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 What is Knights Landing?

– Architecture

– MCDRAM & Cluster Modes

 Making the Most of Knights Landing

‒ Vectorization with AVX-512

 Summary
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What is Knights Landing?
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Knights Landing Architecture
Diagram is for conceptual
purposes only and only
illustrates a CPU and memory –
it is not to scale and does not
include all functional areas of
the CPU, nor does it represent
actual component layout.
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Based on Intel® Atom Silvermont processor with 
many HPC enhancements

Deep out-of-order buffers

Gather/scatter in hardware

Improved branch prediction

4 threads/core

High cache bandwidth

& more
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1 Based on calculated theoretical peak double precision performance capability for a single Intel® Xeon 
Phi™ Processor 7250: 2 instructions/cycle * 2 floating-point operations (FMA) * 8-wide SIMD * 68 cores * 
1.4 GHz = 3.046 TFLOP/s.
2 Based on STREAM benchmark results for Intel® Xeon Phi™ Processor 7250, 68 cores, 2 MB page 
alignment and MCDRAM flat mode; see Slide 31.

Software and workloads used in performance tests may have been optimized for performance only on 
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific 
computer systems, components, software, operations and functions. Any change to any of those factors 
may cause the results to vary. You should consult other information and performance tests to assist you 
in fully evaluating your contemplated purchases, including the performance of that product when 
combined with other products.  For more complete information visit www.intel.com/benchmarks.

Benchmark results were obtained prior to implementation of recent software patches and firmware 
updates intended to address exploits referred to as "Spectre" and "Meltdown". Implementation of these 
updates may make these results inapplicable to your device or system.

http://www.intel.com/benchmarks
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Memory Modes

Cache

 Direct-mapped cache.

 Misses are expensive (higher latency)
because they access MCDRAM and DDR.

 No source changes required.

Flat

 Physical address space.

 Exposed as NUMA node(s).

 numactl -H, lscpu to display configuration.

 Accessed through libraries/numactl.

5

Hybrid mode combines the above in 50% / 50% and 25% / 75% configurations.

MCDRAM

DDR

Cores
and

Uncore
MCDRAM DDR

Cores
and

Uncore
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Memory Modes: Which to Choose?
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DDR 
Only

MCDRAM 
as Cache

MCDRAM 
Only

Flat DDR + 
MCDRAM

Hybrid

Software 
Effort

Performance

No software changes required.
Change allocations for 

bandwidth-critical data.

Not peak 
performance.

Can fully utilize MCDRAM bandwidth.

DDR 
Only

MCDRAM 
as Cache

Hybrid

Easiest ways to use MCDRAM

Limited 
memory 
capacity

Most flexible 
configuration + 
opportunity for 
new algorithms

Latency and 
bandwidth 

impact
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Misc
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Cluster Modes: All-to-All (All2All)
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Address Hash:
Uniform across all directories.

Affinity:
No affinity between tile, directory and memory.

Performance:
Lower than other modes.

Software Changes:
None.

Usage Scenario:
Fallback mode when DDR is unevenly populated.

1. L2 miss; 2. Directory access; 3. Memory access; 4. Data return
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Cluster Modes: Quadrant (Quad)
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Address Hash:
By quadrant.

Affinity:
Directory and memory in same quadrant.

Performance:
Lower latency and higher bandwidth than All2All.

Software Changes:
None.

Usage Scenario:
Default.

1. L2 miss; 2. Directory access; 3. Memory access; 4. Data return

Quadrant 0 Quadrant 1

Quadrant 2 Quadrant 3
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Misc
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Cluster Modes: Sub-NUMA Clustering (SNC)-4
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Address Hash:
By quadrant.

Affinity:
Tile, directory and memory in same quadrant.

Performance:
Lowest latency of all modes.

Software Changes:
Application/environment must be NUMA-aware.

Usage Scenario:
NUMA-optimized codes or multiple MPI ranks.

