and if needed 
●  Needed operations: produce a result for driver, or produce a 

parent of needed operation (recursive) 
● Spark DAG (Directed Acyclic Graph) 

●  Calls to transformation APIs (operations that produce a new 
RDD/DataFrame from one or more parents) just add a new 
node to the DAG, indicating data dependencies (parents) and 
transformation operation 

●  Action APIs (operations that return data) trigger execution of 
necessary DAG elements 
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Tasks, Stages, and Pipelining 

●  If an RDD partition's dependencies are on a single other 
RDD partition (or on co-partitioned data), the operations can 
be pipelined into a single task 
●  Co-partitioned: all of the parent RDD partitions are co-located with 

child RDD partitions that need them 
●  Pipelined: Operations can occur as soon as the local parent data is 

ready (no synchronization) 
●  Task: A pipelined set of operations 
●  Stage: Execution of same task on all partitions 

●  Every stage ends with a shuffle, an output, or returning data 
back to the driver. 
●  Global barrier between stages.  All senders complete shuffle write 

before receivers request data (shuffle read) 
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Spark Example: Word Count 
val lines = sc.textFile("mytext")
val words = lines.flatMap (
              line => line.split(" ")
            )
val wordKV = words.map(s => (s, 1))
val groupedWords = wordKV.groupByKey()
val wordCounts = groupedWords.map(
                   t => (t._1, t._2.sum)
                 )
val counts = wordCounts.collect()

flatMap maps one 
value to (possibly) 

many, instead of one-
to-one like map 

groupByKey combines all 
key-value pairs with the 

same key (k, v1), …, 
(k,vn) into a single key-

value pair (k, (v1, …, vn)). 

Collect returns all 
elements to the driver 

Load file 

•  Let's like at a simple example: computing the number of 
times each word occurs 

•  Load a text file 
•  Split it into words 
•  Group same words together (all-to-all communication) 
•  Count each word 
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Spark on XC: Typical Setup Options 
●  Cluster Compatibility Mode (CCM) option 

●  Set up and launch standalone Spark cluster in CCM mode; run interactively from 
Mom node or submit batch script 

●  Container option 
●  Shifter container runtime (think “Docker for XC”) developed at NERSC 
●  Acquire node allocation: run master image on one node, interactive image on 

another, worker images on rest 
●  Cray’s Urika-XC analytics suite uses this approach 

●  Challenge: Lack of local storage for Spark shuffles and spills.  
Options: 
●  Lustre: slow, especially at scale, due to heavy metadata overhead (opens/closes) 
●  Tmpfs ramdisk in /tmp: fast, but limited size and dependent on application memory 

footprint 
●  Loopback filesystem on each node, backed by lustre file-per-node:  dedicated 

space per node, solves lustre metadata problems (1 open/close per node) 
●  Shifter has this capability built-in, used by Urika-XC 
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Spark on Theta: Alternative Setup Options 
●  Theta differences 

●  CCM not enabled, but does have ssh between nodes (--
attrs=enable_ssh=1) 

●  Shifter not enabled 
●  Each node has a local 128 GB SSD (see Paul Coffman’s I/O talk) 

● Option 1: 
●  Launches SPARK master and slaves on the theta Compute nodes 
●  $ /PATH/TO/SPARK_JOB/submit-spark.sh -A datascience -t 10 -n 2 

-q debug-cache-quad run-example SparkPi 
● Option 2:  

●  Potentially using Singularity. 
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Shuffle on XC – Theta’s SSDs 
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●  Typical approaches to storage: tmpfs RAMdisk or loopback filesystem 
●  Another option unique to Theta: 

●  Theta system provides a 128GB SSD on every node, available for applications  
●  Could be used as Spark local storage – this is what we do on Urika GX 
●  Larger than max RAMdisk, and no contention for space 
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Other Spark Configurations 

● Many config parameters … some of the more relevant: 
●  spark.shuffle.compress: Defaults to true.  Controls whether 

shuffle data is compressed.  In many cases with fast interconnect, 
compression and decompression overhead can cost more than 
the transmission time savings.  However, can still be helpful if 
limited shuffle scratch space. 

