
ALCF COMPUTATIONAL PERFORMANCE WORKSHOP

SINGLE-NODE OPTIMIZATION
TOWARDS MORE EFFICIENT
AND PRODUCTIVE QUANTUM
MONTE CARLO SIMULATIONS

erhtjhtyhy

YE LUO
Catalyst Team

Argonne, May 16, 2018

QMCPACK

▪ QMCPACK is an open-source production level many-body ab initio Quantum

Monte Carlo code for computing the electronic structure of atoms, molecules,

and solids.

To answer questions from first principles

2

Metal organic framework
Transition metal

oxide polymorphs
Surface catalysis

QMCPACK TEAM

▪ Team members spread around the

country @ ANL, ORNL, SNL, LLNL

▪ This work is also contributed by

– Anouar Benali @ ANL

– Amrita Mathuriya, Jeongnim Kim

@Intel

3

Supported by:

• ECP AD. QMCPACK:

Predictive and Improvable

Quantum-mechanics Based

Simulations

• Center for Predictive

Simulation of Functional

Materials, DOE BES

• Intel® Parallel Computing

Centers

OUTLINE

▪ QMC basics

▪ Optimization is all about

memory

– Where is the bottleneck?

– Mixed precision

– New algorithms

– AoS to SoA

– How about BGQ?

4

QUANTUM MONTE CARLO BASICS

QUANTUM MONTE CARLO METHODS

▪ Many body Schrodinger equation is NP hard

෡𝐻Ψ = 𝑖ℏ
𝜕

𝜕𝑡
Ψ

▪ Quantum Monte Carlo methods allow for a direct treatment and description of

complex many-body effects encoded in the wave function, going beyond mean

field theory and offering an exact solution of the many-body problem in some

circumstances.

6

VARIATIONAL MONTE CARLO (VMC)
From the variational principle.

7

▪ The goal is to solve Schrodinger equation

with Monte Carlo technique.

▪ Monte Carlo methods can be used to

evaluate multi-dimensional integrals much

more efficiently than deterministic methods.

▪ The random walking is performed by many

walkers on individual Markov Chains.
𝐸 =෍

𝑅

𝐸𝐿(𝑅)

𝐸𝐿 𝑅 =
෡𝐻Ψ𝑇(𝑅)

Ψ𝑇(𝑅)

DMC ALGORITHM
Multiple levels of parallelism can be exploited.

8

• Loop 2: walkers are distributed both over MPI and

cores/SMs.

• Loop 2 and 4 are interchanged on GPU.

• Steps 6,7,8 have extra particle concurrency, exposed

to GPU currently but extensible to SIMD.

OPTIMIZATION IS ALL ABOUT MEMORY

PROCESSOR-MEMORY PERFORMANCE GAP
Getting worse

10

• KNL 7230:

DDR4-2400 6 channel

115.2 GB/s

MCDRAM 400+ GB/s

• GTX 1080 Ti

GDDR5X 484 GB/s

• Tesla P100

HBM2: 732 GB/s

Computer Architecture: A Quantitative Approach by John L. Hennessy,

David A. Patterson, Andrea C. Arpaci-Dusseau

SPECIFICATION OF KNL AND BLUEGENE/Q

KNL (Phi 7210) BG/Q Ratio

Core counts 64 16 4

Hardware threads 4 4 1

Core design Out-of-order In-order

FPU 2 x 512 bit 256 bit 4

Vector ISA AVX512 QPX

FLOPs/Cycle 8/16 way DP/SP 4 way DP/SP 2/4 DP/SP

Base clock 1.3 GHz 1.6 GHz 0.813

DP Flops 2.662 T 0.205 T 13

High Bandwidth Mem. 16GB (>400GB/s) 0 9.4 to DDR

Memory 192 GB (102

GB/s)

16 GB (42.6 GB/s) 12 (2.4)

A big step from multi-core to many-core era

11

FEED DATA FASTER

▪ Use single or even half precision?

