
Spark and Alchemist
Mike Ringenburg mikeri@cray.com
Principal Engineer, Analytics R&D, Cray Inc

Agenda

●  Introduction to Spark
●  History and Background
●  Computation and Communication Model

● Spark on the XC and Theta
●  Installation and Configuration
●  Local storage

● Spark on KNL
● Spark with Alchemist
● A Spark Deep Learning Use Case with BigDL

Copyright 2018 Cray Inc.
2

ALCF Simulation, Data, and Learning

In the beginning, there was Hadoop MapReduce…

●  Simplified parallel programming model
●  All computations broken into two parts

●  Embarrassingly parallel map phase: apply single operation to every key-value pair,
produce new set of key-value pairs

●  Combining reduce phase: Group all values with identical key, perform combining
operation to get final value for each key

●  Can perform multiple iterations for computations that require them
●  I/O intensive

●  Map writes to local storage. Data shuffled to reducer’s local storage, reduce reads from
local storage.

●  Additional I/O between iterations in multi-iteration algorithms (map reads from HDFS,
reduce writes to HDFS)

●  Effective model for many data analytics tasks
●  HDFS distributed file system (locality aware – move compute to data)
●  YARN cluster resource manager

Copyright 2018 Cray Inc.
3

ALCF Simulation, Data, and Learning

Example: K-Means Clustering with MapReduce

●  Initially: Write out random cluster centers
●  Map:

●  Read in cluster centers
●  For each data point, compute nearest cluster

center and write <key: nearest cluster, value:
data point>

●  Reduce:
●  For each cluster center (key) compute average

of datapoints
●  Write out this value as new cluster center

●  Repeat until convergence (clusters don’t
change)

Copyright 2018 Cray Inc.
4

Assign
points to
clusters

Recompute
centers

Disk Disk

Repeat

ALCF Simulation, Data, and Learning

MapReduce Problems

● Gated on IO bandwidth, possibly interconnect as well
●  Must write and read between map and reduce phases
●  Multiple iterations must read in previous results each time (e.g.,

new cluster centers)
● No ability to persist reused data
● Must re-factor all computations as map then reduce,

and possibly repeat
●  I/O between every stage

Copyright 2018 Cray Inc.
5

ALCF Simulation, Data, and Learning

What is Spark?

●  Newer (2014) analytics framework
●  Originally from Berkeley AMPLab (BDAS stack), now Apache

project
●  Native APIs in Scala. Java, Python, and R APIs available as well.
●  Many view as successor to Hadoop MapReduce. Compatible with

much of Hadoop Ecosystem.
●  Aims to address some shortcomings of Hadoop

MapReduce
●  More programming flexibility – not constrained to one map, one

reduce, write, repeat.
●  Many operations can be pipelined into a single in-memory task
●  Can "persist" intermediate data rather than regenerating every

stage

Copyright 2018 Cray Inc.
6

ALCF Simulation, Data, and Learning

Spark Execution Model

●  Master-slave parallelism
●  Driver (master)

●  Executes main
●  Distributes work to executors

●  Resilient Distributed Dataset (RDD)
●  Spark's original data abstraction
●  Partitioned amongst executors
●  Fault-tolerant via lineage
●  Dataframes/Datasets extend this abstraction

●  Executors (slaves)
●  Lazily execute tasks (local operations on

partitions of the RDD)
●  Global all-to-all shuffles for data exchange
●  Rely on local disks for spilling data that's too

large, and storing shuffle data

Driver

main()

…

Executor

 Task

Task

Node 1

Executor

 Task

Task

Executor

 Task

Task

Node N

Executor

 Task

Task

Node 0

 = Java Virtual Machine Instance

 = TCP Socket-based communication

Local disk(s)

Local disk(s)

Copyright 2018 Cray Inc.
7

ALCF Simulation, Data, and Learning

Spark Communication
Model (Shuffles)

●  All data exchanges
between executors
implemented via shuffle
●  Senders (“mappers”) send

data to block managers; block
managers write to disks, tell
scheduler how much destined
for each reducer

●  Barrier until all mappers
complete shuffle writes

●  Receivers (“reducers”)
request data from block
managers that have data for
them; block managers read
and send

