ALCF COMPUTATIONAL PERFORMANCE WORKSHOP Argon ne o

AAAAAAAAAAAAAAAAAA

SINGLE-NODE OPTIMIZATION

TOWARDS MORE EFFICIENT
AND PRODUCTIVE QUANTUM QMCPACK
MONTE CARLO SIMULATIONS

YE LUO
Catalyst Team

Argonne, May 16, 2018

QMCPACK

To answer questions from first principles

» QMCPACK is an open-source production level many-body ab initio Quantum
Monte Carlo code for computing the electronic structure of atoms, molecules,
and solids.

Transition metal
oxide polymorphs

Metal organic framework Surface catalysis

2 Argonne &

OMCPACK TEAM
Supported by:

= Team members spread around the ECP AD. QMCPACK:
country @ ANL, ORNL, SNL, LLNL Predictive and Improvable
Quantum-mechanics Based
= This work is also contributed by Simulations @Y sz

— Anouar Benali @ ANL
— Amrita Mathuriya, Jeongnim Kim
@Intel

 Center for Predictive
Simulation of Functional
Materials, DOE BES

* Intel® Parallel Computlng
Centers

3 Argonne &

OUTLINE

» QMC basics

= Optimization is all about
memory
— Where is the bottleneck?
— Mixed precision
— New algorithms
— A0S to SoA
— How about BGQ?

4 Argonne &

QUANTUM MONTE CARLO BASICS

QUANTUM MONTE CARLO METHODS

= Many body Schrodinger equation is NP hard
AY = ihiw
ot
= Quantum Monte Carlo methods allow for a direct treatment and description of
complex many-body effects encoded in the wave function, going beyond mean
field theory and offering an exact solution of the many-body problem in some
circumstances.

6 Argonne &

VARIATIONAL MONTE CARLO (VMC)

From the variational principle.

» The goal is to solve Schrodinger equation [dRV: HYr,
with Monte Carlo technique. (E) = [dR |.'I'T NE

= Monte Carlo methods can be used to o(R) = Ut o (R))? |
evaluate multi-dimensional integrals much [dR ||
more efficiently than deterministic methods.

AY7(R)
E (R) = V(R
» The random walking is performed by many r(R)

walkers on individual Markov Chains.

(B) =) E(R)
R

Argonne &

DMC ALGORITHM

Multiple levels of parallelism can be exploited.

1: for MC generation = 1--- M do
2 for walker =1--- N, do
3 letR:{rl...rN}
4 for particle =1--- N do
5: set r; =r;+90
6 letR ={r;...r,...Tn}
7 ratio p = U1 (R') /¥ (R)
8: derivatives V, U7, V201
9: ifr — r’ is accepted then
10: update state of a walker
11: end if
12: end for{particle}
13: local energy £;, = HU7(R) /Y1 (R)
14: reweight and branch walkers
15: end for{walker}
16: update Ep and load balance
17: end for{MC generation }

100 T

I System (MPIxOpenMP, Max # of nodes)

| e—e Jaguar (400x6,18000)
&—A Hopper (256x6,2048)
¢—¢ Edison (64x12,512)
B3 Mira (1024x32,16384)

10}

Speedup

1 1|0 100
CU/Reference CU

Loop 2: walkers are distributed both over MPI and
cores/SMs.

Loop 2 and 4 are interchanged on GPU.

Steps 6,7,8 have extra particle concurrency, exposed

to GPU currently but extensible to SIMD.
8 Argonne &

OPTIMIZATION IS ALL ABOUT MEMORY

PROCESSOR-MEMORY PERFORMANCE GAP

Getting worse

KNL 7230:
DDR4-2400 6 channel
115.2 GB/s
MCDRAM 400+ GB/s

GTX 1080 Ti
GDDR5X 484 GB/s

Tesla P100
HBM2: 732 GB/s

Performance

100,000

10,000

1,000

100 |-

10

...................

1980 1985 1990

Processor-Memory
Performance Gap

Processor

.......

1995 2000 2005 2010

Year
Computer Architecture: A Quantitative Approach by John L. Hennessy,

David A. Patterson, Andrea C. Arpaci-Dusseau
10 Argonne &

SPECIFICATION OF KNL AND BLUEGENE/Q

A big step from multi-core to many-core era

—_

Core counts

Hardware threads 4 4 1

Core design Out-of-order In-order

FPU 2 x 512 bit 256 bit 4

Vector ISA AVX512 QPX

FLOPs/Cycle 8/16 way DP/SP 4 way DP/SP 2/4 DP/SP

Base clock 1.3 GHz 1.6 GHz 0.813

DP Flops 2.662T 0.205T 13

High Bandwidth Mem. 16GB (>400GB/s) O 9.4 to DDR

Memory 192 GB (102 16 GB (42.6 GB/s) 12 (2.4)
GB/s)

