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QMCPACK

▪ QMCPACK is an open-source production level many-body ab initio Quantum 

Monte Carlo code for computing the electronic structure of atoms, molecules, 

and solids.

To answer questions from first principles
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Metal organic framework
Transition metal 

oxide polymorphs
Surface catalysis 



QMCPACK TEAM

▪ Team members spread around the 

country @ ANL, ORNL, SNL, LLNL

▪ This work is also contributed by

– Anouar Benali @ ANL

– Amrita Mathuriya, Jeongnim Kim 

@Intel

3

Supported by:

• ECP AD. QMCPACK: 

Predictive and Improvable 

Quantum-mechanics Based 

Simulations

• Center for Predictive 

Simulation of Functional 

Materials, DOE BES

• Intel® Parallel Computing 

Centers



OUTLINE

▪ QMC basics

▪ Optimization is all about 

memory

– Where is the bottleneck?

– Mixed precision

– New algorithms

– AoS to SoA

– How about BGQ?

4



QUANTUM MONTE CARLO BASICS



QUANTUM MONTE CARLO METHODS

▪ Many body Schrodinger equation is NP hard

෡𝐻Ψ = 𝑖ℏ
𝜕

𝜕𝑡
Ψ

▪ Quantum Monte Carlo methods allow for a direct treatment and description of 

complex many-body effects encoded in the wave function, going beyond mean 

field theory and offering an exact solution of the many-body problem in some 

circumstances.
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VARIATIONAL MONTE CARLO (VMC)
From the variational principle.
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▪ The goal is to solve Schrodinger equation 

with Monte Carlo technique.

▪ Monte Carlo methods can be used to 

evaluate multi-dimensional integrals much 

more efficiently than deterministic methods.

▪ The random walking is performed by many 

walkers on individual Markov Chains.
𝐸 =෍

𝑅

𝐸𝐿(𝑅)

𝐸𝐿 𝑅 =
෡𝐻Ψ𝑇(𝑅)

Ψ𝑇(𝑅)



DMC ALGORITHM
Multiple levels of parallelism can be exploited.
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• Loop 2: walkers are distributed both over MPI and 

cores/SMs.

• Loop 2 and 4 are interchanged on GPU.

• Steps 6,7,8 have extra particle concurrency, exposed 

to GPU currently but extensible to SIMD.



OPTIMIZATION IS ALL ABOUT MEMORY



PROCESSOR-MEMORY PERFORMANCE GAP
Getting worse
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• KNL 7230: 

DDR4-2400 6 channel 

115.2 GB/s

MCDRAM 400+ GB/s

• GTX 1080 Ti

GDDR5X 484 GB/s

• Tesla P100

HBM2: 732 GB/s

Computer Architecture: A Quantitative Approach by John L. Hennessy, 

David A. Patterson, Andrea C. Arpaci-Dusseau



SPECIFICATION OF KNL AND BLUEGENE/Q

KNL (Phi 7210) BG/Q Ratio

Core counts 64 16 4

Hardware threads 4 4 1

Core design Out-of-order In-order

FPU 2 x 512 bit 256 bit 4

Vector ISA AVX512 QPX

FLOPs/Cycle 8/16 way DP/SP 4 way DP/SP 2/4 DP/SP

Base clock 1.3 GHz 1.6 GHz 0.813

DP Flops 2.662 T 0.205 T 13

High Bandwidth Mem. 16GB (>400GB/s) 0 9.4 to DDR

Memory 192 GB (102 

GB/s)

16 GB (42.6 GB/s) 12 (2.4)

A big step from multi-core to many-core era
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FEED DATA FASTER

▪ Use single or even half precision?

– BGQ less BW, GPU/KNL more throughout

▪ Reduce memory footprint to fit fast memory

– Better performance for cache miss. DDR vs MCDRAM, GDDR vs PCI-e

▪ Improve algorithms following computer-over-store policy

– Less BW demand

– Improve data locality for better cache efficiency

▪ Use vector friendly operations

– Maximize cache and vector unit performance

Use all the possible methods
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SINGLE-NODE MANAGEMENT
Fat walker creates problem
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MPI task

W W W

Mover

B-spline

W W W

Mover

W W W

Mover

Distance tables,     WF scratch

Hamiltonian,    B-spline pointer

• Each mover sits on a threads

• A few walkers are propagated 

by a mover.

• Data staged from walker to 

mover and copied back after 

propagation.

• 1 walker per thread is the 

lower limit for time to solution.

• Fat walker problem occurs.



MEMORY USAGE

▪ Shared by all the threads
– Single particle orbitals (B-spline coefficients)

– Const. data: Ionic distance table

▪ Walker owned buffer
– Slater determinants (SD)

– Two body potential matrix elements (Jastrow)

– Particle coordinates

▪ Thread owned work space
– Staged SD and Jastrow, Hamiltonian

– Ion-electron, electron-electron distance tables

– Extra scratch space for computing

▪ Thread scratch space is reduced by directly using walker owned buffers.

Components and scaling in the TiO2 supercell calculation
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Data Scaling Size

Shared N 2.5 GB

Thread T*N2 7.6 GB

Walker buffer W*N2 5.0 GB

Total 15.1 GB

single/double precision



OPTIMIZATION PART I, MIXED PRECISION



DOUBLE TO SINGLE PRECISION

▪ Hardware capability DP/SP flops.

– Intel Xeon or Xeon Phi  1/2

– Nvidia Kepler 1/3, P100 1/2

– IBM BlueGene/Q 1/1

▪ Reduce memory bandwidth demand.