Map task
thread

Block
manager

Disk

Reduce
task

thread
TCP

Spark
Scheduler

Shuffle write

Shuffle read

Meta data

Copyright 2018 Cray Inc.
8

ALCF Simulation, Data, and Learning

Lazy Evaluation and DAGs

● Spark is lazily evaluated
●  Spark operations are only executed when and if needed
●  Needed operations: produce a result for driver, or produce a

parent of needed operation (recursive)
● Spark DAG (Directed Acyclic Graph)

●  Calls to transformation APIs (operations that produce a new
RDD/DataFrame from one or more parents) just add a new
node to the DAG, indicating data dependencies (parents) and
transformation operation

●  Action APIs (operations that return data) trigger execution of
necessary DAG elements

Copyright 2018 Cray Inc.
9

ALCF Simulation, Data, and Learning

Tasks, Stages, and Pipelining

●  If an RDD partition's dependencies are on a single other
RDD partition (or on co-partitioned data), the operations can
be pipelined into a single task
●  Co-partitioned: all of the parent RDD partitions are co-located with

child RDD partitions that need them
●  Pipelined: Operations can occur as soon as the local parent data is

ready (no synchronization)
●  Task: A pipelined set of operations
●  Stage: Execution of same task on all partitions

●  Every stage ends with a shuffle, an output, or returning data
back to the driver.
●  Global barrier between stages. All senders complete shuffle write

before receivers request data (shuffle read)

Copyright 2018 Cray Inc.
10

ALCF Simulation, Data, and Learning

Spark Example: Word Count
val lines = sc.textFile("mytext")
val words = lines.flatMap (
 line => line.split(" ")
)
val wordKV = words.map(s => (s, 1))
val groupedWords = wordKV.groupByKey()
val wordCounts = groupedWords.map(
 t => (t._1, t._2.sum)
)
val counts = wordCounts.collect()

flatMap maps one
value to (possibly)

many, instead of one-
to-one like map

groupByKey combines all
key-value pairs with the

same key (k, v1), …,
(k,vn) into a single key-

value pair (k, (v1, …, vn)).

Collect returns all
elements to the driver

Load file

•  Let's like at a simple example: computing the number of
times each word occurs

•  Load a text file
•  Split it into words
•  Group same words together (all-to-all communication)
•  Count each word

Copyright 2018 Cray Inc.
11

ALCF Simulation, Data, and Learning

Copyright 2018 Cray Inc.
12

Spark on Cray XC

ALCF Simulation, Data, and Learning

Spark on XC: Typical Setup Options
●  Cluster Compatibility Mode (CCM) option

●  Set up and launch standalone Spark cluster in CCM mode; run interactively from
Mom node or submit batch script

●  Container option
●  Shifter container runtime (think “Docker for XC”) developed at NERSC
●  Acquire node allocation: run master image on one node, interactive image on

another, worker images on rest
●  Cray’s Urika-XC analytics suite uses this approach

●  Challenge: Lack of local storage for Spark shuffles and spills.
Options:
●  Lustre: slow, especially at scale, due to heavy metadata overhead (opens/closes)
●  Tmpfs ramdisk in /tmp: fast, but limited size and dependent on application memory

footprint
●  Loopback filesystem on each node, backed by lustre file-per-node: dedicated

space per node, solves lustre metadata problems (1 open/close per node)
●  Shifter has this capability built-in, used by Urika-XC

Copyright 2018 Cray Inc.
13

ALCF Simulation, Data, and Learning

Spark on Theta: Alternative Setup Options
●  Theta differences

●  CCM not enabled, but does have ssh between nodes (--
attrs=enable_ssh=1)

●  Shifter not enabled
●  Each node has a local 128 GB SSD (see Paul Coffman’s I/O talk)

● Option 1:
●  Launches SPARK master and slaves on the theta Compute nodes
●  $ /PATH/TO/SPARK_JOB/submit-spark.sh -A datascience -t 10 -n 2

-q debug-cache-quad run-example SparkPi
● Option 2:

●  Potentially using Singularity.

