
Intel, the Intel logo, Intel® Xeon Phi™, Intel® Xeon® Processor are trademarks of Intel Corporation
in the U.S. and/or other countries. *Other names and brands may be claimed as the property of
others. See Trademarks on intel.com for full list of Intel trademarks.

Introduction to the Intel® Xeon Phi™ Processor
(previously code-named “Knights Landing”)
John Pennycook, Intel Corporation
May 2018, ALCF Performance Workshop

http://www.intel.com/sites/corporate/tradmarx.htm

© 2018 Intel Corporation

Agenda

2

 What is Knights Landing?

– Architecture

– MCDRAM & Cluster Modes

 Making the Most of Knights Landing

‒ Vectorization with AVX-512

 Summary

© 2018 Intel Corporation© 2018 Intel Corporation

What is Knights Landing?

3

© 2018 Intel Corporation

Knights Landing Architecture
Diagram is for conceptual
purposes only and only
illustrates a CPU and memory –
it is not to scale and does not
include all functional areas of
the CPU, nor does it represent
actual component layout.

DMI

MCDRAM MCDRAM MCDRAM

MCDRAM

MCDRAM

MCDRAM MCDRAM MCDRAM

DDR4

DDR4

DDR4

Wellsburg

PCH

Up to
72 cores

HFI

DDR4

DDR4

DDR4

PCIe Gen3

x36

6 channels
DDR4

Up to
384GB

Up to 16GB high-bandwidth on-
package memory (MCDRAM)

Exposed as NUMA node

~500 GB/s sustained BW2

Up to 72 cores

2D mesh architecture

Full Xeon ISA compatibility through AVX-512

Over 3 TF DP peak1

Core Core

2 VPU 2
VPU

1
M

B
 L

2
H

U
B

Tile

M
ic

ro
-C

o
a

x
C

a
b

le
 (

IF
P

)

M
ic

ro
-C

o
a

x
C

a
b

le
 (

IF
P

)

2x 512b VPU per core
(Vector Processing Units)

Based on Intel® Atom Silvermont processor with
many HPC enhancements

Deep out-of-order buffers

Gather/scatter in hardware

Improved branch prediction

4 threads/core

High cache bandwidth

& more

4

1 Based on calculated theoretical peak double precision performance capability for a single Intel® Xeon
Phi™ Processor 7250: 2 instructions/cycle * 2 floating-point operations (FMA) * 8-wide SIMD * 68 cores *
1.4 GHz = 3.046 TFLOP/s.
2 Based on STREAM benchmark results for Intel® Xeon Phi™ Processor 7250, 68 cores, 2 MB page
alignment and MCDRAM flat mode; see Slide 31.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you
in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more complete information visit www.intel.com/benchmarks.

Benchmark results were obtained prior to implementation of recent software patches and firmware
updates intended to address exploits referred to as "Spectre" and "Meltdown". Implementation of these
updates may make these results inapplicable to your device or system.

http://www.intel.com/benchmarks

© 2018 Intel Corporation

Memory Modes

Cache

 Direct-mapped cache.

 Misses are expensive (higher latency)
because they access MCDRAM and DDR.

 No source changes required.

Flat

 Physical address space.

 Exposed as NUMA node(s).

 numactl -H, lscpu to display configuration.

 Accessed through libraries/numactl.

5

Hybrid mode combines the above in 50% / 50% and 25% / 75% configurations.

MCDRAM

DDR

Cores
and

Uncore
MCDRAM DDR

Cores
and

Uncore

© 2018 Intel Corporation

Memory Modes: Which to Choose?

6

DDR
Only

MCDRAM
as Cache

MCDRAM
Only

Flat DDR +
MCDRAM

Hybrid

Software
Effort

Performance

No software changes required.
Change allocations for

bandwidth-critical data.

Not peak
performance.

Can fully utilize MCDRAM bandwidth.

DDR
Only

MCDRAM
as Cache

Hybrid

Easiest ways to use MCDRAM

Limited
memory
capacity

Most flexible
configuration +
opportunity for
new algorithms

Latency and
bandwidth

impact

© 2018 Intel Corporation

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

1

2

3

4

Cluster Modes: All-to-All (All2All)

7

Address Hash:
Uniform across all directories.

Affinity:
No affinity between tile, directory and memory.

Performance:
Lower than other modes.

Software Changes:
None.