11 Argonne &

FEED DATA FASTER

Use all the possible methods

= Use single or even half precision?
— BGQ less BW, GPU/KNL more throughout

» Reduce memory footprint to fit fast memory
— Better performance for cache miss. DDR vs MCDRAM, GDDR vs PCl-e

= Improve algorithms following computer-over-store policy
— Less BW demand
— Improve data locality for better cache efficiency

= Use vector friendly operations
— Maximize cache and vector unit performance

12 Argonne &

SINGLE-NODE MANAGEMENT

Fat walker creates problem

e

\ « Each mover sits on a threads

W W WLW WIW | W[IW|W « Afew walkers are propagated
» [I ; by a mover.
“ Mover | | * Mover | | Mover - Data staged from walker to
H A H A H A mover and copied back after
¢ o ¢ o Q.o propagation.
e et « 1 walker per thread is the
KMPI task B-spline / lower limit for time to solution.
« Fat walker problem occurs.

B Distance tables, A WF scratch

@ Hamiltonian, ® B-spline pointer
1 Argonne &

MEMORY USAGE

Components and scaling in the TiO2 supercell calculation

= Shared by all the threads

— Single particle orbitals (B-spline coefficients) _
— Const. data: lonic distance table Data

= Walker owned buffer Shared 2.5GB
— Slater determinants (SD) Thread T*N2 7.6 GB
— Two body potential matrix elements (Jastrow) \walker buffer W*N?2 50GB
— Particle coordinates
Total 15.1 GB

» Thread owned work space
— Staged SD and Jastrow, Hamiltonian _ .
— lon-electron, electron-electron distance tables single/double precision

— Extra scratch space for computing

» Thread scratch space is reduced by directly using walker owned buffers.
1 Argonne &

OPTIMIZATION PART I, MIXED PRECISION

DOUBLE TO SINGLE PRECISION

More computing power and less memory pressure

» Hardware capability DP/SP flops.
— Intel Xeon or Xeon Phi 1/2
— Nvidia Kepler 1/3, P100 1/2
— IBM BlueGene/Q 1/1

» Reduce memory bandwidth demand.
= Reduce memory footprint, fit into HBM.

» In QMCPACK, GPU accelerated parts are mostly in SP except matrix inversions
and coulomb interaction. Host side is always in DP.

» SP achieves 2X DP performance on K80.

16 Argonne &

WEAK SCALING PERFORMANCE

Gain performance not only on KNL but also on BG/Q.

 Small core counts: 20% faster on

KNL, gained from computing. Rutile (TiO2)36 864 electrons

DMC
« Full node: 55% faster, gained 35

from both computing and 3
memory BW. 2.5

* Always: about 70% faster on e
BG/Q, gained from memory BW. I
0.5
| III. II

16c 1HT 16¢ 4HT 32c 1HT 64c 1HT 64c 2HT 64c 4HT
mDP KNL mMPKNL m=mBG/QDP mBG/Q MP

N

[—

o

17 Argonne &

MEMORY USAGE

Components and scaling in the TiO2 supercell calculation

» Shared by all the threads
— Single particle orbitals (B-spline coefficients)

— Const. data: lonic distance table

= Walker owned buffer
— Slater determinants (SD) SUE(E N 2.5 GB
— 2-B potential matrix elements (Jastrow) Thread T*N? 7.6->3.8 GB
— Particle coordinates Walker buffer W*N?2 5.0->2.5 GB
» Thread owned work space Total 15.1->8.8 GB

— Staged SD and Jastrow, Hamiltonian
— lon-electron, electron-electron distance tables

— Extra scratch space for computing

single/double precision

18 Argonne &

OPTIMIZATION PART Il ALGORITHMS

DISTANCE TABLES

Faster memory access

accept

= Consumed by wavefunction (Jastrow),
Hamiltonian (Coulomb potential) and
properties (structure factor)

» (a) Compact Y2 storage but not aligned accept
access for both row and column updates.

» (b) Use full storage, but always aligned
access for both row and column updates. v EEEEE—
Row coalesced, column striped. R —

= (c) Only row update. Forward computing.
Remove upper triangle.

accept

20 Argonne &

TWO/THREE BODY JASTROW FACTOR

Use an update scheme e

= Two/Three body potential U(i,)) J accept

= U(i,j)=U(j,i) and only need row [
summation.

= Memory footprint N°>=>N \\f

» Reduce the cost prefactor
= All vectorizable computation l J
accept + =

Argonne &

FAT TO LEAN WALKER

Deep dive into the walker memory usage

Data Contents Size per Size per thread |Total size
walker

Dist. table e-e Rij, Rij, R* 2N2*5=>4N2*4 10N2=>16N?2

Slater Det M, VM, AM, 5N2*2 11N2*2=>5N2*2 32N?=>20N?
M_temp...