Copyright 2018 Cray Inc.
14

ALCF Simulation, Data, and Learning

Shuffle on XC – Theta’s SSDs

Copyright 2018 Cray Inc.
15

●  Typical approaches to storage: tmpfs RAMdisk or loopback filesystem
●  Another option unique to Theta:

●  Theta system provides a 128GB SSD on every node, available for applications
●  Could be used as Spark local storage – this is what we do on Urika GX
●  Larger than max RAMdisk, and no contention for space

ALCF Simulation, Data, and Learning

Map
task

thread

Block
manager SSD

Reduce
task

thread Lustre
File

Reduce
task

thread

Map
task

thread

Block
manager

Sparse,
cacheable

“local”
filesystem

Typical Loopback Setup SSD-based Alternative

Other Spark Configurations

● Many config parameters … some of the more relevant:
●  spark.shuffle.compress: Defaults to true. Controls whether

shuffle data is compressed. In many cases with fast interconnect,
compression and decompression overhead can cost more than
the transmission time savings. However, can still be helpful if
limited shuffle scratch space.

●  spark.locality.wait: Defaults to 3 (seconds). How long to wait for
available resources on a node with data locality before trying to
execute tasks on another node. Worth playing around with -
decrease if seeing a lot of idle executors. Increase if seeing poor
locality. (Can check both in history server.) Do not set to 0!

Copyright 2018 Cray Inc.
16

ALCF Simulation, Data, and Learning

Spark Performance on XC: HiBench

Copyright 2018 Cray Inc.
17

0	
20	
40	
60	
80	
100	
120	

Sca
laK
me
an
s	

Sca
laP
ag
era
nk
	

Sca
laS
lee
p	

Sca
laS
ort
	

Sca
laT
era
so
rt	

Sca
laW

ord
co
un

Sca
laB
ay
es	

El
ap

se
d	
?m

e	
(s
)	

Performance	of	HiBench	on	XC40	vs	Urika-XA	
Huge	Scale:	48	nodes,	12	cores/node		

XC40		

Urika-XA		

●  Intel HiBench
●  Originally MapReduce, Spark

added in version 4
●  Compared performance

with Urika XA system
●  XA: FDR Infiniband, XC40:

Aries
●  Both: 32 core Haswell nodes
●  XA: 128 GB/node, XC40: 256

GB/node (problems fit in
memory on both)

●  Similar performace on
Kmeans, PageRank, Sleep

●  XC40 faster for Sort,
TeraSort, Wordcount,
Bayes

ALCF Simulation, Data, and Learning

Spark Performance on XC: GraphX

Copyright 2018 Cray Inc.
18

●  GraphX PageRank
●  20 iterations on

Twitter dataset
●  Interconnect

sensitive
●  GX has slightly

higher latency and
lower peak TCP
bandwidth than XC
due to buffer chip

693

391

183
137

0

100

200

300

400

500

600

700

800

Amazon EC2 (10 GbE) Urika XA (FDR IB) Urika GX (Aries +
Buffer)

XC 30 (Aries)

S
ec

on
ds

Spark GraphX PageRank

ALCF Simulation, Data, and Learning

Spark on KNL

●  Java and Spark currently run
●  JVM performance is fairly poor – garbage collection on KNLs is a

big chunk of this
● Performance vs Skylake varies from 20% slower to ~4x

slower
●  “Typical” benchmarks at larger sizes ~3x slower than a

dual-socket Skylake node
●  Can sometimes shrink by carefully tuning parameters

Copyright 2018 Cray Inc.
19

ALCF Simulation, Data, and Learning

Early findings and tips

●  Lots of skinny executors work better than fewer fatter executors
●  On Xeon-based nodes this is not necessarily the case – fat often works nearly

as well or occasionally better
●  On KNL, though, often find best results with 1-2 cores per executor

●  Make sure to adjust executor memory appropriately – all about memory/core
●  E.g., 64 executors with 1 core and 2GB each, rather than 1 executor with 64 cores

and 128 GB
●  Skinny executors have better memory locality
●  Skinny executors also have less JVM overhead
●  JVM has issues scaling to many threads, e.g.,

https://issues.scala-lang.org/browse/SI-9823 (cache thrashing with
isInstanceOf)