●  spark.locality.wait: Defaults to 3 (seconds).  How long to wait for 
available resources on a node with data locality before trying to 
execute tasks on another node.  Worth playing around with - 
decrease if seeing a lot of idle executors.  Increase if seeing poor 
locality.  (Can check both in history server.)  Do not set to 0! 
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Spark Performance on XC: HiBench 
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Performance	of	HiBench	on	XC40	vs	Urika-XA	
Huge	Scale:	48	nodes,	12	cores/node		

XC40		

Urika-XA		

●  Intel HiBench 
●  Originally MapReduce, Spark 

added in version 4 
●  Compared performance 

with Urika XA system 
●  XA: FDR Infiniband, XC40: 

Aries 
●  Both: 32 core Haswell nodes 
●  XA: 128 GB/node, XC40: 256 

GB/node (problems fit in 
memory on both) 

●  Similar performace on 
Kmeans, PageRank, Sleep 

●  XC40 faster for Sort, 
TeraSort, Wordcount, 
Bayes 
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Spark Performance on XC: GraphX 
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●  GraphX PageRank 
●  20 iterations on 

Twitter dataset 
●  Interconnect 

sensitive 
●  GX has slightly 

higher latency and 
lower peak TCP 
bandwidth than XC 
due to buffer chip 
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Spark on KNL 

●  Java and Spark currently run 
●  JVM performance is fairly poor – garbage collection on KNLs is a 

big chunk of this 
● Performance vs Skylake varies from 20% slower to ~4x 

slower 
●  “Typical” benchmarks at larger sizes ~3x slower than a 

dual-socket Skylake node 
●  Can sometimes shrink by carefully tuning parameters 

Copyright 2018 Cray Inc.  
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Early findings and tips 

●  Lots of skinny executors work better than fewer fatter executors 
●  On Xeon-based nodes this is not necessarily the case – fat often works nearly 

as well or occasionally better 
●  On KNL, though, often find best results with 1-2 cores per executor 

●  Make sure to adjust executor memory appropriately – all about memory/core 
●  E.g., 64 executors with 1 core and 2GB each, rather than 1 executor with 64 cores 

and 128 GB 
●  Skinny executors have better memory locality 
●  Skinny executors also have less JVM overhead 
●  JVM has issues scaling to many threads, e.g., 

https://issues.scala-lang.org/browse/SI-9823 (cache thrashing with 
isInstanceOf)  

●  On KNL – play around with these settings – can be very sensitive 
●  Hyperthreading generally not helpful for Spark 
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Early findings and tips 

●  Limit GC parallelism from JVM 
●  E.g., -XX:+UseParallelOldGC -XX:ParallelGCThreads=<N>, 

where N ≤ available threads/# executors 
●  Especially important with lots of skinny JVMs 

●  Otherwise each JVM will try to grab 5/8 total threads 

● MCDRAM configured as cache works best with Spark 
●  Seeing ~43% of accesses coming from MCDRAM, ~11% directly 

from DDR 
●  Currently no ability in JVM to take advantage of MCDRAM in flat 

mode 

Copyright 2018 Cray Inc.  
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Summary 

● Spark runs well on XC systems 
●  Key is to intelligently configure local scratch directories 

● KNL has some challenges, but can run reasonably with 
some tuning 
●  JVM on KNL seems to be the biggest issue … is there a way to 

remove that from the equation? 
●  Perhaps, at least partially ...  
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Alchemist 
An Apache Spark ó MPI Interface 

 
A Collaboration of Cray and the UC Berkeley RiseLab (Alex Gittens, Kai Rothauge, 

Michael W. Mahoney, Shusen Wang, Jey Kottalam) 
 
 

Slides courtesy Kai Rothauge 
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MPI vs Spark


•  Cray and AMPLab performed case study for numerical linear algebra on Spark vs. MPI


•  Why do linear algebra in Spark?


