ALCF COMPUTATIONAL PERFORMANCE WORKSHOP

SINGLE-NODE OPTIMIZATION TOWARDS MORE EFFICIENT AND PRODUCTIVE QUANTUM MONTE CARLO SIMULATIONS

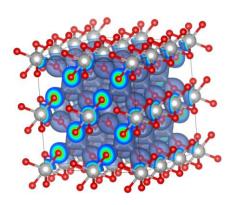
QMCPACK

YE LUO
Catalyst Team

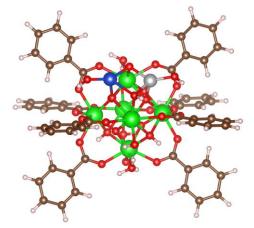
QMCPACK

To answer questions from first principles

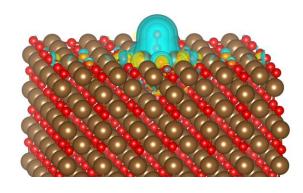
• QMCPACK is an open-source production level many-body ab initio Quantum Monte Carlo code for computing the electronic structure of atoms, molecules, and solids.



Transition metal oxide polymorphs



Metal organic framework



Surface catalysis

QMCPACK TEAM

- Team members spread around the country @ ANL, ORNL, SNL, LLNL
- This work is also contributed by
 - Anouar Benali @ ANL
 - Amrita Mathuriya, Jeongnim Kim@Intel

Supported by:

- ECP AD. QMCPACK:
 Predictive and Improvable
 Quantum-mechanics Based
 Simulations
- Center for Predictive
 Simulation of Functional
 Materials, DOE BES
- Intel® Parallel Computing Centers

OUTLINE

- QMC basics
- Optimization is all about memory
 - Where is the bottleneck?
 - Mixed precision
 - New algorithms
 - AoS to SoA
 - How about BGQ?

QUANTUM MONTE CARLO BASICS

QUANTUM MONTE CARLO METHODS

Many body Schrodinger equation is NP hard

$$\widehat{H}\Psi = i\hbar \frac{\partial}{\partial t}\Psi$$

• Quantum Monte Carlo methods allow for a direct treatment and description of complex many-body effects encoded in the wave function, going beyond mean field theory and offering an exact solution of the many-body problem in some circumstances.

VARIATIONAL MONTE CARLO (VMC)

From the variational principle.

- The goal is to solve Schrodinger equation with Monte Carlo technique.
- Monte Carlo methods can be used to evaluate multi-dimensional integrals much more efficiently than deterministic methods.
- The random walking is performed by many walkers on individual Markov Chains.

$$\langle E \rangle = \frac{\int \mathrm{d}R \; \Psi_{\mathrm{T},\alpha}^* H \Psi_{\mathrm{T},\alpha}}{\int \mathrm{d}R \; \left|\Psi_{\mathrm{T},\alpha}\right|^2} \; ,$$

$$\rho(R) = \frac{\left|\Psi_{\mathrm{T},\alpha}(R)\right|^2}{\int \mathrm{d}R \, \left|\Psi_{\mathrm{T},\alpha}\right|^2} .$$

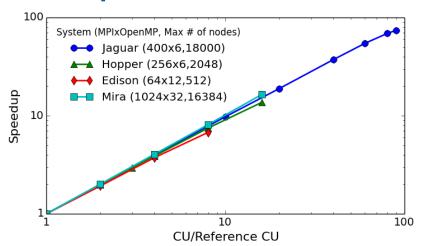
$$E_L(R) = \frac{\widehat{H}\Psi_T(R)}{\Psi_T(R)}$$