●  On KNL – play around with these settings – can be very sensitive
●  Hyperthreading generally not helpful for Spark

Copyright 2018 Cray Inc.
20

ALCF Simulation, Data, and Learning

Early findings and tips

●  Limit GC parallelism from JVM
●  E.g., -XX:+UseParallelOldGC -XX:ParallelGCThreads=<N>,

where N ≤ available threads/# executors
●  Especially important with lots of skinny JVMs

●  Otherwise each JVM will try to grab 5/8 total threads

● MCDRAM configured as cache works best with Spark
●  Seeing ~43% of accesses coming from MCDRAM, ~11% directly

from DDR
●  Currently no ability in JVM to take advantage of MCDRAM in flat

mode

Copyright 2018 Cray Inc.
21

ALCF Simulation, Data, and Learning

Summary

● Spark runs well on XC systems
●  Key is to intelligently configure local scratch directories

● KNL has some challenges, but can run reasonably with
some tuning
●  JVM on KNL seems to be the biggest issue … is there a way to

remove that from the equation?
●  Perhaps, at least partially ...

Copyright 2018 Cray Inc.
22

ALCF Simulation, Data, and Learning

Alchemist
An Apache Spark ó MPI Interface

A Collaboration of Cray and the UC Berkeley RiseLab (Alex Gittens, Kai Rothauge,

Michael W. Mahoney, Shusen Wang, Jey Kottalam)

Slides courtesy Kai Rothauge

Ground

(context metadata

service)

WAVE

(decentralized

authorization service)

Confluo

(formerly DiaLog)

Py
W

re
n

Ray

RLlib
 Ray Tune

Spark

HDFS, Kafka,
Cassandra,
DBMSes, …

O
pa

qu
e

D
riz

zl
e

Al
ch

em
is

t

Clipper

Mixed-autonomy

Traffic

Pylot

(self-driving

platform)

Cloud robotics
 Smart Buildings

Jarvis

TensorFlow,
PyTorch,
MXNet,

Caffe2, …

FireSim
 AWS, Azure, GCE, Kubernetes, Mesos, …

Applications

Processing

Infrastructure

(cluster management,

storage, authorization &

authentication,

metadata management, …)

RISE Stack

Te
gr

a

Slides courtesy Kai Rothauge, UC Berkeley

MPI vs Spark

•  Cray and AMPLab performed case study for numerical linear algebra on Spark vs. MPI

•  Why do linear algebra in Spark?

•  Pros:

•  Faster development, easier reuse

•  One abstract uniform interface (RDD)

•  An entire ecosystem that can be used before and after the NLA computations

•  Spark can take advantage of available local linear algebra codes

•  Automatic fault-tolerance, out-of-core support

•  Con:

•  Classical MPI-based linear algebra implementations will be faster and more efficient

Slides courtesy Kai Rothauge, UC Berkeley

Rank 20 PCA of 2.2TB oceanic data

MPI vs Spark

A. Gittens et al. “Matrix factorizations at scale: A comparison

of scientific data analytics in Spark and C+MPI using three

case studies”, 2016 IEEE International Conference on Big Data

(Big Data), pages 204–213, Dec 2016.

•  Performed a case study for
numerical linear algebra on
Spark vs. MPI:
•  Matrix factorizations

considered include Principal
Component Analysis (PCA)

•  Data sets include
•  Oceanic data: 2.2 TB
•  Atmospheric data:

16 TB

Slides courtesy Kai Rothauge, UC Berkeley

MPI vs Spark: Lessons learned

•  With favorable data (tall and skinny) and well-adapted algorithms, linear

algebra in Spark is 2x-26x slower than MPI when I/O is included

•  Spark’s overheads are orders of magnitude higher than the actual

computations

•  Overheads include time until stage end, scheduler delay, task start delay, executor

deserialize time, inefficiencies related to running code via JVM

•  The gaps in performance suggest it may be better to interface with

MPI-based codes from Spark

Slides courtesy Kai Rothauge, UC Berkeley

Alchemist

•  Interface between Apache Spark and existing MPI-based libraries for NLA, ML, etc.