Usage Scenario:
Fallback mode when DDR is unevenly populated.

1. L2 miss; 2. Directory access; 3. Memory access; 4. Data return

© 2018 Intel Corporation

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

1

2

3

4

Cluster Modes: Quadrant (Quad)

8

Address Hash:
By quadrant.

Affinity:
Directory and memory in same quadrant.

Performance:
Lower latency and higher bandwidth than All2All.

Software Changes:
None.

Usage Scenario:
Default.

1. L2 miss; 2. Directory access; 3. Memory access; 4. Data return

Quadrant 0 Quadrant 1

Quadrant 2 Quadrant 3

© 2018 Intel Corporation

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

1

2

3

4

NUMA 0 NUMA 1

NUMA 2 NUMA 3

Cluster Modes: Sub-NUMA Clustering (SNC)-4

9

Address Hash:
By quadrant.

Affinity:
Tile, directory and memory in same quadrant.

Performance:
Lowest latency of all modes.

Software Changes:
Application/environment must be NUMA-aware.

Usage Scenario:
NUMA-optimized codes or multiple MPI ranks.

1. L2 miss; 2. Directory access; 3. Memory access; 4. Data return

© 2018 Intel Corporation

Cluster Modes: Which to Choose?

10

All2All Quadrant SNC

Software
Effort

Performance

No software
changes required.

Changes
for NUMA.

Worst Good++

All2All SNC

Easiest to use.

Small performance
difference.

Good

© 2018 Intel Corporation© 2018 Intel Corporation

Making the Most of Knights Landing

11

© 2018 Intel Corporation

A New ISA: AVX-512

12

 Knights Landing is the first micro-architecture to support AVX-512.

– AVX-512F, AVX-512 CDI, AVX-512 ERI, AVX-512 PFI

 Differences from AVX2:

– 32 x 512 bit SIMD registers (zmm0 – zmm31)

– Dedicated mask registers (k0 – k7)

– New instructions: gather/scatter (F), expand/compress (F), conflict detection (CDI),
exponential and reciprocal (ERI), prefetch (PFI)

 Differences from IMCI (Knights Corner ISA):

– Backwards compatible with SSE/AVX.

– New instructions: conflict detection (CDI)

© 2018 Intel Corporation

Why Masks Matter

13

 Even code that looks simple to humans is not simple to the compiler.

 With AVX-512, running all instructions in the branch under a mask will
prevent both arithmetic exceptions and page faults.

#pragma omp simd
for (int i = 0; i < N; ++i)
{
if (input[i] != 0)
{
output[i] = x / input[i];

}
}

Human:
The branch is intended
to prevent division by
zero.

Compiler:
This memory
reference may be
invalid when
input[i] == 0.

© 2018 Intel Corporation

Compiling for AVX-512

14

-xMIC-AVX512

Intel®
Xeon Phi™
Processor

2

int main(int argc,

char* argv[]) {

// example comment

first_function();

second_function();

return 0;

}

Code

Compiler
Libraries

Parallel Models

-xCOMMON-AVX512
(or –xSSE, -xAVX…

3
)

Intel®
Xeon Phi™
Processor

2

-xCORE-AVX512

Intel® Xeon®
Processors

1
Intel® Xeon®
Processors

1

1 Processors previously codenamed “Skylake” supporting AVX-512 instructions.
2 Processors previously codenamed “Knights Landing”.
3 Binaries with TSX instructions are unsupported on processors previously codenamed “Knights Landing”.

© 2018 Intel Corporation

AVX-512 Exponential & Reciprocal (ERI)

 Three new instructions:

‒ VEXP2: approximate 2x

‒ VRCP28: approximate 1/x

‒ VRSQRT28: approximate 1/ x

 Compiler can be encouraged to use
approximations via code transforms:

float x = y / z;
vs
float x = y * (1.0f / z);

 Floating-point precision can be
further tuned via compiler flags:

-fimf-absolute-error
-fimf-accuracy-bits
-fimf-arch-consistency
-fimf-max-error
-fimf-precision
-fimf-domain-exclusion
-[no-]prec-div
-[no-]prec-sqrt

Example:
-fimf-precision=low
–fimf-domain-exclusion=15

15
https://software.intel.com/en-us/node/522977

© 2018 Intel Corporation

Intel® Compiler XE: Optimization Report

16

 Enable with –qopt-report=[1-5]; direct with –qopt-report-phase=[all, cg, ipo, vec, ...]