$$\langle E \rangle = \sum_{R} E_L(R)$$

DMC ALGORITHM

Multiple levels of parallelism can be exploited.

```
1: for MC generation = 1 \cdots M do
         for walker = 1 \cdots N_w do
 3:
             let \mathbf{R} = \{\mathbf{r}_1 \dots \mathbf{r}_N\}
             for particle i = 1 \cdots N do
 5:
                 set \mathbf{r}_i = \mathbf{r}_i + \delta
                 \operatorname{let} \overline{\mathbf{R}}' = \{\mathbf{r}_1 \dots \mathbf{r}_i' \dots \mathbf{r}_N\}
 6:
                 ratio \rho = \Psi_T(\mathbf{R}')/\Psi_T(\mathbf{R})
                  derivatives \nabla_i \Psi_T, \nabla_i^2 \Psi_T
 8:
                 if \mathbf{r} \to \mathbf{r}' is accepted then
 9:
10:
                      update state of a walker
                 end if
11:
             end for{particle}
12:
             local energy E_L = \hat{H}\Psi_T(\mathbf{R})/\Psi_T(\mathbf{R})
13:
             reweight and branch walkers
14:
         end for{walker}
15:
         update E_T and load balance
16:
17: end for{MC generation}
```



- Loop 2: walkers are distributed both over MPI and cores/SMs.
- Loop 2 and 4 are interchanged on GPU.
- Steps 6,7,8 have extra particle concurrency, exposed to GPU currently but extensible to SIMD.

OPTIMIZATION IS ALL ABOUT MEMORY

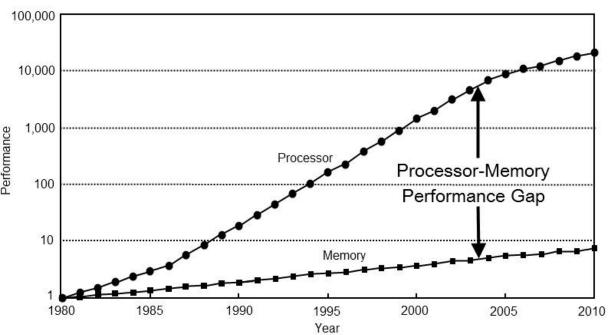
PROCESSOR-MEMORY PERFORMANCE GAP

Getting worse

KNL 7230:
 DDR4-2400 6 channel
 115.2 GB/s
 MCDRAM 400+ GB/s

GTX 1080 Ti
 GDDR5X 484 GB/s

Tesla P100
 HBM2: 732 GB/s



Computer Architecture: A Quantitative Approach by John L. Hennessy, David A. Patterson, Andrea C. Arpaci-Dusseau

SPECIFICATION OF KNL AND BLUEGENE/Q

A big step from multi-core to many-core era

	KNL (Phi 7210)	BG/Q	Ratio
Core counts	64	16	4
Hardware threads	4	4	1
Core design	Out-of-order	In-order	
FPU	2 x 512 bit	256 bit	4
Vector ISA	AVX512	QPX	
FLOPs/Cycle	8/16 way DP/SP	4 way DP/SP	2/4 DP/SP
Base clock	1.3 GHz	1.6 GHz	0.813
DP Flops	2.662 T	0.205 T	13
High Bandwidth Mem.	16GB (>400GB/s)	0	9.4 to DDR
Memory	192 GB (102 GB/s)	16 GB (42.6 GB/s)	12 (2.4)

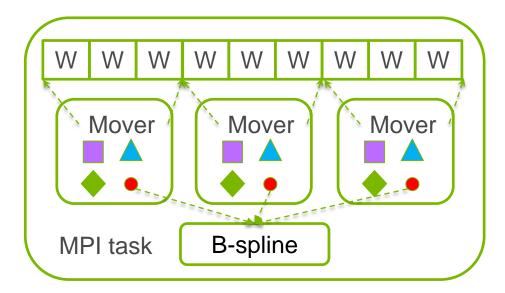
FEED DATA FASTER

Use all the possible methods

- Use single or even half precision?
 - BGQ less BW, GPU/KNL more throughout
- Reduce memory footprint to fit fast memory
 - Better performance for cache miss. DDR vs MCDRAM, GDDR vs PCI-e
- Improve algorithms following computer-over-store policy
 - Less BW demand
 - Improve data locality for better cache efficiency
- Use vector friendly operations
 - Maximize cache and vector unit performance

SINGLE-NODE MANAGEMENT

Fat walker creates problem



- ☐ Distance tables, ▲ WF scratch
- ◆ Hamiltonian, B-spline pointer

- Each mover sits on a threads
- A few walkers are propagated by a mover.
- Data staged from walker to mover and copied back after propagation.
- 1 walker per thread is the lower limit for time to solution.
- Fat walker problem occurs.