1. L2 miss; 2. Directory access; 3. Memory access; 4. Data return



© 2018 Intel Corporation

Cluster Modes: Which to Choose?
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All2All Quadrant SNC

Software 
Effort

Performance

No software 
changes required.

Changes 
for NUMA.

Worst Good++

All2All SNC

Easiest to use.

Small performance 
difference.

Good
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Making the Most of Knights Landing

11



© 2018 Intel Corporation

A New ISA: AVX-512
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 Knights Landing is the first micro-architecture to support AVX-512.

– AVX-512F, AVX-512 CDI, AVX-512 ERI, AVX-512 PFI

 Differences from AVX2:

– 32 x 512 bit SIMD registers (zmm0 – zmm31)

– Dedicated mask registers (k0 – k7)

– New instructions: gather/scatter (F), expand/compress (F), conflict detection (CDI), 
exponential and reciprocal (ERI), prefetch (PFI)

 Differences from IMCI (Knights Corner ISA):

– Backwards compatible with SSE/AVX.

– New instructions: conflict detection (CDI)
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Why Masks Matter

13

 Even code that looks simple to humans is not simple to the compiler.

 With AVX-512, running all instructions in the branch under a mask will 
prevent both arithmetic exceptions and page faults.

#pragma omp simd
for (int i = 0; i < N; ++i)
{
if (input[i] != 0)
{
output[i] = x / input[i];

}
}

Human:
The branch is intended 
to prevent division by 
zero.

Compiler:
This memory 
reference may be 
invalid when
input[i] == 0.
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Compiling for AVX-512

14

-xMIC-AVX512

Intel®
Xeon Phi™
Processor

2

int main(int argc, 

char* argv[]) {

// example comment

first_function();

second_function();

return 0;

}

Code

Compiler
Libraries

Parallel Models

-xCOMMON-AVX512
(or –xSSE, -xAVX…

3
)

Intel®
Xeon Phi™
Processor

2

-xCORE-AVX512

Intel® Xeon® 
Processors

1
Intel® Xeon® 
Processors

1

1 Processors previously codenamed “Skylake” supporting AVX-512 instructions.
2 Processors previously codenamed “Knights Landing”.
3 Binaries with TSX instructions are unsupported on processors previously codenamed “Knights Landing”.
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AVX-512 Exponential & Reciprocal (ERI)

 Three new instructions:

‒ VEXP2: approximate 2x

‒ VRCP28: approximate 1/x

‒ VRSQRT28: approximate 1/ x

 Compiler can be encouraged to use 
approximations via code transforms:

float x = y / z;
vs
float x = y * (1.0f / z);

 Floating-point precision can be 
further tuned via compiler flags:

-fimf-absolute-error
-fimf-accuracy-bits
-fimf-arch-consistency
-fimf-max-error
-fimf-precision
-fimf-domain-exclusion
-[no-]prec-div
-[no-]prec-sqrt

Example:
-fimf-precision=low
–fimf-domain-exclusion=15

15
https://software.intel.com/en-us/node/522977
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Intel® Compiler XE: Optimization Report

16

 Enable with –qopt-report=[1-5]; direct with –qopt-report-phase=[all, cg, ipo, vec, ...]

LOOP BEGIN at example.cpp(5,5)
remark #15388: vectorization support: reference a[i] has aligned access   [ example.cpp(8,9) ]
remark #15389: vectorization support: reference b[i] has unaligned access   [ example.cpp(7,17) ]
remark #15381: vectorization support: unaligned access used inside loop body
remark #15412: vectorization support: streaming store was generated for a[i]   [ example.cpp(8,9) ]
remark #15415: vectorization support: irregularly indexed load was generated for the variable 

<c[*(b+i*4)]>, part of index is read from memory   [ example.cpp(8,22) ]
remark #15305: vectorization support: vector length 16
remark #15309: vectorization support: normalized vectorization overhead 0.464
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
remark #15442: entire loop may be executed in remainder
remark #15449: unmasked aligned unit stride stores: 1
remark #15450: unmasked unaligned unit stride loads: 1
remark #15462: unmasked indexed (or gather) loads: 1
remark #15467: unmasked aligned streaming stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 12
remark #15477: vector cost: 1.750
remark #15478: estimated potential speedup: 5.990
remark #15487: type converts: 2
remark #15488: --- end vector cost summary ---

LOOP END
https://software.intel.com/en-us/articles/vectorization-and-optimization-reports
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SIMD Patterns: Common Pitfalls
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Pattern: Memory access guarded by conditional.