LOOP BEGIN at example.cpp(5,5)
remark #15388: vectorization support: reference a[i] has aligned access [example.cpp(8,9)]
remark #15389: vectorization support: reference b[i] has unaligned access [example.cpp(7,17)]
remark #15381: vectorization support: unaligned access used inside loop body
remark #15412: vectorization support: streaming store was generated for a[i] [example.cpp(8,9)]
remark #15415: vectorization support: irregularly indexed load was generated for the variable

<c[*(b+i*4)]>, part of index is read from memory [example.cpp(8,22)]
remark #15305: vectorization support: vector length 16
remark #15309: vectorization support: normalized vectorization overhead 0.464
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
remark #15442: entire loop may be executed in remainder
remark #15449: unmasked aligned unit stride stores: 1
remark #15450: unmasked unaligned unit stride loads: 1
remark #15462: unmasked indexed (or gather) loads: 1
remark #15467: unmasked aligned streaming stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 12
remark #15477: vector cost: 1.750
remark #15478: estimated potential speedup: 5.990
remark #15487: type converts: 2
remark #15488: --- end vector cost summary ---

LOOP END
https://software.intel.com/en-us/articles/vectorization-and-optimization-reports

© 2018 Intel Corporation

SIMD Patterns: Common Pitfalls

17

Pattern: Memory access guarded by conditional.

Issue: Compiler cannot assume memory is safe to access.

Original: if (condition) a[i] += result;

Transform: a[i] += (condition) ? result : 0;

Pattern: Error checking within a vectorizable loop.

Issue: Number of loop iterations unknown at compile time.

Original: if (error condition) { exit }

Transform: if (error condition) { error = true; } … if (error) exit

© 2018 Intel Corporation

SIMD Patterns: Common Pitfalls

18

Pattern: Loading neighbour values, with a branch for boundary conditions.

Issue(s): Compiler may generate a gather; array[position-1] may be unsafe.

Original: double left = (column > 0) ? array[position -1] : boundary

Transform: Pad array with appropriate halo data: avoids branch and ensures load is safe.

Pattern: Loop contains OpenMP atomics, intrinsics, inline assembly

Issue: Compiler cannot vectorize these things (atomics allowed in OpenMP 5.0)

Original: for (…) {
// vectorizable
// non-vectorizable

}

Transform: Separate vectorizable and non-vectorizable code into two loops, or use vector_variant.

© 2018 Intel Corporation

p=0

2

Are all
lanes done?

p=0..1

Function call

x1

y1

Vector Function call

x1, x2

y1, y2

#pragma omp simd reduction(+:….)
For (p=0; p<N; p++)
{

// Blue work
if(…)
{

// Green work
}
else
{

// Red work
}
while(…)
{

// Gold work
// Purple work

}
y = foo (x);
Pink work

}

p=1

3

Function call

x2

y2

19

Performance Considerations – Lane Divergence

 Masking enables vectorization of complex control flows, but divergence impacts SIMD efficiency.
 Use Intel® Vector Advisor XE or SDE to identify how many of your lanes are masked out.

© 2018 Intel Corporation

AVX-512F: Compress

20

0 0 0 0

x0 x1 x2 x4 x5 x6 x7x3Data:

0 0 1 0 1 0 11Mask:

0 0 0 0x2 x3 x5 x7Packed Data:

A compress “packs” data from non-
contiguous locations in a register into
contiguous memory.

n = 0;
#pragma vector always assert
for (i = 0; i < VLEN; ++i)
{
if (mask[i])
{

packed[n++] = data[i];
}

}

n = 0;
#pragma omp simd
for (i = 0; i < VLEN; ++i)
{
if (mask[i])
{

#pragma omp ordered simd monotonic(n)
packed[n++] = data[i];

}
}

© 2018 Intel Corporation

x1 x2 x4 x5 x6 x7x3x0

qx0 qx1 qx2 qx4 qx5 qx6 qx7qx3Data:

Unpacked Data:

0 0 1 0 1 0 11Mask:

qx0 qx1 qx2 qx3

AVX-512F: Expand

21

An expand “unpacks” contiguous data
from memory into non-contiguous
locations in a register.

n = 0;
#pragma vector always assert
for (i = 0; i < VLEN; ++i)
{
if (mask[i])
{

unpacked[i] = data[n++];
}

}

n = 0;
#pragma omp simd
for (i = 0; i < VLEN; ++i)
{
if (mask[i])
{

#pragma omp ordered simd monotonic(n)
unpacked[i] = data[n++];

}
}

© 2018 Intel Corporation

Example: Compress & Expand for “SIMD Queue”

 Use compress & expand to recover
SIMD inefficiency from divergence.