MEMORY USAGE

Components and scaling in the TiO2 supercell calculation

- Shared by all the threads
 - Single particle orbitals (B-spline coefficients)
 - Const. data: Ionic distance table
- Walker owned buffer
 - Slater determinants (SD)
 - Two body potential matrix elements (Jastrow)
 - Particle coordinates
- Thread owned work space
 - Staged SD and Jastrow, Hamiltonian
 - lon-electron, electron-electron distance tables
 - Extra scratch space for computing
- Thread scratch space is reduced by directly using walker owned buffers.

Data	Scaling	Size	
Shared	N	2.5 GB	
Thread	$T*N^2$	7.6 GB	
Walker buffer	W*N ²	5.0 GB	
Total		15.1 GB	

single/double precision

OPTIMIZATION PART I, MIXED PRECISION

DOUBLE TO SINGLE PRECISION

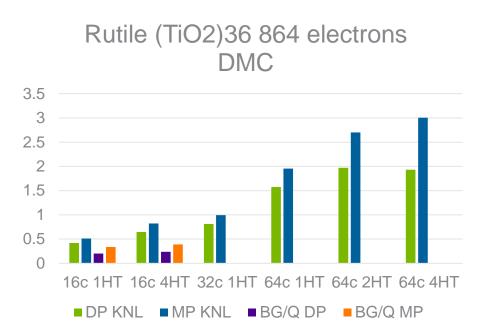
More computing power and less memory pressure

- Hardware capability DP/SP flops.
 - Intel Xeon or Xeon Phi 1/2
 - Nvidia Kepler 1/3, P100 1/2
 - IBM BlueGene/Q 1/1
- Reduce memory bandwidth demand.
- Reduce memory footprint, fit into HBM.
- In QMCPACK, GPU accelerated parts are mostly in SP except matrix inversions and coulomb interaction. Host side is always in DP.
- SP achieves 2X DP performance on K80.

WEAK SCALING PERFORMANCE

Gain performance not only on KNL but also on BG/Q.

- Small core counts: 20% faster on KNL, gained from computing.
- Full node: 55% faster, gained from both computing and memory BW.
- Always: about 70% faster on BG/Q, gained from memory BW.



MEMORY USAGE

Components and scaling in the TiO2 supercell calculation

- Shared by all the threads
 - Single particle orbitals (B-spline coefficients)
 - Const. data: Ionic distance table
- Walker owned buffer
 - Slater determinants (SD)
 - 2-B potential matrix elements (Jastrow)
 - Particle coordinates
- Thread owned work space
 - Staged SD and Jastrow, Hamiltonian
 - Ion-electron, electron-electron distance tables
 - Extra scratch space for computing

Data	Scaling	Size
Shared	N	2.5 GB
Thread	T*N ²	7.6->3.8 GB
Walker buffer	W*N ²	5.0->2.5 GB
Total		15.1->8.8 GB