– BGQ less BW, GPU/KNL more throughout

▪ Reduce memory footprint to fit fast memory

– Better performance for cache miss. DDR vs MCDRAM, GDDR vs PCI-e

▪ Improve algorithms following computer-over-store policy

– Less BW demand

– Improve data locality for better cache efficiency

▪ Use vector friendly operations

– Maximize cache and vector unit performance

Use all the possible methods

12

SINGLE-NODE MANAGEMENT
Fat walker creates problem

13

MPI task

W W W

Mover

B-spline

W W W

Mover

W W W

Mover

Distance tables, WF scratch

Hamiltonian, B-spline pointer

• Each mover sits on a threads

• A few walkers are propagated

by a mover.

• Data staged from walker to

mover and copied back after

propagation.

• 1 walker per thread is the

lower limit for time to solution.

• Fat walker problem occurs.

MEMORY USAGE

▪ Shared by all the threads
– Single particle orbitals (B-spline coefficients)

– Const. data: Ionic distance table

▪ Walker owned buffer
– Slater determinants (SD)

– Two body potential matrix elements (Jastrow)

– Particle coordinates

▪ Thread owned work space
– Staged SD and Jastrow, Hamiltonian

– Ion-electron, electron-electron distance tables

– Extra scratch space for computing

▪ Thread scratch space is reduced by directly using walker owned buffers.

Components and scaling in the TiO2 supercell calculation

14

Data Scaling Size

Shared N 2.5 GB

Thread T*N2 7.6 GB

Walker buffer W*N2 5.0 GB

Total 15.1 GB

single/double precision

OPTIMIZATION PART I, MIXED PRECISION

DOUBLE TO SINGLE PRECISION

▪ Hardware capability DP/SP flops.

– Intel Xeon or Xeon Phi 1/2

– Nvidia Kepler 1/3, P100 1/2

– IBM BlueGene/Q 1/1

▪ Reduce memory bandwidth demand.

▪ Reduce memory footprint, fit into HBM.

▪ In QMCPACK, GPU accelerated parts are mostly in SP except matrix inversions

and coulomb interaction. Host side is always in DP.

▪ SP achieves 2X DP performance on K80.

More computing power and less memory pressure

16

WEAK SCALING PERFORMANCE

• Small core counts: 20% faster on

KNL, gained from computing.

• Full node: 55% faster, gained

from both computing and

memory BW.

• Always: about 70% faster on

BG/Q, gained from memory BW.

Gain performance not only on KNL but also on BG/Q.

17

0

0.5

1

1.5

2

2.5

3

3.5

16c 1HT 16c 4HT 32c 1HT 64c 1HT 64c 2HT 64c 4HT

Rutile (TiO2)36 864 electrons
DMC

DP KNL MP KNL BG/Q DP BG/Q MP

MEMORY USAGE

▪ Shared by all the threads
– Single particle orbitals (B-spline coefficients)

– Const. data: Ionic distance table

▪ Walker owned buffer
– Slater determinants (SD)

– 2-B potential matrix elements (Jastrow)

– Particle coordinates

▪ Thread owned work space
– Staged SD and Jastrow, Hamiltonian

– Ion-electron, electron-electron distance tables

– Extra scratch space for computing

Components and scaling in the TiO2 supercell calculation

18

Data Scaling Size

Shared N 2.5 GB

Thread T*N2 7.6->3.8 GB

Walker buffer W*N2 5.0->2.5 GB

Total 15.1->8.8 GB

single/double precision

OPTIMIZATION PART II, ALGORITHMS

DISTANCE TABLES

▪ Consumed by wavefunction (Jastrow),

Hamiltonian (Coulomb potential) and

properties (structure factor)

▪ (a) Compact ½ storage but not aligned

access for both row and column updates.

▪ (b) Use full storage, but always aligned

access for both row and column updates.

Row coalesced, column striped.

▪ (c) Only row update. Forward computing.

Remove upper triangle.