 If a function is expensive but not called
often, consider building a list to defer
function execution until later

 Speed-up depends on function cost
relative to compress/expand.

 More complex queue/enqueue
behavior can be useful
(e.g. for Monte Carlo particle transport)

int* queue;
for (int i = 0; i < N; ++i)
{
int qlen = 0;
#pragma omp simd
for (int k = 0; k < num_neighbors[i]; ++k)
{
int j = neighbors[i][k];
float rsq = distance(x[i], x[j]);
if (rsq < cutoff)
{
#pragma omp ordered simd monotonic(qlen)
queue[qlen++] = j;

}
}

#pragma omp simd
for (int k = 0; k < qlen; ++k)
{
int j = queue[k];
f[i] += force(x[i], x[j]);

}
}

22

© 2018 Intel Corporation

Performance Considerations – Data Layout

23

 “Gather” and “Scatter” operations:

 Uniform base pointer

 16 x 32-bit or 8 x 64-bit offsets

 Hardware is still optimized for
contiguous loads/stores:

 Gather/scatter instructions have limited
throughput

 Non-contiguous memory accesses are not
cache friendly

 Can arise from indirection or object-
oriented programming
(e.g. structs, classes)

2 0 8 5

0 1 2 3 4 5 6 7 8Memory

Register

#pragma omp simd
for (i = 0; i < N; ++i)
{
int j = index[i];
foo(data[j]);

}

#pragma omp simd
for (i = 0; i < N; ++i)
{
foo(data[i].x, data[i].y, data[i].z);

}

© 2018 Intel Corporation

Array-of-Structs (AoS)

 Pros:
Good locality of {x, y, z}.
1 memory stream.

 Cons:
Potential for
gather/scatter.

Struct-of-Arrays (SoA)

 Pros:
Contiguous load/store.

 Cons:
Poor locality of {x, y, z}.
3 memory streams.

24

Hybrid (AoSoA)

 Pros:
Contiguous load/store.
1 memory stream.

 Cons:
Not a “normal” layout.

x x xx x x

y y yy y y

z z zz z z

x x

x x

x x

y y

y y

y y

z z

z z

z z

x x

x x

x x

yy

yy

yy

z z

z z

z z

Performance Considerations – Data Layout

© 2018 Intel Corporation

AVX-512 Prefetch (PFI)

25

 Direct prefetches for linear accesses:
prefetcht0, prefetcht1, prefetcht2
prefetchnta

 Indirect prefetches for gather/scatter:
vgatherpf0*,vgatherpf1*
vscatterpf0*,vscatterpf1*

 User-directed prefetches:
#pragma prefetch var:level:distance
_mm_prefetch(address, level);

 Compiler-generated prefetches:
-qopt-prefetch=5

#pragma prefetch A:1:3
#pragma omp simd
for (int i = 0; i < N; ++i)
{
C[i] = A[B[i]];

}

remark #25033: Number of indirect prefetches=1, dist=2
remark #25035: Number of pointer data prefetches=2, dist=8
remark #25150: Using directive-based hint=1, distance=3 for
indirect memory
remark #25540: Using gather/scatter prefetch for indirect
memory reference, dist=3

© 2018 Intel Corporation

AVX-512 Conflict Detection (CDI)

26

 Indirect accesses can introduce
write-conflicts.

 With AVX-512 CDI:

1. Test indices for conflicts at run-time

2. Loop over conflict-free subsets

 Test and loop add overhead; should
not be used if you know there are
no conflicts!

#pragma vector always assert
for (i = 0; i < N; ++i)
{
int j = index[i];
histogram[j]++;

}

#pragma omp simd
for (i = 0; i < N; ++i)
{
int j = index[i];
#pragma omp ordered simd overlap(j)
histogram[j]++;

}

© 2018 Intel Corporation

Summary

27

 Knights Landing is a high-throughput successor to Knights Corner:

– Socketable, bootable processor with access to large amounts of RAM

– Greatly improved single-thread performance

– Very high bandwidth, flexible MCDRAM

 Code modernization is required to fully exploit the features of the chip:

– Use all the cores through parallelization

– Use all the SIMD lanes through vectorization

– Use high-bandwidth memory

© 2018 Intel Corporation

Recommended Reading (1)

 “High Performance Parallelism Pearls”
by James Reinders and Jim Jeffers

 Written as “cookbooks” for modern
parallel programming:

 Real world code examples.