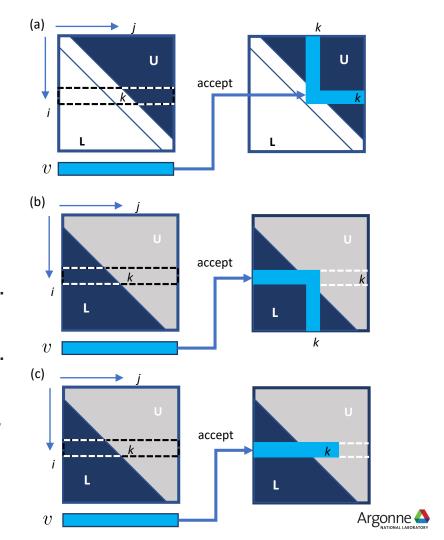
single/double precision

OPTIMIZATION PART II, ALGORITHMS

DISTANCE TABLES

Faster memory access

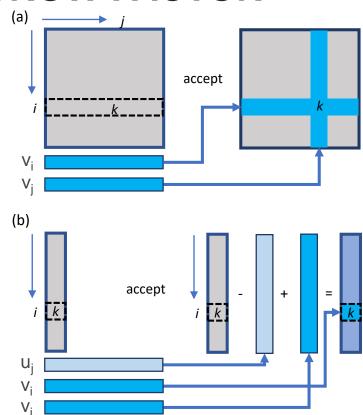
- Consumed by wavefunction (Jastrow),
 Hamiltonian (Coulomb potential) and
 properties (structure factor)
- (a) Compact ½ storage but not aligned access for both row and column updates.
- (b) Use full storage, but always aligned access for both row and column updates.
 Row coalesced, column striped.
- (c) Only row update. Forward computing.
 Remove upper triangle.



TWO/THREE BODY JASTROW FACTOR

Use an update scheme

- Two/Three body potential U(i,j)
- U(i,j)=U(j,i) and only need row summation.
- Memory footprint N²=>N
- Reduce the cost prefactor
- All vectorizable computation



FAT TO LEAN WALKER

Deep dive into the walker memory usage

Data	Contents	Size per walker	Size per thread	Total size
Dist. table e-e	Rij, R ij, R -1	0	2N ² *5=>4N ² *4	$10N^2 = > 16N^2$
Slater Det	M, ∇M, ΔM, M_temp	5N ² *2	11N ² *2=>5N ² *2	$32N^2 = >20N^2$
2B Jas	Uij, ⊽Uij, ∆Uij, PairID	5*(2N) ² =>0	6*(2N) ² =>0	44N ² =>0
Total		$30N^2 = > 10N^2$	$56N^2 = > 26N^2$	$86N^2 = > 36N^2$

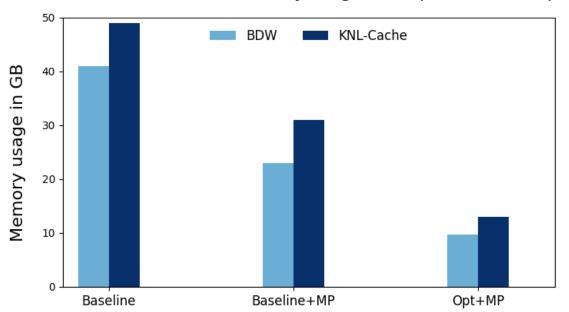
Red contents are identical for the walker and the threads.

Mixed precision needs extra memory(4N²) for SD for recomputing in DP.

NIO 64 ATOM BENCHMARK

A huge save in memory footprint, 49GB=>13GB

NiO-S16 benchmark, memory usage with optimization steps



OPTIMIZATION PART III, AOS TO SOA

AoS => SoA

Data layout change to facilitate vectorization

- For physics, R[N][3], Vector<TinyVector<T,3>>
- For computing, Rsoa[3][N], VectorSoaContainer<T,3>
- Cache aligned and padded inside class.
- Rsoa.data(d) to access d-th array.
- Friendly to #pragma omp simd aligned(x)
- Operator [] returns TinyVector<T,3>