Issue: Compiler cannot assume memory is safe to access.

Original: if (condition) a[i] += result;

Transform: a[i] += (condition) ? result : 0;

Pattern: Error checking within a vectorizable loop.

Issue: Number of loop iterations unknown at compile time.

Original: if (error condition) { exit }

Transform: if (error condition) { error = true; } … if (error) exit
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SIMD Patterns: Common Pitfalls
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Pattern: Loading neighbour values, with a branch for boundary conditions.

Issue(s): Compiler may generate a gather;  array[position-1] may be unsafe.

Original: double left = (column > 0) ? array[position -1] : boundary

Transform: Pad array with appropriate halo data: avoids branch and ensures load is safe.

Pattern: Loop contains OpenMP atomics, intrinsics, inline assembly

Issue: Compiler cannot vectorize these things (atomics allowed in OpenMP 5.0)

Original: for (…) {
// vectorizable
// non-vectorizable

} 

Transform: Separate vectorizable and non-vectorizable code into two loops, or use vector_variant.
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p=0

2

Are all
lanes done?

p=0..1

Function call

x1

y1

Vector Function call

x1, x2

y1, y2

#pragma omp simd reduction(+:….)
For (p=0; p<N; p++)
{

// Blue work
if(…)
{

// Green work
}
else
{

// Red work
}
while(…)
{

// Gold work
// Purple work

}
y = foo (x);
Pink work

}

p=1

3

Function call

x2

y2

19

Performance Considerations – Lane Divergence

 Masking enables vectorization of complex control flows, but divergence impacts SIMD efficiency.
 Use Intel® Vector Advisor XE or SDE to identify how many of your lanes are masked out.
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AVX-512F: Compress
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0 0 0 0

x0 x1 x2 x4 x5 x6 x7x3Data:

0 0 1 0 1 0 11Mask:

0 0 0 0x2 x3 x5 x7Packed Data:

A compress “packs” data from non-
contiguous locations in a register into 
contiguous memory.

n = 0;
#pragma vector always assert
for (i = 0; i < VLEN; ++i)
{
if (mask[i])
{

packed[n++] = data[i];
}

}

n = 0;
#pragma omp simd
for (i = 0; i < VLEN; ++i)
{
if (mask[i])
{

#pragma omp ordered simd monotonic(n)
packed[n++] = data[i];

}
}
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x1 x2 x4 x5 x6 x7x3x0

qx0 qx1 qx2 qx4 qx5 qx6 qx7qx3Data:

Unpacked Data:

0 0 1 0 1 0 11Mask:

qx0 qx1 qx2 qx3

AVX-512F: Expand

21

An expand “unpacks” contiguous data 
from memory into non-contiguous 
locations in a register.

n = 0;
#pragma vector always assert
for (i = 0; i < VLEN; ++i)
{
if (mask[i])
{

unpacked[i] = data[n++];
}

}

n = 0;
#pragma omp simd
for (i = 0; i < VLEN; ++i)
{
if (mask[i])
{

#pragma omp ordered simd monotonic(n)
unpacked[i] = data[n++];

}
}
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Example: Compress & Expand for “SIMD Queue”

 Use compress & expand to recover 
SIMD inefficiency from divergence.

 If a function is expensive but not called 
often, consider building a list to defer 
function execution until later

 Speed-up depends on function cost 
relative to compress/expand.