2B Jas i-VUi-AUIE 5%(2N)2=>0 6*(2N)2=>0 44N2=>0
PairlD

Total 30N2=>10N? 56N2=>26N? 86N2=>36N?

Red contents are identical for the walker and the threads.
Mixed precision needs extra memory(4N?) for SD for recomputing in DP.

22 Argonne &

NIO 64 ATOM BENCHMARK
A huge save in memory footprint, 49GB=>13GB

NiO-516 benchmark, memory usage with optimization steps
50

mm BDW mmm KNL-Cache

20

Memory usage in GB

10 4

il

Baseline Baseline+MP Opt+MP
Argonne &

OPTIMIZATION PART lll, AOS TO SOA

A0S => S0A

Data layout change to facilitate vectorization

= For physics, R[N][3], Gradients }.; VU(i, j)

Vector<TinyVector<T,3> >
posT grad,

Before:

= For computing, Rsoa[3][N], f:fft(int jat=0; jat<N; ++jat) grad+=du[jat]*displ[jat];
er.

VectorSoaContainer<T,3> S - -
for(int idim=0; idim<DIM; ++idim)

» Cache aligned and padded inside {
class. const valT* restrict dX=displ.data(idim);

= Rsoa.data(d) to access d-th array. valT s=valT();
(d) y #pragma omp simd reduction(+:s) aligned(du,dX)

» Friendly to #pragma omp simd for(int jat=0; jat<N; ++jat) s+=du[jat]*dX[jat];
aligned(x) grad[idim]=s;

» Operator [] returns TinyVector<T,3> }
25 Argonne &

ROOFLINE ANALYSIS

Significant gain in the distance table and the Jastrow

= On BDW, only DDR
= Drop from 47% to 8%

» Huge improvement in
algorithmic intensity

= Everything in L3

1.0

o o
(1] oo

Normalized Profile
o
'

0.2

—/

B Bspline-v

SP Vector FMA Peak
. 7 110°

Ref

I Bspline-vgh .7
=)2 SP Vector Add Peak ..
[DistTable . e o
. -~ Q. 1
}}' e ‘ ' g
P " © Bspline-v (Ref) 10?2
| R 7/ W’Bspline-vgh (Ref) 1
9. & DistTable (Ref) :
- ah
.’ S
| P e \,}]2 (Ref) |
10t 10°
Al (FLOPS/Byte
Current (/ y)
26

Argonne &

BENCHMARK

New code saves memory and speeds up the calculation

8 NiO-32 NiO-64
m [BDW
‘é_ 6 . KNL-Cache
S B KNL-Flat
8
£ 4 1r
1))
2
2 ‘I 1t I |:I
@Q
o

0

50 T T T !
@ 40t
i=
o 30|
3
g 20 MCDRAM 1 [
2 10} ‘ I . 1t

0

Ref Ref+MP Current Ref Ref+MP Current

Argonne &

OPTIMIZATION PART IV, BLUE GENE/Q

BGCLANG SAVES BG/Q

Support new language features

= BGClang 4.0

= Pros:
— Supports C++11 with newer STL.
— Supports OpenMP >=4.0 for #pragma omp simd
— Supports QPX intrinsics
— Build codes much faster than XL
— More warnings

= Cons:
— Auto-vectorization is bad with single precision
but OK with #pragma omp simd
— Needs effort if esslsmp is needed with OpenMP

29

Argonne &

BENCHMARK

Significant speed on all the platforms

6 T T T T

@ T BGQ] BDW B KNL

S 5 .
o

%

a 4t 4
aJ

=

. 3F |
g

=

a 2t _
-

§®)

0

Q 1r l
)

Graphite Be-64 NiO-58 NiO-516

30 Argonne &

SUMMARY

ACHIEVEMENT

>2X speed up and huge memory saving

» Introduce mixed precision to the CPU code globally. GPU code only has it locally.

» We introduced new algorithms to save memory and speed up the calculation.
This is long term benefit and beneficial to all the platforms.

= We refactor the code to support SoA and get ready for future improvement.
» We developed miniQMC including a set of QMCPACK kernels to facilitate dev.

32 Argonne &

SUGGESTIONS

» Performance tools are your best friend. Probably need more than one for
different aspects.

= Working harder on algorithms than implementations
= Data movement is always much more expensive than computing
= et the compilers do more works

= Work more on miniapps rather than the whole app. The developers’ time is more
precious.

33 Argonne &

LET’S CRUSHING MACHINES WITH QMCPACK

www.anl.gov