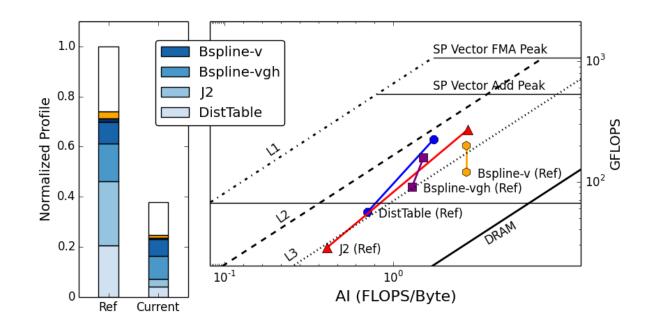
```
Gradients \sum_{j} \nabla U(i,j)
```

```
posT grad;
Before:
for(int jat=0; jat<N; ++jat) grad+=du[jat]*displ[jat];
After:
for(int idim=0; idim<DIM; ++idim)
 const valT* restrict dX=displ.data(idim);
 valT s=valT();
 #pragma omp simd reduction(+:s) aligned(du,dX)
 for(int jat=0; jat<N; ++jat) s+=du[jat]*dX[jat];
 grad[idim]=s;
```

ROOFLINE ANALYSIS

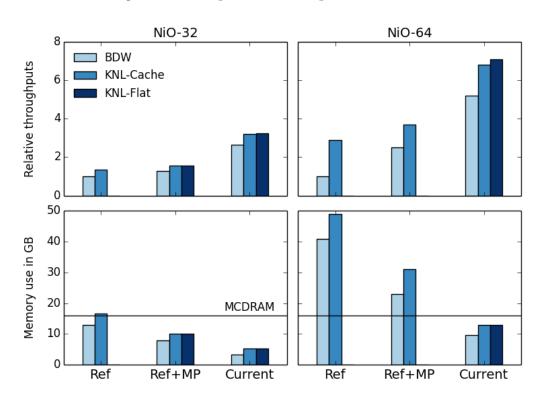
Significant gain in the distance table and the Jastrow

- On BDW, only DDR
- Drop from 47% to 8%
- Huge improvement in algorithmic intensity
- Everything in L3



BENCHMARK

New code saves memory and speeds up the calculation



OPTIMIZATION PART IV, BLUE GENE/Q

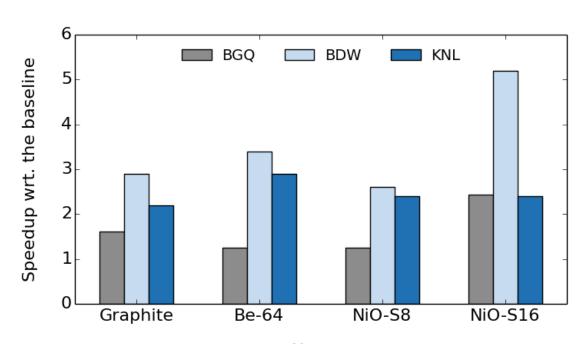
BGCLANG SAVES BG/Q

Support new language features

- BGClang 4.0
- Pros:
 - Supports C++11 with newer STL.
 - Supports OpenMP >=4.0 for #pragma omp simd
 - Supports QPX intrinsics
 - Build codes much faster than XL
 - More warnings
- Cons:
 - Auto-vectorization is bad with single precision but OK with #pragma omp simd
 - Needs effort if esslsmp is needed with OpenMP

BENCHMARK

Significant speed on all the platforms



ACHIEVEMENT

>2X speed up and huge memory saving

- Introduce mixed precision to the CPU code globally. GPU code only has it locally.
- We introduced new algorithms to save memory and speed up the calculation. This is long term benefit and beneficial to all the platforms.
- We refactor the code to support SoA and get ready for future improvement.
- We developed miniQMC including a set of QMCPACK kernels to facilitate dev.

SUGGESTIONS

- Performance tools are your best friend. Probably need more than one for different aspects.
- Working harder on algorithms than implementations
- Data movement is always much more expensive than computing
- Let the compilers do more works
- Work more on miniapps rather than the whole app. The developers' time is more precious.

LET'S CRUSHING MACHINES WITH QMCPACK