Faster memory access

20

L

U

L

U

k
i

j

L

U

k

L

U

i

j

k

accept

accept

(a)

(b)

k

k

k

L

U

L

U

i

j

k
accept

(c)

k

TWO/THREE BODY JASTROW FACTOR
Use an update scheme

21

▪ Two/Three body potential U(i,j)

▪ U(i,j)=U(j,i) and only need row

summation.

▪ Memory footprint N2=>N

▪ Reduce the cost prefactor

▪ All vectorizable computation

i

j

k

accept

(a)

k

i k

accept

(b)

i k

- + =

k

vi

vj

vi

vj

uj

FAT TO LEAN WALKER

Data Contents Size per

walker

Size per thread Total size

Dist. table e-e Rij, Rij, R-1 0 2N2*5=>4N2*4 10N2=>16N2

Slater Det M, ∇M, ∆M,

M_temp…

5N2*2 11N2*2=>5N2*2 32N2=>20N2

2B Jas Uij, ∇Uij, ∆Uij,

PairID

5*(2N)2=>0 6*(2N)2=>0 44N2=>0

Total 30N2=>10N2 56N2=>26N2 86N2=>36N2

Deep dive into the walker memory usage

22

Red contents are identical for the walker and the threads.

Mixed precision needs extra memory(4N2) for SD for recomputing in DP.

NIO 64 ATOM BENCHMARK
A huge save in memory footprint, 49GB=>13GB

23

OPTIMIZATION PART III, AOS TO SOA

AoS => SoA

▪ For physics, R[N][3],

Vector<TinyVector<T,3> >

▪ For computing, Rsoa[3][N],

VectorSoaContainer<T,3>

▪ Cache aligned and padded inside

class.

▪ Rsoa.data(d) to access d-th array.

▪ Friendly to #pragma omp simd

aligned(x)

▪ Operator [] returns TinyVector<T,3>

Data layout change to facilitate vectorization

25

posT grad;

Before:

for(int jat=0; jat<N; ++jat) grad+=du[jat]*displ[jat];

After:

for(int idim=0; idim<DIM; ++idim)

{

const valT* restrict dX=displ.data(idim);

valT s=valT();

#pragma omp simd reduction(+:s) aligned(du,dX)

for(int jat=0; jat<N; ++jat) s+=du[jat]*dX[jat];

grad[idim]=s;

}

Gradients σ𝑗 ∇𝑈(𝑖, 𝑗)

ROOFLINE ANALYSIS
Significant gain in the distance table and the Jastrow

26

▪ On BDW, only DDR

▪ Drop from 47% to 8%

▪ Huge improvement in

algorithmic intensity

▪ Everything in L3

BENCHMARK
New code saves memory and speeds up the calculation

27

OPTIMIZATION PART IV, BLUE GENE/Q

BGCLANG SAVES BG/Q

▪ BGClang 4.0

▪ Pros:

– Supports C++11 with newer STL.

– Supports OpenMP >=4.0 for #pragma omp simd

– Supports QPX intrinsics

– Build codes much faster than XL

– More warnings

▪ Cons:

– Auto-vectorization is bad with single precision

but OK with #pragma omp simd

– Needs effort if esslsmp is needed with OpenMP

Support new language features

29

BENCHMARK
Significant speed on all the platforms

30

SUMMARY

ACHIEVEMENT

▪ Introduce mixed precision to the CPU code globally. GPU code only has it locally.

▪ We introduced new algorithms to save memory and speed up the calculation.

This is long term benefit and beneficial to all the platforms.

▪ We refactor the code to support SoA and get ready for future improvement.

▪ We developed miniQMC including a set of QMCPACK kernels to facilitate dev.

>2X speed up and huge memory saving

32

SUGGESTIONS

▪ Performance tools are your best friend. Probably need more than one for

different aspects.

▪ Working harder on algorithms than implementations

▪ Data movement is always much more expensive than computing

▪ Let the compilers do more works

▪ Work more on miniapps rather than the whole app. The developers’ time is more

precious.

33

www.anl.gov

LET’S CRUSHING MACHINES WITH QMCPACK