•  Design goals include making the system easy to use, efficient, and scalable

•  Two main tasks:

•  Send distributed input matrices from Spark to MPI-based libraries (Spark => MPI)

•  Send distributed output matrices back to Spark (Spark <= MPI)

•  Want as little overhead as possible when transferring data between Spark and a library

•  Three possible approaches:

•  File I/O (e.g. HDFS)

•  Use shared memory buffers, Apache Ignite, Alluxio, etc.

•  Use in-memory transfer, send data between processes using sockets

too slow!
extra copy in memory

Slides courtesy Kai Rothauge, UC Berkeley

Spark Application
 MPI-based Library

Spark/Application Side
 MPI/Library Side

Slides courtesy Kai Rothauge, UC Berkeley

Naive Approach to combining Spark and MPI

Spark Application

Spark-MPI Interface

A calls methods from B
A
 B

Spark/Application Side
 MPI/Library Side

MPI-based Library

Slides courtesy Kai Rothauge, UC Berkeley

Alchemist Architecture

Spark Application
 MPI-based Library

Alchemist

 Library Layer

 A has knowledge of B
A
 B

Library Interface
Application Interface

A calls methods from B
A
 B

dynamic linking

Spark/Application Side
 MPI/Library Side

Slides courtesy Kai Rothauge, UC Berkeley

Alchemist Architecture

Alchemist

Spark Application
 MPI-based Libraries

 Library Layer

 A has knowledge of B
A
 B

Library Interfaces
Application Interfaces

A calls methods from B
A
 B

dynamic linking

Spark/Application Side
 MPI/Library Side

Slides courtesy Kai Rothauge, UC Berkeley

Truncated SVD Alchemist vs Pure Spark

176 211 295
495

1272
1527

DNF DNF

25 GB 50 GB 100 GB 200 GB

Alchemist Pure Spark

•  Use Alchemist and MLlib to get
rank 20 truncated SVD

•  Setup:
•  30 KNL nodes, 96GB DDR4,

16GB MCDRAM
•  Spark: 22 nodes; Alchemist: 8

nodes
•  A: m-by-10K, where m = 5M,

2.5M, 1.25M, 625K, 312.5K
•  Ran jobs for at most 60 minutes

(3600 s)
•  Alchemist times include data

transfer

Slides courtesy Kai Rothauge, UC Berkeley

34

Future Work

•  Support for sparse matrices

•  Support for MPI-based libraries built on ScaLAPACK

•  Enable running on AWS EC2

•  Ray + MPI?

•  Still research code. Numerous code improvements in progress:

•  Improved error handling and testing

•  Support for additional Spark distributed matrix layouts

•  Improved communication between Spark and libraries by using locality information

•  Cray team working closely with Berkeley team to harden and productize code, and add it to
Cray’s analytics stack.

Try it out at github.com/alexgittens/alchemist

Slides courtesy Kai Rothauge, UC Berkeley

Copyright 2018 Cray Inc.
35

A Spark Deep Learning Use Case

ALCF Simulation, Data, and Learning

Precipitation Nowcasting

●  Problem: Predict precipitation locations and rates at a
regional level over a short timeframe
●  Neighborhood level predictions
●  T+0 – T+6 hours

●  Standard Approach: Numerical Weather Prediction
●  Physics based simulations
●  High computational cost limits performance and accessibility

●  Cutting edge approach: Deep Learning
●  Predict rainfall by learning from historical data
●  Heavy computation occurs ahead of time
●  Pre-Trained models can be deployed as soon as data is available

ALCF Simulation, Data, and Learning Copyright 2018 Cray Inc.
36

Motivation

●  Increase the quality and availability of very short term (0-1 hour)
precipitation forecasts
●  Will it rain on my walk home from work if it I leave right now?
●  Which bike-route should I take to avoid the rain?

●  Improve tracking quality of severe precipitation events
●  Where do we issue severe weather warning?
●  Is a flash flood imminent? Do we need to evacuate?