 More complex queue/enqueue
behavior can be useful
(e.g. for Monte Carlo particle transport)

int* queue;
for (int i = 0; i < N; ++i)
{
int qlen = 0;
#pragma omp simd
for (int k = 0; k < num_neighbors[i]; ++k)
{
int j = neighbors[i][k];
float rsq = distance(x[i], x[j]);
if (rsq < cutoff)
{
#pragma omp ordered simd monotonic(qlen)
queue[qlen++] = j;

}
}

#pragma omp simd
for (int k = 0; k < qlen; ++k)
{
int j = queue[k];
f[i] += force(x[i], x[j]);

}
}

22
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Performance Considerations – Data Layout

23

 “Gather” and “Scatter” operations:

 Uniform base pointer

 16 x 32-bit or 8 x 64-bit offsets

 Hardware is still optimized for 
contiguous loads/stores:

 Gather/scatter instructions have limited 
throughput

 Non-contiguous memory accesses are not 
cache friendly

 Can arise from indirection or object-
oriented programming
(e.g. structs, classes)

2 0 8 5

0 1 2 3 4 5 6 7 8Memory

Register

#pragma omp simd
for (i = 0; i < N; ++i)
{
int j = index[i];
foo(data[j]);

}

#pragma omp simd
for (i = 0; i < N; ++i)
{
foo(data[i].x, data[i].y, data[i].z);

}
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Array-of-Structs (AoS)

 Pros:
Good locality of {x, y, z}.
1 memory stream.

 Cons:
Potential for 
gather/scatter.

Struct-of-Arrays (SoA)

 Pros:
Contiguous load/store.

 Cons:
Poor locality of {x, y, z}.
3 memory streams.

24

Hybrid (AoSoA)

 Pros:
Contiguous load/store.
1 memory stream.

 Cons:
Not a “normal” layout.

x x xx x x

y y yy y y

z z zz z z

x x

x x

x x

y y

y y

y y

z z

z z

z z

x x

x x

x x

yy

yy

yy

z z

z z

z z

Performance Considerations – Data Layout
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AVX-512 Prefetch (PFI)

25

 Direct prefetches for linear accesses:
prefetcht0, prefetcht1, prefetcht2
prefetchnta

 Indirect prefetches for gather/scatter:
vgatherpf0*,vgatherpf1*
vscatterpf0*,vscatterpf1*

 User-directed prefetches:
#pragma prefetch var:level:distance
_mm_prefetch(address, level);

 Compiler-generated prefetches:
-qopt-prefetch=5

#pragma prefetch A:1:3
#pragma omp simd
for (int i = 0; i < N; ++i)
{
C[i] = A[B[i]];

}

remark #25033: Number of indirect prefetches=1, dist=2
remark #25035: Number of pointer data prefetches=2, dist=8
remark #25150: Using directive-based hint=1, distance=3 for 
indirect memory
remark #25540: Using gather/scatter prefetch for indirect 
memory reference, dist=3
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AVX-512 Conflict Detection (CDI)
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 Indirect accesses can introduce 
write-conflicts.

 With AVX-512 CDI:

1. Test indices for conflicts at run-time

2. Loop over conflict-free subsets

 Test and loop add overhead; should 
not be used if you know there are 
no conflicts!

#pragma vector always assert
for (i = 0; i < N; ++i)
{
int j = index[i];
histogram[j]++;

}

#pragma omp simd
for (i = 0; i < N; ++i)
{
int j = index[i];
#pragma omp ordered simd overlap(j)
histogram[j]++;

}
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Summary
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 Knights Landing is a high-throughput successor to Knights Corner:

– Socketable, bootable processor with access to large amounts of RAM

– Greatly improved single-thread performance

– Very high bandwidth, flexible MCDRAM

 Code modernization is required to fully exploit the features of the chip:

– Use all the cores through parallelization

– Use all the SIMD lanes through vectorization

– Use high-bandwidth memory
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Recommended Reading (1)

 “High Performance Parallelism Pearls”
by James Reinders and Jim Jeffers

 Written as “cookbooks” for modern 
parallel programming:

 Real world code examples.

 Successful techniques for vectorization, load 
balancing, data structure and memory tuning.