•  Pros: 

•  Faster development, easier reuse


•  One abstract uniform interface (RDD)

•  An entire ecosystem that can be used before and after the NLA computations


•  Spark can take advantage of available local linear algebra codes

•  Automatic fault-tolerance, out-of-core support


•  Con:


•  Classical MPI-based linear algebra implementations will be faster and more efficient
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Rank 20 PCA of 2.2TB oceanic data


MPI vs Spark


A. Gittens et al. “Matrix factorizations at scale: A comparison 

of scientific data analytics in Spark and C+MPI using three 

case studies”, 2016 IEEE International Conference on Big Data 

(Big Data), pages 204–213, Dec 2016.


•  Performed a case study for 
numerical linear algebra on 
Spark vs. MPI: 
•  Matrix factorizations 

considered include Principal 
Component Analysis (PCA) 

•  Data sets include 
•  Oceanic data: 2.2 TB 
•  Atmospheric data: 

16 TB 
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MPI vs Spark: Lessons learned


•  With favorable data (tall and skinny) and well-adapted algorithms, linear 

algebra in Spark is 2x-26x slower than MPI when I/O is included


•  Spark’s overheads are orders of magnitude higher than the actual 

computations


•  Overheads include time until stage end, scheduler delay, task start delay, executor 

deserialize time, inefficiencies related to running code via JVM


•  The gaps in performance suggest it may be better to interface with 

MPI-based codes from Spark
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Alchemist

•  Interface between Apache Spark and existing MPI-based libraries for NLA, ML, etc.

•  Design goals include making the system easy to use, efficient, and scalable

•  Two main tasks:


•  Send distributed input matrices from Spark to MPI-based libraries (Spark => MPI)

•  Send distributed output matrices back to Spark (Spark <= MPI)


•  Want as little overhead as possible when transferring data between Spark and a library

•  Three possible approaches:


•  File I/O (e.g. HDFS)

•  Use shared memory buffers, Apache Ignite, Alluxio, etc.

•  Use in-memory transfer, send data between processes using sockets


too slow! 
extra copy in memory 
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Spark Application
 MPI-based Library


Spark/Application Side
 MPI/Library Side
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Naive Approach to combining Spark and MPI


Spark Application


Spark-MPI Interface


A calls methods from B
A
 B


Spark/Application Side
 MPI/Library Side


MPI-based Library
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Alchemist Architecture


Spark Application
 MPI-based Library


Alchemist


 Library Layer

 A has knowledge of B
A
 B


Library Interface
Application Interface


A calls methods from B
A
 B


dynamic linking


Spark/Application Side
 MPI/Library Side
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Alchemist Architecture


Alchemist


Spark Application
 MPI-based Libraries
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Truncated SVD Alchemist vs Pure Spark


176 211 295 
495 

1272 
1527 

DNF DNF 

25 GB 50 GB 100 GB 200 GB 

Alchemist Pure Spark 

•  Use Alchemist and MLlib to get 
rank 20 truncated SVD 

•  Setup: 
•  30 KNL nodes, 96GB DDR4, 

16GB MCDRAM 
•  Spark: 22 nodes; Alchemist: 8 

nodes 
•  A: m-by-10K, where m = 5M, 

2.5M, 1.25M, 625K, 312.5K 
•  Ran jobs for at most 60 minutes 

(3600 s) 
•  Alchemist times include data 

transfer 
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Future Work

•  Support for sparse matrices

•  Support for MPI-based libraries built on ScaLAPACK

•  Enable running on AWS EC2

•  Ray + MPI?

•  Still research code.  Numerous code improvements in progress:


•  Improved error handling and testing


•  Support for additional Spark distributed matrix layouts


•  Improved communication between Spark and libraries by using locality information


•  Cray team working closely with Berkeley team to harden and productize code, and add it to 
Cray’s analytics stack.


Try it out at github.com/alexgittens/alchemist 
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Precipitation Nowcasting 

●  Problem: Predict precipitation locations and rates at a 
regional level over a short timeframe 
●  Neighborhood level predictions 
●  T+0 – T+6 hours 

●  Standard Approach: Numerical Weather Prediction 
●  Physics based simulations 
●  High computational cost limits performance and accessibility  

●  Cutting edge approach: Deep Learning 
●  Predict rainfall by learning from historical data 
●  Heavy computation occurs ahead of time 
●  Pre-Trained models can be deployed as soon as data is available 

ALCF Simulation, Data, and Learning Copyright 2018 Cray Inc. 
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Motivation 

●  Increase the quality and availability of very short term (0-1 hour) 
precipitation forecasts 
●  Will it rain on my walk home from work if it I leave right now? 
●  Which bike-route should I take to avoid the rain? 