▪ Reduce memory footprint, fit into HBM.

▪ In QMCPACK, GPU accelerated parts are mostly in SP except matrix inversions 

and coulomb interaction. Host side is always in DP.

▪ SP achieves 2X DP performance on K80.

More computing power and less memory pressure
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WEAK SCALING PERFORMANCE

• Small core counts: 20% faster on 

KNL, gained from computing.

• Full node: 55% faster, gained 

from both computing and 

memory BW.

• Always: about 70% faster on 

BG/Q, gained from memory BW.

Gain performance not only on KNL but also on BG/Q.
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MEMORY USAGE

▪ Shared by all the threads
– Single particle orbitals (B-spline coefficients)

– Const. data: Ionic distance table

▪ Walker owned buffer
– Slater determinants (SD)

– 2-B potential matrix elements (Jastrow)

– Particle coordinates

▪ Thread owned work space
– Staged SD and Jastrow, Hamiltonian

– Ion-electron, electron-electron distance tables

– Extra scratch space for computing

Components and scaling in the TiO2 supercell calculation
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Data Scaling Size

Shared N 2.5 GB

Thread T*N2 7.6->3.8 GB

Walker buffer W*N2 5.0->2.5 GB

Total 15.1->8.8 GB

single/double precision



OPTIMIZATION PART II, ALGORITHMS



DISTANCE TABLES

▪ Consumed by wavefunction (Jastrow), 

Hamiltonian (Coulomb potential) and 

properties (structure factor)

▪ (a) Compact ½ storage but not aligned 

access for both row and column updates.

▪ (b) Use full storage, but always aligned 

access for both row and column updates. 

Row coalesced, column striped.

▪ (c) Only row update. Forward computing. 

Remove upper triangle.

Faster memory access
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TWO/THREE BODY JASTROW FACTOR
Use an update scheme
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▪ Two/Three body potential U(i,j)

▪ U(i,j)=U(j,i) and only need row 

summation.

▪ Memory footprint N2=>N

▪ Reduce the cost prefactor

▪ All vectorizable computation
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FAT TO LEAN WALKER

Data Contents Size per 

walker

Size per thread Total size

Dist. table e-e Rij, Rij, R-1 0 2N2*5=>4N2*4 10N2=>16N2

Slater Det M, ∇M, ∆M, 

M_temp…

5N2*2 11N2*2=>5N2*2 32N2=>20N2

2B Jas Uij, ∇Uij, ∆Uij, 

PairID

5*(2N)2=>0 6*(2N)2=>0 44N2=>0

Total 30N2=>10N2 56N2=>26N2 86N2=>36N2

Deep dive into the walker memory usage
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Red contents are identical for the walker and the threads.

Mixed precision needs extra memory(4N2) for SD for recomputing in DP.



NIO 64 ATOM BENCHMARK
A huge save in memory footprint, 49GB=>13GB
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OPTIMIZATION PART III, AOS TO SOA



AoS => SoA

▪ For physics, R[N][3], 

Vector<TinyVector<T,3> >

▪ For computing, Rsoa[3][N], 

VectorSoaContainer<T,3>

▪ Cache aligned and padded inside 

class.

▪ Rsoa.data(d) to access d-th array.

▪ Friendly to #pragma omp simd

aligned(x)

▪ Operator [ ] returns TinyVector<T,3>

Data layout change to facilitate vectorization
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posT grad;

Before:

for(int jat=0; jat<N; ++jat) grad+=du[jat]*displ[jat];

After:

for(int idim=0; idim<DIM; ++idim)

{

const valT* restrict dX=displ.data(idim);

valT s=valT();

#pragma omp simd reduction(+:s) aligned(du,dX)

for(int jat=0; jat<N; ++jat) s+=du[jat]*dX[jat];

grad[idim]=s;

}

Gradients σ𝑗 ∇𝑈(𝑖, 𝑗)



ROOFLINE ANALYSIS
Significant gain in the distance table and the Jastrow
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▪ On BDW, only DDR

▪ Drop from 47% to 8%

▪ Huge improvement in 

algorithmic intensity

▪ Everything in L3



BENCHMARK
New code saves memory and speeds up the calculation
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OPTIMIZATION PART IV, BLUE GENE/Q



BGCLANG SAVES BG/Q

▪ BGClang 4.0

▪ Pros:

– Supports C++11 with newer STL.

– Supports OpenMP >=4.0 for #pragma omp simd

– Supports QPX intrinsics

– Build codes much faster than XL

– More warnings

▪ Cons:

– Auto-vectorization is bad with single precision 

but OK with #pragma omp simd

– Needs effort if esslsmp is needed with OpenMP

Support new language features
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BENCHMARK
Significant speed on all the platforms
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SUMMARY



ACHIEVEMENT

▪ Introduce mixed precision to the CPU code globally. GPU code only has it locally.

▪ We introduced new algorithms to save memory and speed up the calculation. 

This is long term benefit and beneficial to all the platforms.

▪ We refactor the code to support SoA and get ready for future improvement.

▪ We developed miniQMC including a set of QMCPACK kernels to facilitate dev.

>2X speed up and huge memory saving
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SUGGESTIONS

▪ Performance tools are your best friend. Probably need more than one for 

different aspects.

▪ Working harder on algorithms than implementations

▪ Data movement is always much more expensive than computing

▪ Let the compilers do more works

▪ Work more on miniapps rather than the whole app. The developers’ time is more 

precious.
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LET’S CRUSHING MACHINES WITH QMCPACK