●  Gain insights into the full deep learning workflow
●  Accelerate the integration of deep learning in operational

meteorology

ALCF Simulation, Data, and Learning Copyright 2018 Cray Inc.
37

Data Processing Pipeline

38

Data Collection

•  Historical Radar Data
(NETCDF)

•  Geographical Region
(Eg:- Seattle)

•  Days with over 0.1 inches
of precipitation, info from
NOAA – NCDC

•  Radar scans every 5-10
minutes throughout the
day

Transformation

•  Raw radial data structure
converted to evenly
spaced Cartesian grid
(Tensors with float 32)

•  Resolution scaling and
clipping

•  Configure dimensionality
•  Sequencing
•  2 channels – Reflectivity,

Velocity
•  Uses Py-ART package

Sampling

•  Time-series
•  Inputs and

Labels
•  Random

sampling

BigDL

ALCF Simulation, Data, and Learning Copyright 2018 Cray Inc.

Neural Network Model

● Convolutional Recurrent Neural Network
●  Convolutional Neural Network – Spatial Patterns
●  Recurrent Neural Network – Temporal Patterns
●  ConvLSTM – Convolutional Long Short-Term Memory Network

● Sequence to Sequence
●  Encoder Decoder
●  Use recent history to predict future changes

ALCF Simulation, Data, and Learning Copyright 2018 Cray Inc.
39

Implementation: Tensorflow + Spark

●  Separate workflows – no integration
●  Forced overhead – data movement
●  Distinct data pipelines

●  Data processing – highly distributed analytics platform
●  DL Training implementation – dense compute platform

●  Pro:
●  Specialized hardware
●  good individual performance

●  Con:
●  Productivity loss
●  Fragmented workflow

Copyright 2018 Cray Inc.
40

ALCF Simulation, Data, and Learning

Raw Data

P
rocessed D

ata

Trained Model

 Intel BigDL – Scalable Deep Learning

●  Distributed Deep Learning Library
●  Natively integrated with Spark

●  Single Spark Context
●  Dataset stays in memory
●  Effortless distributed training

●  Optimized with MKL-DNN libraries
●  Interface similar to Torch

●  Stacked NN layers
●  Define a very complex model in very few lines

●  Quickly integrate Deep Learning and Machine Learning into
Spark-based data analytics workloads

ALCF Simulation, Data, and Learning Copyright 2018 Cray Inc.
41

BigDL

BigDL Training Scaling

Copyright 2018 Cray Inc.
42

ALCF Simulation, Data, and Learning

Implementation: BigDL on Spark

●  Singular workflow
●  Data processing on spark flows directly into the training process with BigDL

●  HPC scale with Urika-XC
●  High performance compute nodes excel at data analytics
●  MKL, MKL-DNN provide suitable optimization for DL workloads
●  Suite of analytics tools to aid in development

●  Pros:
●  Single platform
●  Highly productive development environment
●  Effortless distribution

●  Cons:
●  Less flexible expressive Deep Learning tools
●  Less flexible compute environment

Copyright 2018 Cray Inc.
43

ALCF Simulation, Data, and Learning

Raw Data

BigDL

Trained
Model

Results over time vs. steady state

Copyright 2018 Cray Inc.
44

●  False Alarm Rate: Fraction of false alarms to predicted precipitation
●  FAR = false-alarms / (hits + false-alarms)

●  Probability of Detection: Fraction of hits to observed precipitation
●  POD = hits / (hits + misses)

●  Critical Success Index: Fraction of hits to predicted and observed precipitation
●  CSI = hits / (hits + misses + false-alarms)
●  Penalizes both misses and false alarms

Cray Nowcast

Steady state

ALCF Simulation, Data, and Learning

Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual
property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release.
Customers and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any
use of Cray Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance
of Cray Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may
affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design,
SONEXION, and URIKA. The following are trademarks of Cray Inc.: APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT,
CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, REVEAL, THREADSTORM. The following system family marks, and associated
model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other
trademarks used in this document are the property of their respective owners.

Copyright 2018 Cray Inc.
45

ALCF Simulation, Data, and Learning

Copyright 2018 Cray Inc.
46

Questions?

ALCF Simulation, Data, and Learning