●  Improve tracking quality of severe precipitation events 
●  Where do we issue severe weather warning? 
●  Is a flash flood imminent? Do we need to evacuate? 

●  Gain insights into the full deep learning workflow 
●  Accelerate the integration of deep learning in operational 

meteorology 

ALCF Simulation, Data, and Learning Copyright 2018 Cray Inc. 
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Data Processing Pipeline 

38 

Data Collection 
 

•  Historical Radar Data 
(NETCDF)  

•  Geographical Region 
(Eg:- Seattle) 

•  Days with over 0.1 inches 
of precipitation, info from 
NOAA – NCDC 

•  Radar scans every 5-10 
minutes throughout the 
day 

Transformation 
 

•  Raw radial data structure 
converted to evenly 
spaced Cartesian grid 
(Tensors with float 32) 

•  Resolution scaling and 
clipping 

•  Configure dimensionality 
•  Sequencing 
•  2 channels –     Reflectivity, 

Velocity 
•  Uses Py-ART package 

 
 

Sampling 
 

•  Time-series  
•  Inputs and 

Labels 
•  Random 

sampling 

 
 

BigDL 
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Neural Network Model 

● Convolutional Recurrent Neural Network 
●  Convolutional Neural Network – Spatial Patterns 
●  Recurrent Neural Network – Temporal Patterns 
●  ConvLSTM – Convolutional Long Short-Term Memory Network 

● Sequence to Sequence 
●  Encoder Decoder 
●  Use recent history to predict future changes 

ALCF Simulation, Data, and Learning Copyright 2018 Cray Inc. 
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Implementation: Tensorflow + Spark 

●  Separate workflows – no integration 
●  Forced overhead – data movement 
●  Distinct data pipelines 

●  Data processing – highly distributed analytics platform 
●  DL Training implementation – dense compute platform 

●  Pro:  
●  Specialized hardware 
●  good individual performance 

●  Con:  
●  Productivity loss 
●  Fragmented workflow 

Copyright 2018 Cray Inc. 
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 Intel BigDL – Scalable Deep Learning 

●  Distributed Deep Learning Library 
●  Natively integrated with Spark 

●  Single Spark Context 
●  Dataset stays in memory 
●  Effortless distributed training 

●  Optimized with MKL-DNN libraries 
●  Interface similar to Torch 

●  Stacked NN layers 
●  Define a very complex model in very few lines 

●  Quickly integrate Deep Learning and Machine Learning into 
Spark-based data analytics workloads 

ALCF Simulation, Data, and Learning Copyright 2018 Cray Inc. 
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BigDL Training Scaling 

Copyright 2018 Cray Inc. 
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Implementation: BigDL on Spark 

●  Singular workflow 
●  Data processing on spark flows directly into the training process with BigDL 

●  HPC scale with Urika-XC 
●  High performance compute nodes excel at data analytics 
●  MKL, MKL-DNN provide suitable optimization for DL workloads 
●  Suite of analytics tools to aid in development 

●  Pros: 
●  Single platform 
●  Highly productive development environment 
●  Effortless distribution 

●  Cons: 
●  Less flexible expressive Deep Learning tools 
●  Less flexible compute environment 

Copyright 2018 Cray Inc. 
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Results over time vs. steady state 
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●  False Alarm Rate: Fraction of false alarms to predicted precipitation 
●  FAR = false-alarms / (hits + false-alarms) 

●  Probability of Detection: Fraction of hits to observed precipitation 
●  POD = hits / (hits + misses) 

●  Critical Success Index: Fraction of hits to predicted and observed precipitation  
●  CSI = hits / (hits + misses + false-alarms) 
●  Penalizes both misses and false alarms 

Cray Nowcast 

Steady state 
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