 Successful techniques for vectorization, load
balancing, data structure and memory tuning.

 Multiple application domains.

 www.lotsofcores.com for code downloads.

28

© 2015, 2016 James Reinders & Jim Jeffers, book images used with permission.

http://www.lotsofcores.com/

© 2018 Intel Corporation

Recommended Reading (2)

 “The Knights Landing Book”
by Jim Jeffers, James Reinders and
Avinash Sodani (KNL Architect)

 Covers everything you need to know about
Knights Landing:

 Section I: Knights Landing Microarchitecture

 Section II: Programming for Knights Landing

 Section III: “Pearls” (Application Studies)

 www.lotsofcores.com for code downloads.

29

© 2016 Jim Jeffers, James Reinders & Avinash
Sodani, book image used with permission.

http://www.lotsofcores.com/

© 2018 Intel Corporation

 Independent group of >400 users

 Conferences and workshops
throughout the year:

‒ IXPUG Spring & Fall Conferences

‒ Workshops & BoFs at SC, ISC, others

 Resources, discussion forums,
monthly webinars and more at
http://www.ixpug.org/

Intel eXtreme Performance Users Group (IXPUG)

30

http://www.ixpug.org/

© 2018 Intel Corporation

Legal Disclaimers

31

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should
consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products. § For more information go to www.intel.com/benchmarks.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on
system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at www.intel.com.

§ Configurations:
Slide 4 - Measured by Intel on Intel® Xeon Phi™ processor 7250, 68 cores, 2 MB page alignment and MCDRAM flat mode, Source: https://software.intel.com/en-
us/articles/optimizing-memory-bandwidth-in-knights-landing-on-stream-triad

Intel, the Intel logo, Look Inside, Xeon, Xeon Phi, are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© Intel Corporation.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Optimization Notice

http://www.intel.com/benchmarks
http://www.intel.com/
https://software.intel.com/en-us/articles/optimizing-memory-bandwidth-in-knights-landing-on-stream-triad

© 2018 Intel Corporation

Utilizing SIMD – Intel® Intrinsics Guide

33

Available at: http://software.intel.com/sites/landingpage/IntrinsicsGuide/

Expand any intrinsic for a

detailed description.

Filter by

ISA.

Filter by

functionality.

http://software.intel.com/sites/landingpage/IntrinsicsGuide/

© 2018 Intel Corporation

AVX-512 CDI – Example

34

0101 0001 0000 0000

2 2 1 2

2 2 1 2Index Register:

Bit Vector:

1) Compare (for equality)
each element in zmm2 with
“earlier” elements and output
bit vector.

2) Combine bit vector and
todo to work out which
elements can be updated in
this iteration.

vpconflict

vpbroadcast

0101 0001 0000 0000

1111 1111 1111 1111

0101 0001 0000 0000

0011

0011

vptest

0101 0001 0000 0000

1100 1100 1100 1100

0100 0000 0000 0000

0111

0100

0101 0001 0000 0000

1000 1000 1000 1000

0000 0000 0000 0000

1111

1000

3) Loop until todo is 0000.

© 2018 Intel Corporation

vector_variant

35

 Specifies a vector variant of a scalar function.

– Compiler will call vector variant if function is called in an auto-vectorized loop.

– Can be used in conjunction with #pragma omp declare simd.

__declspec(noinline) float MyAdd(float* a, int b) { return *a + b; }

__declspec(vector_variant(implements(MyAdd(float *a, int b)), linear(a), vectorlength(16), nomask,
processor(future_cpu_23))) __m512 MyAddVec(float* v_a, __m512i v_b)
{

__m512 cvt_b = _mm512_cvtepi32_ps(v_b);
return _mm512_add_ps(*((__m512*)v_a), cvt_b);

}

#pragma omp simd
for (int i = 0; i < N; ++i)
{

x[i] = MyAdd(&y[i], i);
}

 vector_variant functions cannot be inlined (yet).

https://software.intel.com/en-us/node/523350