 Multiple application domains.

 www.lotsofcores.com for code downloads.

28

© 2015, 2016 James Reinders & Jim Jeffers, book images used with permission.

http://www.lotsofcores.com/
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Recommended Reading (2)

 “The Knights Landing Book”
by Jim Jeffers, James Reinders and 
Avinash Sodani (KNL Architect)

 Covers everything you need to know about 
Knights Landing:

 Section I: Knights Landing Microarchitecture

 Section II: Programming for Knights Landing

 Section III: “Pearls” (Application Studies)

 www.lotsofcores.com for code downloads.

29

© 2016 Jim Jeffers, James Reinders & Avinash 
Sodani, book image used with permission.

http://www.lotsofcores.com/
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 Independent group of >400 users

 Conferences and workshops 
throughout the year:

‒ IXPUG Spring & Fall Conferences

‒ Workshops & BoFs at SC, ISC, others

 Resources, discussion forums, 
monthly webinars and more at 
http://www.ixpug.org/

Intel eXtreme Performance Users Group (IXPUG)

30

http://www.ixpug.org/
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Legal Disclaimers
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Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, 
are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should 
consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with 
other products. § For more information go to www.intel.com/benchmarks.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on 
system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at www.intel.com.

§ Configurations:
Slide 4 - Measured by Intel on Intel® Xeon Phi™ processor 7250, 68 cores, 2 MB page alignment and MCDRAM flat mode, Source: https://software.intel.com/en-
us/articles/optimizing-memory-bandwidth-in-knights-landing-on-stream-triad

Intel, the Intel logo, Look Inside, Xeon, Xeon Phi, are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© Intel Corporation.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. 
These optimizations include SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or 
effectiveness of any optimization on microprocessors not manufactured by Intel. 

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel 
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the 
specific instruction sets covered by this notice.

Notice revision #20110804 

Optimization Notice

http://www.intel.com/benchmarks
http://www.intel.com/
https://software.intel.com/en-us/articles/optimizing-memory-bandwidth-in-knights-landing-on-stream-triad
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Utilizing SIMD – Intel® Intrinsics Guide

33

Available at: http://software.intel.com/sites/landingpage/IntrinsicsGuide/

Expand any intrinsic for a 

detailed description.

Filter by 

ISA.

Filter by

functionality.

http://software.intel.com/sites/landingpage/IntrinsicsGuide/
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AVX-512 CDI – Example
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0101 0001 0000 0000

2 2 1 2

2 2 1 2Index Register:

Bit Vector:

1) Compare (for equality) 
each element in zmm2 with 
“earlier” elements and output 
bit vector.

2) Combine bit vector and 
todo to work out which 
elements can be updated in 
this iteration.

vpconflict

vpbroadcast

0101 0001 0000 0000

1111 1111 1111 1111

0101 0001 0000 0000

0011

0011

vptest

0101 0001 0000 0000

1100 1100 1100 1100

0100 0000 0000 0000

0111

0100

0101 0001 0000 0000

1000 1000 1000 1000

0000 0000 0000 0000

1111

1000

3) Loop until todo is 0000. 
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vector_variant

35

 Specifies a vector variant of a scalar function.

– Compiler will call vector variant if function is called in an auto-vectorized loop.

– Can be used in conjunction with #pragma omp declare simd.

__declspec(noinline) float MyAdd(float* a, int b) { return *a + b; }

__declspec(vector_variant(implements(MyAdd(float *a, int b)), linear(a), vectorlength(16), nomask, 
processor(future_cpu_23))) __m512 MyAddVec(float* v_a, __m512i v_b)
{

__m512 cvt_b = _mm512_cvtepi32_ps(v_b);
return _mm512_add_ps(*((__m512*)v_a), cvt_b);

}

#pragma omp simd
for (int i = 0; i < N; ++i)
{

x[i] = MyAdd(&y[i], i);
}

 vector_variant functions cannot be inlined (yet).

https://software.intel.com/en-us/node/523350


